
Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Runtime Monitoring, Verification, Enforcement
and Control of C Programs
(From Tool to Semantics)

Zhe Chen

Nanjing University of Aeronautics and Astronautics, China

(an extension of TASE’15 paper)
5 December, 2015

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Terminologies

Software systems are usually constrained by a set of properties,
e.g., correctness requirements, safety and security policies.

Runtime monitoring is an infrastructural method that uses
monitors to observe the dynamic execution of a target
program at runtime.

Runtime verification uses runtime monitoring for verification
purpose, i.e., analyzing the dynamic execution at runtime to
detect property violations.

Runtime enforcement uses runtime monitoring for
enforcement purpose, i.e., halting a system if it does not
respect desired properties.

Runtime control uses runtime monitoring to actively control
and correct the execution of the target system at runtime by
calling some predefined controlling actions.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Terminologies

Software systems are usually constrained by a set of properties,
e.g., correctness requirements, safety and security policies.

Runtime monitoring is an infrastructural method that uses
monitors to observe the dynamic execution of a target
program at runtime.

Runtime verification uses runtime monitoring for verification
purpose, i.e., analyzing the dynamic execution at runtime to
detect property violations.

Runtime enforcement uses runtime monitoring for
enforcement purpose, i.e., halting a system if it does not
respect desired properties.

Runtime control uses runtime monitoring to actively control
and correct the execution of the target system at runtime by
calling some predefined controlling actions.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Terminologies

Software systems are usually constrained by a set of properties,
e.g., correctness requirements, safety and security policies.

Runtime monitoring is an infrastructural method that uses
monitors to observe the dynamic execution of a target
program at runtime.

Runtime verification uses runtime monitoring for verification
purpose, i.e., analyzing the dynamic execution at runtime to
detect property violations.

Runtime enforcement uses runtime monitoring for
enforcement purpose, i.e., halting a system if it does not
respect desired properties.

Runtime control uses runtime monitoring to actively control
and correct the execution of the target system at runtime by
calling some predefined controlling actions.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Terminologies

Software systems are usually constrained by a set of properties,
e.g., correctness requirements, safety and security policies.

Runtime monitoring is an infrastructural method that uses
monitors to observe the dynamic execution of a target
program at runtime.

Runtime verification uses runtime monitoring for verification
purpose, i.e., analyzing the dynamic execution at runtime to
detect property violations.

Runtime enforcement uses runtime monitoring for
enforcement purpose, i.e., halting a system if it does not
respect desired properties.

Runtime control uses runtime monitoring to actively control
and correct the execution of the target system at runtime by
calling some predefined controlling actions.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Terminologies

Software systems are usually constrained by a set of properties,
e.g., correctness requirements, safety and security policies.

Runtime monitoring is an infrastructural method that uses
monitors to observe the dynamic execution of a target
program at runtime.

Runtime verification uses runtime monitoring for verification
purpose, i.e., analyzing the dynamic execution at runtime to
detect property violations.

Runtime enforcement uses runtime monitoring for
enforcement purpose, i.e., halting a system if it does not
respect desired properties.

Runtime control uses runtime monitoring to actively control
and correct the execution of the target system at runtime by
calling some predefined controlling actions.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

The MOVEC Tool

MOVEC: an automated tool for

MOnitoring, VErification and Control of C Programs

Principle:

C Programs

C Parser

Monitor

Definitions

Monitor Parser

Weaver

Command

Line Options

Option Parser

Instrumented

C Programs

MOVEC

Monitor Generator

Outperforms many monitoring tools for C programs, according
to our preliminary experimental results.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

The MOVEC Tool

MOVEC: an automated tool for

MOnitoring, VErification and Control of C Programs

Principle:

C Programs

C Parser

Monitor

Definitions

Monitor Parser

Weaver

Command

Line Options

Option Parser

Instrumented

C Programs

MOVEC

Monitor Generator

Outperforms many monitoring tools for C programs, according
to our preliminary experimental results.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

The MOVEC Tool

MOVEC: an automated tool for

MOnitoring, VErification and Control of C Programs

Principle:

C Programs

C Parser

Monitor

Definitions

Monitor Parser

Weaver

Command

Line Options

Option Parser

Instrumented

C Programs

MOVEC

Monitor Generator

Outperforms many monitoring tools for C programs, according
to our preliminary experimental results.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Tool Demo

TOOL DEMO

target program ⇒ instrumented controlled program

specification ⇒ controlling program

weave the two by compiling

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Motivations

Existing problems:

The state-of-the-art study of these topics lacks an appropriate
formal program semantics of runtime monitoring, in contrast
to the relatively abundant implementations.

