
Enhancing Reuse of Constraint Solutions
 to Improve Symbolic Execution

Xiangyang Jia (Wuhan University)
Carlo Ghezzi (Politecnico di Milano)

Shi Ying (Wuhan University)

Published on ISSTA’15

Outline

❖ Motivation

❖ Logical Basis of our Approach

❖ GreenTrie Framework

❖ Constraint Reduction

❖ Constraint Storing

❖ Constraint Querying

❖ Evaluation

❖ Conclusion and Future Work

Motivation

❖ Symbolic Execution(SE)

❖ A well-known program analysis technique, mainly used for test-case
generation and bug finding.

❖ Constraint Solving

❖ The most time-consuming work in SE

❖ Optimization approaches:

❖ Irrelevent constraint elimination

❖ Caching and reuse

Motivation

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

 Base
 Irrelevant Constraint Elimination
 Caching
 Irrelevant Constraint Elimination + Caching

Aggregated data over 73 applications

Ti
m

e
(s

)

Executed instructions (normalized) 35#

[From	Shauvik	Roy	Choudhary’s	Slides]

Motivation
❖ Reuse of Constraint Solutions

Equivalence based
approach(Green)

x>0 is equivalent to y>0
x+1>0^ x<=1 is equivalent to y<2 ^y>=0 (if x, y are integers)

Subset/superset based
approach(KLEE)

Motivation
❖ Reuse of Constraint Solutions

Equivalence based
approach(Green)

If A^B^C is satisfiable, then A^B is satisfiable
If A^B^C is unsatisfiable, then A^B^C^D is unsatisfiable

?

Subset/superset based approach
(KLEE)

Motivation
❖ Reuse of Constraint Solutions

Equivalence based
approach(Green)

If x>0 is satisfiable, can we prove x>-1 satisfiable?
If x<0^x>1 is unsatisfiable, can we prove x<-1^x>2 unsatisfiable?

Implication based approach
(Our approach)

Subset/superset based approach
(KLEE)

Motivation
❖ Reuse of Constraint Solutions

Equivalence based
approach(Green)

If x>0 is satisfiable, can we prove x>-1 satisfiable?
If x<0^x>1 is unsatisfiable, can we prove x<-1^x>2 unsatisfiable?

Logical Basis of our Approach

Implication and Satisfiability

It looks easy to apply it to constraint reuse!
However, there is a problem:
Implication checking with SAT/SMT solver is even more
expensive than only solving the single constraint itself.

Providing C1 → C2
• if C1 is satisfiable, C2 is satisfiable
• if C2 is unsatisfiable, C1 is unsatisfiable

Logical Basis of our Approach

• The subset/superset（KLEE）
• {c1,c2} ⊆ {c1,c2,c3} means c1∧c2∧c3 → c1∧c2

• Logical subset/superset
• Given two constraint sets X,Y, if ∀a∈X∃b∈Y (b→a), then X is a logical

subset of Y, and Y is a logical superset of X
• E.g：X = {m≠0, m>-1, m<2}, Y={m>1, m<2}
• It is easy to prove that (m>1∧ m<2) → (m≠0 ∧ m>-1 ∧ m<2)

the subset/superset is a specific case of logical subset/superset
Logical subset/superset checks more implication cases!
❖ the two sets might have totally different atomic constraints
❖ the length of logical superset may be shorter than its subset

Logical Basis of our Approach

• Implication checking rules for atomic constraints

Proof. (1) Since S is a logical superset of S0, 8
c

02S

09
c2S

c ! c

0. Hence C1^C2...^Cn

! C

0
1^C0

2...^C0
m

, i.e. C ! C’.
According to Lemma 1, if C is satisfiable and has a solution
V, then C

0 is satisfiable and V is also a solutions for C’. (2)
Since S is a logical subset of S0, 8

c2S

9
c

02S

0
c

0 ! c. Hence
C

0
1^C

0
2...^C

0
m

! C1^C2...^C

n

, i.e.C0 ! C. According to
Lemma 1, if C is unsatisfiable, then C

0 is unsatisfiable.

According to Theorem 1, a constraint can be shown to be
satisfiable if a logical superset can be retrieved in a stor-
age that caches satisfiable sub-constraint sets. Likewise, a
constraint can be shown to be unsatisfiable if a logical sub-
set can be retrieved in a storage that caches unsatisfiable
sub-constraint sets.

Normal form of linear integer constraint. In this
paper, every atomic linear integer constraint is canonized
into the form:

h1v1 + h2v2 + h3v3 + ...h

n

v

n

+ k op 0

where v1, v2...vn are distinct variables, the coe�cients h1,
h2..., h

n

are numeric constants, k is an integer constant,
h1 � 0, and op 2 {=, 6=,,�}. The expression h1v1+h2v2+
h3v3+ ...h

n

v

n

, which contains all non-constant terms, is the
constraint’s non-constant prefix.
Implication Checking Rules. We define a list of rules

to check for specific implication relationships between two
atomic linear integer constraints. In this paper, only con-
straints which have the same non-constant prefix can be
checked by rules. In the future, we plan to extend the
rules to handle more complex situations.We compare non-
constant prefixes based on string comparison and constant
values based on numeric comparison, which is quite e�cient.
The implication checking rules are listed below. In these
rules, P is a non-constant prefix and n is a constant value.
The rules enable checking the implication relationship be-
tween linear integer arithmetic constraints with operators
=, 6=,,�.

(R1)
C ! C

(R2)
n 6= n

0

P + n = 0 ! P + n

0 6= 0

(R3)
n � n

0

P + n = 0 ! P + n

0  0
(R4)

n  n

0

P + n = 0 ! P + n

0 � 0

(R5)
n>n

0

P + n  0 ! P + n

0 6= 0
(R6)

n > n

0

P + n  0 ! P + n

0  0

(R7)
n<n

0

P + n � 0 ! P + n

0 6= 0
(R8)

n < n

0

P + n � 0 ! P + n

0 � 0

3. OVERVIEW OF GREENTRIE
GreenTrie extends the Green framework to improve the

reuse of constraint solutions. The overview architecture of
GreenTrie is illustrated in Fig.1. GreenTrie includes a com-
ponent named L-Trie, which replaces the Redis store of the
original Green framework. L-Trie is a bipartite store used
for caching satisfiable and unsatisfiable constraints, respec-
tively, each composed of a constraint trie and its logical in-
dex. The constraint trie stores constraints in the form of
sub-constraint sets, and the logical index is a partial order
graph of implication relations for all the sub-constraints in
the trie.

L-Trie and Green work together within GreenTrie. Any
request to solve a constraint is handled by Green through
the following four steps: (1) slicing: it removes pre-solved
irrelevant sub-constraints; (2) canonization: it converts a
constraint into normal form; (3) reusing: it queries the so-
lution store for reuse; if a reusable result is not retrieved,
(4) translation: the constraint is translated into the in-
put format required by the chosen constraint solver (such
as CVC3[18], Z3, Yices[19], or Choco), which is then in-
voked to solve the constraint from scratch. The result pro-
duced by the constraint solver is finally stored into either
satisfiable constraint store(SCS) or unsatisfiable constraint
store(UCS)(Fig.1).
L-Trie provides three interfaces to Green: constraint re-

duction, constraint querying, and constraint storing. These
are presented in detail in the following sections. Constraint
reduction is performed after the constraint is canonized by
the Green framework; redundant sub-constraints are removed
and conflicting sub-constraints are reported in this phase.
Constraint querying handles the requests issued by Green
to retrieve pre-solved constraints. Based on Theorem 1, it
checks whether the constraint has a logical superset in the
satisfiable constraint store or has a logical subset in the un-
satisfiable constraint store. Constraint storing splits solved
constraint into sub-constraints, puts them into the corre-
sponding constraint trie, and the also updates the logical
index.

4. CONSTRAINT REDUCTION
Symbolic execution conjoins constraints as control flow

branches are traversed. This may introduce redundant sub-
constraints, where a sub-constraint is implied by another.
For example, if constraint x�0 is conjoined to constraint
x 6=-2, the latter becomes redundant and can be eliminated.
It may also happen that one can easily detect that the newly
added constraint conflicts with another constraints, making
the whole constraint unsatisfiable; for example, consider the
case where x=0 is conjoined with x�3. Constraint reduction
in our approach is able to recognize such situations: it can
both reduce the constraint into more concise form and also
find obviously-conflicted sub-constraints. As we mentioned,
we only focus on the linear integer arithmetic constraints.
In the future, we plan to reduce other kind of constraints
based on term rewriting [20].
Our approach performs reduction as follows. The sub-

constraints with same non-constant prefix are merged and
reduced based on their value interval of non-constant pre-
fixes. For example, considering constraint x+y+30, its
non-constant prefix x+y has a value interval [MIN,�3], and
for constraint x+y�0, the value interval is [0,MAX]. As for
constraint x+y+4=0, the value interval is [4, 4]. If the con-
straint is stated as an inequality, as for example x+y+66=0,
we have two value intervals [MIN,�6) and (�6,MAX].
Equivalently, we can represent this situation by introduc-
ing the concept of an exceptional point (in this case, ”-6”
).
To support reduction, firstly all sub-constraints with the

same non-constant prefix are merged together, by computing
the overlapping interval [A,B] of these constraints, and at
the same time collecting the exceptional points into a set
E. For example, after computing of constraint x + y + 3 �
0 ^ x+ y + 5 � 0 ^ x+ y � 4  0 ^ x+ y 6= 0 ^ x+ y + 6 6=
0^ x+ y� 4 6= 0, we get an overlapping interval [�3, 4] and

P：non-constant prefix, n：constant number
E.g. x+y+3>=0 has a non-constant prefix x+y and a constant number 3

GreenTrie Framework
• Architecture of GreenTrie

Figure 1: The overview architecture of GreenTrie

an exceptional point set E = {�6, 0, 4}. After this, we go
through the following steps:

1. We discard all exceptional points that are outside the
overlapping interval; in the example, the value of E

becomes {0, 4}.

2. If one endpoint of the overlapping interval A (or B)
belongs to E, we (repeatedly) change its value and
eliminate A (or B) from E at the same time. In the
example after this step the interval becomes [�3, 3]
and the new value of E is {0}.

3. If the overlapping interval is empty then the constraint
is unsatisfiable and we report a conflict; otherwise we
translate [A,B] and E into a constraint in normal
form. In the example, the final result of our reduc-
tion is x+ y + 3 � 0 ^ x+ y � 3  0 ^ x+ y 6= 0.