The existing works on semantics are too general to express the
semantics of key implementation techniques, such as program
instrumentation and synthesis of controlling programs from
specifications.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Contributions

We will propose a theory of runtime control at an appropriate
level of formalization to provide a formal program semantics
for MOVEC.

The semantics contains:

target programs, to be controlled.
controlling programs, which can perform

passive actions for monitoring, i.e., to observe the execution of
a target program at runtime.
active actions for controlling, i.e., to control and correct its
execution via active controlling actions.

transition system semantics of instrumented target programs
under the control of controlling programs.

Objective:

provides a complete formal semantics for real implementations
of runtime monitoring and control.
retains a good balance between implementation and generality.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Contributions

We will propose a theory of runtime control at an appropriate
level of formalization to provide a formal program semantics
for MOVEC.

The semantics contains:

target programs, to be controlled.
controlling programs, which can perform

passive actions for monitoring, i.e., to observe the execution of
a target program at runtime.
active actions for controlling, i.e., to control and correct its
execution via active controlling actions.

transition system semantics of instrumented target programs
under the control of controlling programs.

Objective:

provides a complete formal semantics for real implementations
of runtime monitoring and control.
retains a good balance between implementation and generality.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Contributions

We will propose a theory of runtime control at an appropriate
level of formalization to provide a formal program semantics
for MOVEC.

The semantics contains:

target programs, to be controlled.
controlling programs, which can perform

passive actions for monitoring, i.e., to observe the execution of
a target program at runtime.
active actions for controlling, i.e., to control and correct its
execution via active controlling actions.

transition system semantics of instrumented target programs
under the control of controlling programs.

Objective:

provides a complete formal semantics for real implementations
of runtime monitoring and control.
retains a good balance between implementation and generality.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Semantics

program graphs ⇒ transition systems

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Programs as Program Graphs (PG)

Definition (Program Graphs (PG))

A program graph PG over set Var of typed variables is a tuple
(Loc,Act,Eff ,Tr , Loc0, g0) where
- Loc is a set of locations,
- Act is a set of actions,
- Eff : Act × Eval(Var)→ Eval(Var) is the effect function,
- Tr ⊆ Loc × Cond(Var)× Act × Loc is the conditional transition
relation,
- Loc0 ⊆ Loc is a set of initial locations, and
- g0 ∈ Cond(Var) is the initial condition.

For example, let l
g :α
↪→ l ′ ∈ Tr , where g denotes a guard, α denotes

the action x = y + 1, and η is the evaluation with η(x , y) = (1, 1),
then Eff (α, η)(x , y) = (2, 1).

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Transition Systems (TS)

A transition system is basically a directed graph where nodes
represent states, and edges model transitions.

Definition (Transition Systems (TS))

A transition system TS is a tuple (S ,Act, δ, I ,AP, L) where
- S is a set of states,
- Act is a set of actions,
- δ ⊆ S × Act × S is a transition relation,
- I ⊆ S is a set of initial states,
- AP is a set of atomic propositions, and
- L : S → 2AP is a labeling function.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Transition System Semantics of a Program Graph

Each program graph can be interpreted as a transition system by
unfolding the program graph.

Definition (Transition System Semantics of a Program Graph)

The transition system TS(PG) of program graph PG is the tuple
(S , Act, δ, I , AP, L) where

S = Loc × Eval(Var)

δ ⊆ S × Act × S is defined by the following rule:

l
g :α
↪→ l ′ ∧ η |= g

〈l , η〉 α→ 〈l ′,Eff (α, η)〉

I = {〈l , η〉 | l ∈ Loc0, η |= g0}
AP = Loc ∪ Cond(Var)

L(〈l , η〉) = {l} ∪ {g ∈ Cond(Var) | η |= g}.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Semantics of Runtime Control

PG ⇒ instrumented PG (IPG)

IPG + controlling PG ⇒ TS

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Controlling Programs

A controlling program is a program that implements desired
properties and controls the execution of a target program to fulfill
the properties.

It is a program with action partitioning:

Passive actions are used to “passively” observe and monitor
the actions of the controlled program graph. (side-effect free)
They are further partitioned into:

pre-actions are monitored before each invocation of the
interested action,
post-actions are monitored after each invocation.

Active actions are “actively” performed to modify its state as
well as the state of the controlled program graph.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Controlling Programs

A controlling program is a program that implements desired
properties and controls the execution of a target program to fulfill
the properties.