5. CONSTRAINT STORING
L-Trie provides a di↵erent storage scheme that replaces

the Redis store of Green:

• Unlike Redis, which stores the strings representing con-
straints and solutions as key-value pairs, L-Trie splits
constraints into sub-constraint sets, and stores them
into tries, in order to support logical subset and su-
perset queries based on Theorem 1.

• L-Trie stores unsatisfiable and satisfiable constraints
into separate areas: the Unsatisfiable Constraint Store
(UCS) and the Satisfiable Constraint Store (SCS) re-
spectively. The two areas are organized di↵erently to
e�ciently support logical subset querying and logical
superset querying, which pose di↵erent requirements.

• L-Trie maintains a logical index for each of the two
tries, to support e�cient check of the implication rela-

tions. The logical index is represented as an implica-
tion partial order graph (IPOG), whose nodes contain
references to nodes in the trie.

Both UCS and SCS have the same structure (see Fig. 2).
Constraint Trie. The constraint trie is designed to store

a sub-constraint set of solved constraints. The sub-constraint
set is sorted in lexicographic order based on string com-
parison, to guarantee that sub-constraints with same non-
constant prefix are kept close to each other. The labels
of the constraint trie record the sub-constraints. The leaf
nodes indicate the end of the constraint and are annotated
with the solution (the solution is null for the leaves of the
UCS trie). As shown in Fig.2, the leaf node C2 corresponds
to a constraint v0+5>=0 ^v0+v1<=0, which has a solu-
tion {v0 : 0,v1 : �1}, and its sub-constraints v0+5>=0 and
v0+v1<=0, are annotated as edge labels in the path.
If a constraint C is a conjunction of atomic constraints

that is a prefix of another constraint C’ (e.g. C is A^B, and
C’ is A ^ B ^ C,), only one of them is kept in the trie. We
keep the longer constraint in the SCS trie, while we keep the
shorter in the UCS trie.
Implication Partial Order Graph (IPOG). IPOG is

a graph that contains all the atomic sub-constraints appear-
ing in its associated constraint trie, and arranges them as
a graph based on the partial order defined by the implica-
tion relation. With this graph, given a constraint C, we
can query the sub-constraints which imply C, as well as the
sub-constraints which C implies, as we will see later. This
is useful to improve the e�ciency of implication checking
in logical subset and superset querying. IPOG nodes are
labeled by a sub-constraint and have references to all trie
nodes whose input edge is labeled with exactly this sub-
constraint. Through these references, it is possible to trace
all the occurrences of a given sub-constraint.
Storing the constraints. Everytime a constraint is

solved (or it is proved to be unsatisfiable), SCS (respec-

Two separated stores for
SAT and UNSAT constraints

GreenTrie Framework
• Architecture of GreenTrie

Figure 1: The overview architecture of GreenTrie

an exceptional point set E = {�6, 0, 4}. After this, we go
through the following steps:

1. We discard all exceptional points that are outside the
overlapping interval; in the example, the value of E

becomes {0, 4}.

2. If one endpoint of the overlapping interval A (or B)
belongs to E, we (repeatedly) change its value and
eliminate A (or B) from E at the same time. In the
example after this step the interval becomes [�3, 3]
and the new value of E is {0}.

3. If the overlapping interval is empty then the constraint
is unsatisfiable and we report a conflict; otherwise we
translate [A,B] and E into a constraint in normal
form. In the example, the final result of our reduc-
tion is x+ y + 3 � 0 ^ x+ y � 3  0 ^ x+ y 6= 0.

5. CONSTRAINT STORING
L-Trie provides a di↵erent storage scheme that replaces

the Redis store of Green:

• Unlike Redis, which stores the strings representing con-
straints and solutions as key-value pairs, L-Trie splits
constraints into sub-constraint sets, and stores them
into tries, in order to support logical subset and su-
perset queries based on Theorem 1.

• L-Trie stores unsatisfiable and satisfiable constraints
into separate areas: the Unsatisfiable Constraint Store
(UCS) and the Satisfiable Constraint Store (SCS) re-
spectively. The two areas are organized di↵erently to
e�ciently support logical subset querying and logical
superset querying, which pose di↵erent requirements.

• L-Trie maintains a logical index for each of the two
tries, to support e�cient check of the implication rela-

tions. The logical index is represented as an implica-
tion partial order graph (IPOG), whose nodes contain
references to nodes in the trie.

Both UCS and SCS have the same structure (see Fig. 2).
Constraint Trie. The constraint trie is designed to store

a sub-constraint set of solved constraints. The sub-constraint
set is sorted in lexicographic order based on string com-
parison, to guarantee that sub-constraints with same non-
constant prefix are kept close to each other. The labels
of the constraint trie record the sub-constraints. The leaf
nodes indicate the end of the constraint and are annotated
with the solution (the solution is null for the leaves of the
UCS trie). As shown in Fig.2, the leaf node C2 corresponds
to a constraint v0+5>=0 ^v0+v1<=0, which has a solu-
tion {v0 : 0,v1 : �1}, and its sub-constraints v0+5>=0 and
v0+v1<=0, are annotated as edge labels in the path.
If a constraint C is a conjunction of atomic constraints

that is a prefix of another constraint C’ (e.g. C is A^B, and
C’ is A ^ B ^ C,), only one of them is kept in the trie. We
keep the longer constraint in the SCS trie, while we keep the
shorter in the UCS trie.
Implication Partial Order Graph (IPOG). IPOG is

a graph that contains all the atomic sub-constraints appear-
ing in its associated constraint trie, and arranges them as
a graph based on the partial order defined by the implica-
tion relation. With this graph, given a constraint C, we
can query the sub-constraints which imply C, as well as the
sub-constraints which C implies, as we will see later. This
is useful to improve the e�ciency of implication checking
in logical subset and superset querying. IPOG nodes are
labeled by a sub-constraint and have references to all trie
nodes whose input edge is labeled with exactly this sub-
constraint. Through these references, it is possible to trace
all the occurrences of a given sub-constraint.
Storing the constraints. Everytime a constraint is

solved (or it is proved to be unsatisfiable), SCS (respec-

A constraint trie with a
logical index

GreenTrie Framework
• Architecture of GreenTrie

Figure 1: The overview architecture of GreenTrie

an exceptional point set E = {�6, 0, 4}. After this, we go
through the following steps:

1. We discard all exceptional points that are outside the
overlapping interval; in the example, the value of E

becomes {0, 4}.

2. If one endpoint of the overlapping interval A (or B)
belongs to E, we (repeatedly) change its value and
eliminate A (or B) from E at the same time. In the
example after this step the interval becomes [�3, 3]
and the new value of E is {0}.

3. If the overlapping interval is empty then the constraint
is unsatisfiable and we report a conflict; otherwise we
translate [A,B] and E into a constraint in normal
form. In the example, the final result of our reduc-
tion is x+ y + 3 � 0 ^ x+ y � 3  0 ^ x+ y 6= 0.

5. CONSTRAINT STORING
L-Trie provides a di↵erent storage scheme that replaces

the Redis store of Green:

• Unlike Redis, which stores the strings representing con-
straints and solutions as key-value pairs, L-Trie splits
constraints into sub-constraint sets, and stores them
into tries, in order to support logical subset and su-
perset queries based on Theorem 1.

• L-Trie stores unsatisfiable and satisfiable constraints
into separate areas: the Unsatisfiable Constraint Store
(UCS) and the Satisfiable Constraint Store (SCS) re-
spectively. The two areas are organized di↵erently to
e�ciently support logical subset querying and logical
superset querying, which pose di↵erent requirements.

• L-Trie maintains a logical index for each of the two
tries, to support e�cient check of the implication rela-

tions. The logical index is represented as an implica-
tion partial order graph (IPOG), whose nodes contain
references to nodes in the trie.

Both UCS and SCS have the same structure (see Fig. 2).
Constraint Trie. The constraint trie is designed to store

a sub-constraint set of solved constraints. The sub-constraint
set is sorted in lexicographic order based on string com-
parison, to guarantee that sub-constraints with same non-
constant prefix are kept close to each other. The labels
of the constraint trie record the sub-constraints. The leaf
nodes indicate the end of the constraint and are annotated
with the solution (the solution is null for the leaves of the
UCS trie). As shown in Fig.2, the leaf node C2 corresponds
to a constraint v0+5>=0 ^v0+v1<=0, which has a solu-
tion {v0 : 0,v1 : �1}, and its sub-constraints v0+5>=0 and
v0+v1<=0, are annotated as edge labels in the path.
If a constraint C is a conjunction of atomic constraints

that is a prefix of another constraint C’ (e.g. C is A^B, and
C’ is A ^ B ^ C,), only one of them is kept in the trie. We
keep the longer constraint in the SCS trie, while we keep the
shorter in the UCS trie.
Implication Partial Order Graph (IPOG). IPOG is

a graph that contains all the atomic sub-constraints appear-
ing in its associated constraint trie, and arranges them as
a graph based on the partial order defined by the implica-
tion relation. With this graph, given a constraint C, we
can query the sub-constraints which imply C, as well as the
sub-constraints which C implies, as we will see later. This
is useful to improve the e�ciency of implication checking
in logical subset and superset querying. IPOG nodes are
labeled by a sub-constraint and have references to all trie
nodes whose input edge is labeled with exactly this sub-
constraint. Through these references, it is possible to trace
all the occurrences of a given sub-constraint.
Storing the constraints. Everytime a constraint is

solved (or it is proved to be unsatisfiable), SCS (respec-

remove redundant sub-
constraints for better matching

GreenTrie Framework
• Architecture of GreenTrie

Figure 1: The overview architecture of GreenTrie

an exceptional point set E = {�6, 0, 4}. After this, we go
through the following steps:

1. We discard all exceptional points that are outside the
overlapping interval; in the example, the value of E

becomes {0, 4}.

2. If one endpoint of the overlapping interval A (or B)
belongs to E, we (repeatedly) change its value and
eliminate A (or B) from E at the same time. In the
example after this step the interval becomes [�3, 3]
and the new value of E is {0}.

3. If the overlapping interval is empty then the constraint
is unsatisfiable and we report a conflict; otherwise we
translate [A,B] and E into a constraint in normal
form. In the example, the final result of our reduc-
tion is x+ y + 3 � 0 ^ x+ y � 3  0 ^ x+ y 6= 0.