It is a program with action partitioning:

Passive actions are used to “passively” observe and monitor
the actions of the controlled program graph. (side-effect free)
They are further partitioned into:

pre-actions are monitored before each invocation of the
interested action,
post-actions are monitored after each invocation.

Active actions are “actively” performed to modify its state as
well as the state of the controlled program graph.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Controlling Program Graphs (CPG)

Formally,

Definition (Controlling Program Graphs (CPG))

A controlling program graph CPG over set V̂ar of typed variables,
which controls a program graph PG , is a tuple
(L̂oc, Âct, Êff , T̂r , L̂oc0, ĝ0) where

L̂oc is a set of locations, including passive locations L̂oc
pas

and active locations L̂oc
act

which can perform passive actions

and active actions respectively, i.e., L̂oc = L̂oc
pas
∪ L̂oc

act
,

Âct is a set of actions, including passive actions Âct
pas

and

active actions Âct
act

, i.e., Âct = Âct
pas
∪ Âct

act
, and the set

of passive actions further includes pre-actions Âct
pre

and

post-actions Âct
post

, i.e., Âct
pas

= Âct
pre
∪ Âct

post
,

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Controlling Program Graphs (CPG)

Definition (cont’d)

Êff : Âct × Eval(PC ∪ Var ∪ V̂ar)→ Eval(PC ∪ Var ∪ V̂ar) is

the effect function, satisfying that, if α ∈ Âct
pas

, then
Êff (α, 〈l , η, η̂〉) = 〈l , η, η̂〉 (passive actions are side-effect
free), where PC is a program counter with a value from Loc
indicating the current location of the controlled program
graph, i.e., dom(PC) = Loc,

Note that the effect function of an action indicates how an
evaluation 〈l , η, η̂〉 of variables is modified, including not only the

variables V̂ar of the CPG, but also the program counter PC and
the variables Var of the controlled PG.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Controlling Program Graphs (CPG)

Definition (cont’d)

T̂r ⊆ L̂oc × Cond(V̂ar)× Âct × L̂oc is the conditional
transition relation, satisfying

(1) If (l , g , α, l ′) ∈ T̂r ∧ α ∈ Âct
pas

, then g = >
(unconditional monitoring of passive actions), l ∈ L̂oc

pas
and

∀β ∈ Âct
act

, ∀g ′′, ∀l ′′, (l , g ′′, β, l ′′) 6∈ T̂r . (consistency of
passive actions and passive locations, and separation of
passive and active actions)

(2) If (l , g , α, l ′) ∈ T̂r ∧ α ∈ Âct
act

, then l ∈ L̂oc
act

and

∀β ∈ Âct
pas

, ∀g ′′, ∀l ′′, (l , g ′′, β, l ′′) 6∈ T̂r . (consistency of
active actions and active locations, and separation of passive
and active actions)

L̂oc0 ⊆ L̂oc is a set of initial locations, and

ĝ0 ∈ Cond(V̂ar) is the initial condition.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Semantics of Runtime Control

PG ⇒ instrumented PG (IPG)

IPG + controlling PG ⇒ TS

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Instrumenting Controlled Programs

CPGs should be notified before or after the invocations of the
monitored actions, i.e., to implement the couplings between
PGs and CPGs.

We rewrite the original PG by using automated program
instrumentation of pre-locations or/and post-locations.

For example, assume that the transition l
g :α
↪→ l ′ is in PG, and

α is monitored both pre- and post- its invocations, then the
transition is split into three transitions:

l
g :αpre

↪→ lα
pre α
↪→ lα

post αpost

↪→ l ′

After instrumentation, the invocations of the passive actions
of PG can be observed by CPG via the synchronization of PG
and CPG on passive actions, e.g., function calls.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Instrumenting Controlled Programs

CPGs should be notified before or after the invocations of the
monitored actions, i.e., to implement the couplings between
PGs and CPGs.

We rewrite the original PG by using automated program
instrumentation of pre-locations or/and post-locations.

For example, assume that the transition l
g :α
↪→ l ′ is in PG, and

α is monitored both pre- and post- its invocations, then the
transition is split into three transitions:

l
g :αpre

↪→ lα
pre α
↪→ lα

post αpost

↪→ l ′

After instrumentation, the invocations of the passive actions
of PG can be observed by CPG via the synchronization of PG
and CPG on passive actions, e.g., function calls.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Instrumenting Controlled Programs

CPGs should be notified before or after the invocations of the
monitored actions, i.e., to implement the couplings between
PGs and CPGs.