5. CONSTRAINT STORING
L-Trie provides a di↵erent storage scheme that replaces

the Redis store of Green:

• Unlike Redis, which stores the strings representing con-
straints and solutions as key-value pairs, L-Trie splits
constraints into sub-constraint sets, and stores them
into tries, in order to support logical subset and su-
perset queries based on Theorem 1.

• L-Trie stores unsatisfiable and satisfiable constraints
into separate areas: the Unsatisfiable Constraint Store
(UCS) and the Satisfiable Constraint Store (SCS) re-
spectively. The two areas are organized di↵erently to
e�ciently support logical subset querying and logical
superset querying, which pose di↵erent requirements.

• L-Trie maintains a logical index for each of the two
tries, to support e�cient check of the implication rela-

tions. The logical index is represented as an implica-
tion partial order graph (IPOG), whose nodes contain
references to nodes in the trie.

Both UCS and SCS have the same structure (see Fig. 2).
Constraint Trie. The constraint trie is designed to store

a sub-constraint set of solved constraints. The sub-constraint
set is sorted in lexicographic order based on string com-
parison, to guarantee that sub-constraints with same non-
constant prefix are kept close to each other. The labels
of the constraint trie record the sub-constraints. The leaf
nodes indicate the end of the constraint and are annotated
with the solution (the solution is null for the leaves of the
UCS trie). As shown in Fig.2, the leaf node C2 corresponds
to a constraint v0+5>=0 ^v0+v1<=0, which has a solu-
tion {v0 : 0,v1 : �1}, and its sub-constraints v0+5>=0 and
v0+v1<=0, are annotated as edge labels in the path.
If a constraint C is a conjunction of atomic constraints

that is a prefix of another constraint C’ (e.g. C is A^B, and
C’ is A ^ B ^ C,), only one of them is kept in the trie. We
keep the longer constraint in the SCS trie, while we keep the
shorter in the UCS trie.
Implication Partial Order Graph (IPOG). IPOG is

a graph that contains all the atomic sub-constraints appear-
ing in its associated constraint trie, and arranges them as
a graph based on the partial order defined by the implica-
tion relation. With this graph, given a constraint C, we
can query the sub-constraints which imply C, as well as the
sub-constraints which C implies, as we will see later. This
is useful to improve the e�ciency of implication checking
in logical subset and superset querying. IPOG nodes are
labeled by a sub-constraint and have references to all trie
nodes whose input edge is labeled with exactly this sub-
constraint. Through these references, it is possible to trace
all the occurrences of a given sub-constraint.
Storing the constraints. Everytime a constraint is

solved (or it is proved to be unsatisfiable), SCS (respec-

❖ Query reusable constraints through
logical subset/superset checking

GreenTrie Framework
• Architecture of GreenTrie

Figure 1: The overview architecture of GreenTrie

an exceptional point set E = {�6, 0, 4}. After this, we go
through the following steps:

1. We discard all exceptional points that are outside the
overlapping interval; in the example, the value of E

becomes {0, 4}.

2. If one endpoint of the overlapping interval A (or B)
belongs to E, we (repeatedly) change its value and
eliminate A (or B) from E at the same time. In the
example after this step the interval becomes [�3, 3]
and the new value of E is {0}.

3. If the overlapping interval is empty then the constraint
is unsatisfiable and we report a conflict; otherwise we
translate [A,B] and E into a constraint in normal
form. In the example, the final result of our reduc-
tion is x+ y + 3 � 0 ^ x+ y � 3  0 ^ x+ y 6= 0.

5. CONSTRAINT STORING
L-Trie provides a di↵erent storage scheme that replaces

the Redis store of Green:

• Unlike Redis, which stores the strings representing con-
straints and solutions as key-value pairs, L-Trie splits
constraints into sub-constraint sets, and stores them
into tries, in order to support logical subset and su-
perset queries based on Theorem 1.

• L-Trie stores unsatisfiable and satisfiable constraints
into separate areas: the Unsatisfiable Constraint Store
(UCS) and the Satisfiable Constraint Store (SCS) re-
spectively. The two areas are organized di↵erently to
e�ciently support logical subset querying and logical
superset querying, which pose di↵erent requirements.

• L-Trie maintains a logical index for each of the two
tries, to support e�cient check of the implication rela-

tions. The logical index is represented as an implica-
tion partial order graph (IPOG), whose nodes contain
references to nodes in the trie.

Both UCS and SCS have the same structure (see Fig. 2).
Constraint Trie. The constraint trie is designed to store

a sub-constraint set of solved constraints. The sub-constraint
set is sorted in lexicographic order based on string com-
parison, to guarantee that sub-constraints with same non-
constant prefix are kept close to each other. The labels
of the constraint trie record the sub-constraints. The leaf
nodes indicate the end of the constraint and are annotated
with the solution (the solution is null for the leaves of the
UCS trie). As shown in Fig.2, the leaf node C2 corresponds
to a constraint v0+5>=0 ^v0+v1<=0, which has a solu-
tion {v0 : 0,v1 : �1}, and its sub-constraints v0+5>=0 and
v0+v1<=0, are annotated as edge labels in the path.
If a constraint C is a conjunction of atomic constraints

that is a prefix of another constraint C’ (e.g. C is A^B, and
C’ is A ^ B ^ C,), only one of them is kept in the trie. We
keep the longer constraint in the SCS trie, while we keep the
shorter in the UCS trie.
Implication Partial Order Graph (IPOG). IPOG is

a graph that contains all the atomic sub-constraints appear-
ing in its associated constraint trie, and arranges them as
a graph based on the partial order defined by the implica-
tion relation. With this graph, given a constraint C, we
can query the sub-constraints which imply C, as well as the
sub-constraints which C implies, as we will see later. This
is useful to improve the e�ciency of implication checking
in logical subset and superset querying. IPOG nodes are
labeled by a sub-constraint and have references to all trie
nodes whose input edge is labeled with exactly this sub-
constraint. Through these references, it is possible to trace
all the occurrences of a given sub-constraint.
Storing the constraints. Everytime a constraint is

solved (or it is proved to be unsatisfiable), SCS (respec-

❖ If no reusable constraint is found, solve it ,
and then puts the solving result into stores

Constraint Reduction

Example

x+y+3 ≥ 0 ∧ x+y+5≥0 ∧ x+y−4≤0 ∧ x+y≠0 ∧ x+y+6≠ 0 ∧ x+y−4≠ 0
compute: ［-3,∞) ∩ [-5,∞) ∩ (-∞,4] - {0,-6,4} = [-3,4)-{0}
reduced: x+y+3 ≥ 0 ∧ x+y-4<0 ∧ x+y≠0

• Constraint Reduction
• target: remove redundant sub-constraints
• idea: interval computation-based constraint reduction

Constraint Storing

❖ C3 represents a constraint V0+5>=0 ∧ V1+(-1)<=0,
which has a solution {v0:0, v1:-5}

Constraint Storing

❖ v0 +5>=0 is implied by v0 +(-3)=0 and v0 +(-4)=0
❖ v0 +5>=0 has one occurrence in the trie, therefore it has a

reference to the successive trie node.

Constraint Querying

❖Implication Set(IS) and Reverse Implication Set(RIS)

v0 ≥ 0

Example
Constraint: v0 ≥ 0
ISv0 ≥ 0: {v0 +5>=0}
RISv0 ≥ 0: {v0 +(-3)=0, v0 +(-4)=0}

Constraint Querying
❖Logical Superset Checking Algorithm

❖Find a path in trie, so that every sub-constraint in target constraint is
implied by at least one constraint on this path

Example
Target: v0 != 0 ^ v0+(-1)!=0 ^ v1 +(-2)<= 0
RISv1 +(-2)<= 0 : {v1 +(-1)<=0}
So, we got two candidate paths to check!

Start from these two nodes!

Constraint Querying

❖Logical Superset Checking Algorithm

Example
Target : v0 != 0 ^ v0 +(-1)!= 0 ^ v1+(-2)<= 0
RISv0 != 1 : {v0 +(-3)=0,v0 +(-4)=0}

v0+5>=0 is not in the RIS,
the trie root is reached,

so this path doesn’t match!

Constraint Querying

❖Logical Superset Checking Algorithm

Example
Target: v0 != 0 ^ v0 +(-1)!= 0 ^ v1 +(-2)<= 0
RISv0 != 1 : {v0 +(-3)=0,v0 +(-4)=0}

v0+(-3)>=0 is in the RIS,
 go on to check next sub-constraint

of target!

Constraint Querying

❖Logical Superset Checking Algorithm

Example
Target: v0 != 0 ^ v0 +(-1)!= 0 ^ v1 +(-2)<= 0
RISv0 != 0 : {v0 +(-3)=0,v0 +(-4)=0}

v0+(-3)>=0 is also in the RIS of v0 != 0,
 now, every sub-constraint in target is

implied by one constraint on this path.
C4 is the reusable constraint!

Constraint Querying
❖Logical Subset Checking Algorithm

Target: v0 +(-1)>=0 ^ v0+3!= 0 ^ v0+4<= 0
Union of ISs of the sub-constraints : {v0 >=0} ∪ {} ∪ {v0+2<= 0, v0+1<= 0}
 ISunion ={v0 >=0, v0+2<= 0, v0+1<= 0}
We will find a trie path, so that all its sub-constraints on the path exists in ISunion

Constraint Querying
❖Logical Subset Checking Algorithm

Target: v0 +(-1)>=0 ^ v0+3!= 0 ^ v0+4<= 0
ISunion ={v0 >=0, v0+2<= 0, v0+1<= 0}

√ ×

Constraint Querying
❖Logical Subset Checking Algorithm

Target: v0 +(-1)>=0 ^ v0+3!= 0 ^ v0+4<= 0
ISunion ={v0 >=0, v0+2<= 0, v0+1<= 0}

 We found two paths, so the target constraint is unsatisfiable.

√ ×

√
√

Evaluation

❖ Research Question

❖ Does GreenTrie achieve better reuse and save more time than other
approaches (Green, KLEE) ?

❖ Benchmarks

❖ 6 programs from Green (Willem Visser’s FSE’12 paper)

❖ 1 program from Guowei Yang’s ISSTA 2012 paper.