We rewrite the original PG by using automated program
instrumentation of pre-locations or/and post-locations.

For example, assume that the transition l
g :α
↪→ l ′ is in PG, and

α is monitored both pre- and post- its invocations, then the
transition is split into three transitions:

l
g :αpre

↪→ lα
pre α
↪→ lα

post αpost

↪→ l ′

After instrumentation, the invocations of the passive actions
of PG can be observed by CPG via the synchronization of PG
and CPG on passive actions, e.g., function calls.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Instrumenting Controlled Programs

Formally,

Definition (Instrumented Program Graphs)

The instrumented program graph of PG is the program graph
IPG = (Loc ′,Act ′,Eff ′,Tr ′, Loc0, g0) over Var , where

Loc ′ = Loc ∪ Locpre ∪ Locpost , where

Locpre = {lαpre | l
g :α
↪→ l ′ ∈ Tr ∧ αpre ∈ Âct

pre
} and

Locpost = {lαpost | l
g :α
↪→ l ′ ∈ Tr ∧ αpost ∈ Âct

post
}

Act ′ = Act ∪ Âct
pre
∪ Âct

post

Eff ′= {Eff ′(α, η) = η′ | Eff (α, η) = η′}
∪ {Eff ′(αpre , η) = η | αpre ∈ Âct

pre
}

∪ {Eff ′(αpost , η) = η | αpost ∈ Âct
post
}

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Instrumenting Controlled Programs

Definition (cont’d)

Tr ′= {l
g :α
↪→ l ′

| l
g :α
↪→ l ′ ∈ Tr∧ αpre 6∈ Âct

pre
∧ αpost 6∈ Âct

post
}

∪ {l
g :α
↪→ lα

post αpost

↪→ l ′

| l
g :α
↪→ l ′ ∈ Tr∧ αpre 6∈ Âct

pre
∧ αpost ∈ Âct

post
}

∪ {l
g :αpre

↪→ lα
pre α
↪→ l ′

| l
g :α
↪→ l ′ ∈ Tr∧ αpre ∈ Âct

pre
∧ αpost 6∈ Âct

post
}

∪ {l
g :αpre

↪→ lα
pre α
↪→ lα

post αpost

↪→ l ′

| l
g :α
↪→ l ′ ∈ Tr∧ αpre ∈ Âct

pre
∧ αpost ∈ Âct

post
}

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Semantics of Runtime Control

PG ⇒ instrumented PG (IPG)

IPG + controlling PG ⇒ TS

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Semantics of Runtime Control

Definition

The transition system TS(PG / CPG) of program graph PG
controlled by a controlling program graph CPG , is the tuple
(S ,Act ∪ Âct, δ, I ,AP, L) where

S = (Loc ∪ Locpre ∪ Locpost)× Eval(Var)× L̂oc × Eval(V̂ar),

where Locpre = {lαpre | l
g :α
↪→ l ′ ∈ Tr ∧ αpre ∈ Âct

pre
} and

Locpost = {lαpost | l
g :α
↪→ l ′ ∈ Tr ∧ αpost ∈ Âct

post
}

δ ⊆ S × (Act ∪ Âct)× S is defined by the rules in the next
two slides

I = {〈l , η, l̂ , η̂〉 | l ∈ Loc0, η |= g0, l̂ ∈ L̂oc0, η̂ |= ĝ0}
AP = Loc ∪ Cond(Var) ∪ Cond(V̂ar)

L(〈l , η, l̂ , η̂〉) = {l} ∪ {g ∈ Cond(Var) | η |= g} ∪ {f ∈
Cond(V̂ar) | η̂ |= f }.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

The Transition Rules

slicing rule

l
g :α
↪→ l ′ ∧ η |= g l̂ ∈ L̂oc

pas
∧ αpre 6∈ Âct

pre
∧ αpost 6∈ Âct

post

〈l , η, l̂ , η̂〉 α→ 〈l ′,Eff (α, η), l̂ , η̂〉

pre-action rule

l
g :α
↪→ l ′ ∧ η |= g l̂ ∈ L̂oc

pas
∧ αpre ∈ Âct

pre
∧ l̂

αpre

↪→ l̂ ′

〈l , η, l̂ , η̂〉 α
pre

→ 〈lαpre , η, l̂ ′, η̂〉

transition rules

l
g :α
↪→ l ′ ∧ η |= g l̂ ∈ L̂oc

pas
∧ αpre 6∈ Âct

pre
∧ αpost ∈ Âct

post

〈l , η, l̂ , η̂〉 α→ 〈lαpost ,Eff (α, η), l̂ , η̂〉

l
g :α
↪→ l ′ l̂ ∈ L̂oc

pas
∧ αpre ∈ Âct

pre
∧ αpost ∈ Âct

post

〈lαpre , η, l̂ , η̂〉 α→ 〈lαpost ,Eff (α, η), l̂ , η̂〉

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

The Transition Rules (cont’d)