❖ Experiment scenarios

❖ (1) reuse in a single run of the program

❖ (2) reuse across runs of different versions of the same program

❖ (3) reuse across different programs

Evaluation
❖ Experiment setup

❖ PC with a 2.5GHz Intel processor with 4 cores and 4Gb of memory

❖ We implemented GreenTrie by extending Green

❖ We implemented KLEE’s subset/superset checking approach, and
also integrated it into Green as an extension.

❖ Symbolic executor: Symbolic Pathfinder (SPF)

❖ Constraint Solver: Z3

Evaluation
❖ Reuse in a Single Run

Table 1: Experimental results of reuse in single run
Program n0 n1 n2 n3 R

0
R

00
t0(ms) t1(ms) t2(ms) t3(ms) T

0
T

00

Trityp 32 28 28 28 0.00% 0.00% 1040 915 922 995 -8.74% -7.92%
Euclid 642 552 464 464 15.94% 0.00% 5105 6503 7274 6311 2.95% 13.24%
TCAS 680 41 20 14 65.85% 30.00% 12742 3356 2182 2165 35.49% 0.78%
TreeMap1 24 24 24 24 0.00% 0.00% 871 942 947 882 6.37% 6.86%
TreeMap2 148 148 140 140 5.41% 0.00% 2918 2542 2851 2606 -2.52% 8.59%
TreeMap3 1080 956 833 806 15.69% 3.24% 21849 10729 11809 9871 8.00% 16.41%
BinTree1 84 41 25 25 39.02% 0.00% 1476 1103 1092 1027 6.89% 5.95%
BinTree2 472 238 133 118 50.42% 11.28% 4322 3648 3156 2872 21.27% 9.00%
BinTree3 3252 1654 939 873 47.22% 7.03% 36581 17197 14764 12041 29.98% 18.44%
BinomialHeap1 448 32 23 19 40.63% 17.39% 3637 2137 2046 2017 5.62% 1.42%
BinomialHeap2 3184 190 85 68 64.21% 20.00% 27165 7653 6442 6071 20.67% 5.76%
BinomialHeap3 23320 988 337 288 70.85% 14.54% 249224 28549 31892 21392 25.07% 32.92%
MerArbiter 60648 21 15 13 38.10% 13.33% >10min 304726 290854 272813 10.47% 6.20%
total/average 94014 4913 3066 2880 41.38% 6.07% / 390000 374012 341063 12.55% 9.35%

Table 2: Experimental results of reuse across runs (program Euclid)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 492 432 5 3 99.54% 60.00% 3896 1375 1329 65.89% 3.35%
ADD#2 438 331 216 216 34.74% 0.00% 2830 3275 2284 19.29% 30.26%
ADD#3 220 170 32 2 98.82% 93.75% 1382 972 552 60.06% 43.21%
DEL#1 438 322 156 126 60.87% 19.23% 3428 2670 2171 36.67% 18.69%
DEL#2 492 426 350 134 68.54% 61.71% 3777 4483 2046 45.83% 54.36%
DEL#3 642 552 112 111 79.89% 0.89% 4649 2560 2049 55.93% 19.96%
MOD#1 642 552 464 463 16.12% 0.22% 4851 6899 4400 9.30% 36.22%
MOD#2 642 552 464 462 16.30% 0.43% 4765 7094 4351 8.69% 38.67%
MOD#3 642 551 442 433 21.42% 2.04% 4505 7481 4240 5.88% 43.32%

total/average 4648 3888 2241 1949 49.87% 13.03% 34083 36809 23422 31.28% 36.37%

Table 3: Experimental results of reuse across runs (program TCAS)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 1036 9 4 2 77.78% 50.00% 1889 1535 1564 17.20% -1.89%
ADD#2 2920 4 2 1 75.00% 50.00% 3511 2639 2652 24.47% -0.49%
ADD#3 6730 3 0 0 100.00% 0/0 5015 3577 3576 28.69% 0.03%
DEL#1 2920 0 0 0 0/0 0/0 2675 2051 2077 22.36% -1.27%
DEL#2 1036 0 0 0 0/0 0/0 912 727 807 11.51% -11.00%
DEL#3 678 0 0 0 0/0 0/0 632 599 594 6.01% 0.83%
MOD#1 1406 2 2 0 100.00% 50.00% 2322 1917 1801 22.44% 6.05%
MOD#2 1406 4 2 0 100.00% 50.00% 1888 1490 1440 23.73% 3.36%
MOD#3 994 0 0 0 0/0 0/0 1020 817 797 21.86% 2.45%

total/average 19126 22 10 3 86.36% 91.36% 19864 15352 15308 22.94% 0.29%

Table 4: Experimental results of reuse across runs (program BinTree)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 5930 1689 803 746 55.83% 7.10% 17978 20355 11889 33.87% 41.59%
ADD#2 13358 3938 2618 2556 35.09% 2.37% 35382 105190 32465 8.24% 69.14%
ADD#3 15602 540 0 0 100.00% 0/0 18106 61586 17180 5.11% 72.10%
DEL#1 13358 3149 2216 2185 30.61% 1.40% 32134 126488 31002 3.52% 75.49%
DEL#2 5930 1154 599 0 100.00% 100.00% 13565 44789 10932 19.41% 75.59%
DEL#3 3252 1682 0 0 100.00% 0/0 12945 11482 4505 65.20% 60.76%
MOD#1 3252 1682 1080 1002 40.43% 7.22% 14553 16297 10628 26.97% 34.79%
MOD#2 3252 1680 716 632 62.38% 11.73% 14147 13784 7953 43.78% 42.30%
MOD#3 8310 2377 1068 964 59.44% 9.74% 22772 32889 14593 35.92% 55.63%

total/average 72244 17891 9100 8085 54.81% 11.15% 181582 432860 141147 22.27% 67.39%

ni : the number of invocations to solver
ti : running time for symbolic execution
i=0: SE without reuse i=1: SE with Green
i=2: SE with KLEE’s approach i=3: SE with GreenTrie
Reuse improvement ratio: R’=(n1-n3)/n1 R’’=(n2-n3)/n2