transition rules (cont’d)

l
g :α
↪→ l ′ l̂ ∈ L̂oc

pas
∧ αpre ∈ Âct

pre
∧ αpost 6∈ Âct

post

〈lαpre , η, l̂ , η̂〉 α→ 〈l ′,Eff (α, η), l̂ , η̂〉
post-action rule

l
g :α
↪→ l ′ l̂ ∈ L̂oc

pas
∧ αpost ∈ Âct

post
∧ l̂

αpost

↪→ l̂ ′

〈lαpost , η, l̂ , η̂〉 α
post

→ 〈l ′, η, l̂ ′, η̂〉

active-action rule

> l̂ ∈ L̂oc
act
∧ l̂

ĝ :β
↪→ l̂ ′ ∧ η̂ |= ĝ

〈l , η, l̂ , η̂〉 β→ 〈Êff (β, l), Êff (β, η), l̂ ′, Êff (β, η̂)〉

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

In the previous part, we assumed that the controlling program
already exists. But where it comes?

Directly and manually writing controlling programs is
time-consuming and error-prone.

Instead, we can write a specification for a controlling program
using a high level description. Then the controlling program
can be automatically synthesized from the specification.

We will propose the semantics for the specification and
synthesis of controlling programs.

Specification
synthesize

=⇒ CPG
generate

=⇒ Controlling Program

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

In the previous part, we assumed that the controlling program
already exists. But where it comes?

Directly and manually writing controlling programs is
time-consuming and error-prone.

Instead, we can write a specification for a controlling program
using a high level description. Then the controlling program
can be automatically synthesized from the specification.

We will propose the semantics for the specification and
synthesis of controlling programs.

Specification
synthesize

=⇒ CPG
generate

=⇒ Controlling Program

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

In the previous part, we assumed that the controlling program
already exists. But where it comes?

Directly and manually writing controlling programs is
time-consuming and error-prone.

Instead, we can write a specification for a controlling program
using a high level description. Then the controlling program
can be automatically synthesized from the specification.

We will propose the semantics for the specification and
synthesis of controlling programs.

Specification
synthesize

=⇒ CPG
generate

=⇒ Controlling Program

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

In the previous part, we assumed that the controlling program
already exists. But where it comes?

Directly and manually writing controlling programs is
time-consuming and error-prone.

Instead, we can write a specification for a controlling program
using a high level description. Then the controlling program
can be automatically synthesized from the specification.

We will propose the semantics for the specification and
synthesis of controlling programs.

Specification
synthesize

=⇒ CPG
generate

=⇒ Controlling Program

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Specifications

A high level specification of controlling programs should
consist of variables, passive actions, active actions and a
property.

A property over passive actions is written in some formalism
such as regular expressions, finite automata and LTL formulae.

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a tuple
A = (Q,Σ, δ, q0,C , C), where Q is a finite set of states, Σ is a
finite set of actions, δ is a transition function mapping Q×Σ 7→ Q,
q0 ∈ Q is the initial state, C is a finite set of categories, e.g.,
match and violation, and C : Q × C is a classification relation.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Specifications

A high level specification of controlling programs should
consist of variables, passive actions, active actions and a
property.

A property over passive actions is written in some formalism
such as regular expressions, finite automata and LTL formulae.

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a tuple
A = (Q,Σ, δ, q0,C , C), where Q is a finite set of states, Σ is a
finite set of actions, δ is a transition function mapping Q×Σ 7→ Q,
q0 ∈ Q is the initial state, C is a finite set of categories, e.g.,
match and violation, and C : Q × C is a classification relation.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Specifications

Formally,

Definition (Specifications)

A specification is a tuple Spec = (V̂ar , ĝ0, Âct
pas
, Âct

act
,A,R),

where
- V̂ar is a set of variables,
- ĝ0 ∈ Cond(V̂ar) is the initial condition,

- Âct
pas

is a set of passive actions,

- Âct
act

is a set of active actions,
- A is a DFA including a set of categories A.C , and

- R is an association partial function (Âct
pas
∪ A.C) ⇁ Âct

act
.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

Specification
synthesize

=⇒ CPG

For DFA, we add some active locations to the finite automaton, at
which active actions are executed.

If a passive action α is associated with an active action R(α),
then:

q
α
↪→ q′ ⇒ q

α
↪→ qα

R(α)
↪→ q′

If q′ is in the category c which is associated with an active
action R(c), then:

q
α
↪→ q′ ⇒ q

α
↪→ q′c

R(c)
↪→ q′

If q′ is in the categories c1, ..., cn which are associated with
active actions R(c1), ...,R(cn) respectively, then:

q
α
↪→ q′ ⇒ q

α
↪→ q′c1

R(c1)
↪→ q′c2

R(c2)
↪→ · · ·

R(cn)
↪→ q′

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

Formally,

Definition (Synthesized Controlling Program Graph)

Let Spec = (V̂ar , ĝ0, Âct
pas
, Âct

act
,A,R) be a specification where

A = (Q, Âct
pas
, δ, q0,C , C) be a DFA. A controlling program graph

CPG can be synthesized from the specification as a tuple
(L̂oc, Âct, Êff , T̂r , L̂oc0, ĝ0) where

L̂oc = L̂oc
pas
∪L̂oc

act
, where L̂oc

pas
= Q and

L̂oc
act

= {qα | q ∈ Q, α ∈ Âct
pas

and R(α) is
defined} ∪ {qc | q ∈ Q, c ∈ C(q) and R(c) is defined},

Âct = Âct
pas
∪Âct

act
,

Êff is the effect function, which is defined by the host
programming language,

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Synthesis of Controlling Programs

Definition (cont’d)

T̂r is defined as follows: for each transition q
α→ q′ ∈ δ,

if R(α) is undefined and R(C(q′)) is undefined, then

q
α
↪→ q′ ∈ T̂r .

if R(α) is defined and R(C(q′)) is undefined, then

q
α
↪→ qα

R(α)
↪→ q′ ∈ T̂r .

if R(α) is undefined and R(C(q′)) is defined, then

q
α
↪→ q′c1

R(c1)
↪→ q′c2

R(c2)
↪→ · · ·

R(cn)
↪→ q′ ∈ T̂r where

c1, ..., cn ∈ C(q′) and R(c1), ...,R(cn) are defined.
if R(α) is defined and R(C(q′)) is defined, then

q
α
↪→ qα

R(α)
↪→ q′c1

R(c1)
↪→ q′c2

R(c2)
↪→ · · ·

R(cn)
↪→ q′ ∈ T̂r where

c1, ..., cn ∈ C(q′) and R(c1), ...,R(cn) are defined.

L̂oc0 = {q0} is a set of initial locations.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Strong Expressiveness

Typical existing formalisms for monitoring can be translated into
equivalent controlling programs, e.g.,

enforcement monitors

security automata

edit automata

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Outline

1 Introduction

2 Preliminaries

3 Semantics of Runtime Control

4 Semantics of Synthesis of Controlling Programs

5 Expressiveness of Controlling Programs

6 Conclusion

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Conclusion

Theoretical Contributions:

Our theory provides a complete formal semantics for real
implementations of runtime monitoring and control.

Our theory retains a better balance between implementation
and generality than existing formalisms.

Many existing formalisms about runtime monitoring can be
considered as special cases of our theory.

Applications:

The semantics helps to accurately understand the principle of
our tool.

The semantics can be used for model checking the correctness
of target programs under control, i.e., checking whether a
controlling program can really make a target program satisfy
desired requirements at runtime.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

Conclusion

Theoretical Contributions:

Our theory provides a complete formal semantics for real
implementations of runtime monitoring and control.

Our theory retains a better balance between implementation
and generality than existing formalisms.

Many existing formalisms about runtime monitoring can be
considered as special cases of our theory.

Applications:

The semantics helps to accurately understand the principle of
our tool.

The semantics can be used for model checking the correctness
of target programs under control, i.e., checking whether a
controlling program can really make a target program satisfy
desired requirements at runtime.

Introduction Preliminaries Semantics of Runtime Control Semantics of Synthesis of Controlling Programs Expressiveness of Controlling Programs Conclusion

THE END

Thank you!

Questions?

	Introduction
	Preliminaries
	Semantics of Runtime Control
	Semantics of Synthesis of Controlling Programs
	Expressiveness of Controlling Programs
	Conclusion