Time improvement ratio: T’=(t1-t3)/t1 T’’=(t2-t3)/t2

Evaluation
❖ Reuse in a Single Run

Table 1: Experimental results of reuse in single run
Program n0 n1 n2 n3 R

0
R

00
t0(ms) t1(ms) t2(ms) t3(ms) T

0
T

00

Trityp 32 28 28 28 0.00% 0.00% 1040 915 922 995 -8.74% -7.92%
Euclid 642 552 464 464 15.94% 0.00% 5105 6503 7274 6311 2.95% 13.24%
TCAS 680 41 20 14 65.85% 30.00% 12742 3356 2182 2165 35.49% 0.78%
TreeMap1 24 24 24 24 0.00% 0.00% 871 942 947 882 6.37% 6.86%
TreeMap2 148 148 140 140 5.41% 0.00% 2918 2542 2851 2606 -2.52% 8.59%
TreeMap3 1080 956 833 806 15.69% 3.24% 21849 10729 11809 9871 8.00% 16.41%
BinTree1 84 41 25 25 39.02% 0.00% 1476 1103 1092 1027 6.89% 5.95%
BinTree2 472 238 133 118 50.42% 11.28% 4322 3648 3156 2872 21.27% 9.00%
BinTree3 3252 1654 939 873 47.22% 7.03% 36581 17197 14764 12041 29.98% 18.44%
BinomialHeap1 448 32 23 19 40.63% 17.39% 3637 2137 2046 2017 5.62% 1.42%
BinomialHeap2 3184 190 85 68 64.21% 20.00% 27165 7653 6442 6071 20.67% 5.76%
BinomialHeap3 23320 988 337 288 70.85% 14.54% 249224 28549 31892 21392 25.07% 32.92%
MerArbiter 60648 21 15 13 38.10% 13.33% >10min 304726 290854 272813 10.47% 6.20%
total/average 94014 4913 3066 2880 41.38% 6.07% / 390000 374012 341063 12.55% 9.35%

Table 2: Experimental results of reuse across runs (program Euclid)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 492 432 5 3 99.54% 60.00% 3896 1375 1329 65.89% 3.35%
ADD#2 438 331 216 216 34.74% 0.00% 2830 3275 2284 19.29% 30.26%
ADD#3 220 170 32 2 98.82% 93.75% 1382 972 552 60.06% 43.21%
DEL#1 438 322 156 126 60.87% 19.23% 3428 2670 2171 36.67% 18.69%
DEL#2 492 426 350 134 68.54% 61.71% 3777 4483 2046 45.83% 54.36%
DEL#3 642 552 112 111 79.89% 0.89% 4649 2560 2049 55.93% 19.96%
MOD#1 642 552 464 463 16.12% 0.22% 4851 6899 4400 9.30% 36.22%
MOD#2 642 552 464 462 16.30% 0.43% 4765 7094 4351 8.69% 38.67%
MOD#3 642 551 442 433 21.42% 2.04% 4505 7481 4240 5.88% 43.32%

total/average 4648 3888 2241 1949 49.87% 13.03% 34083 36809 23422 31.28% 36.37%

Table 3: Experimental results of reuse across runs (program TCAS)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 1036 9 4 2 77.78% 50.00% 1889 1535 1564 17.20% -1.89%
ADD#2 2920 4 2 1 75.00% 50.00% 3511 2639 2652 24.47% -0.49%
ADD#3 6730 3 0 0 100.00% 0/0 5015 3577 3576 28.69% 0.03%
DEL#1 2920 0 0 0 0/0 0/0 2675 2051 2077 22.36% -1.27%
DEL#2 1036 0 0 0 0/0 0/0 912 727 807 11.51% -11.00%
DEL#3 678 0 0 0 0/0 0/0 632 599 594 6.01% 0.83%
MOD#1 1406 2 2 0 100.00% 50.00% 2322 1917 1801 22.44% 6.05%
MOD#2 1406 4 2 0 100.00% 50.00% 1888 1490 1440 23.73% 3.36%
MOD#3 994 0 0 0 0/0 0/0 1020 817 797 21.86% 2.45%

total/average 19126 22 10 3 86.36% 91.36% 19864 15352 15308 22.94% 0.29%

Table 4: Experimental results of reuse across runs (program BinTree)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 5930 1689 803 746 55.83% 7.10% 17978 20355 11889 33.87% 41.59%
ADD#2 13358 3938 2618 2556 35.09% 2.37% 35382 105190 32465 8.24% 69.14%
ADD#3 15602 540 0 0 100.00% 0/0 18106 61586 17180 5.11% 72.10%
DEL#1 13358 3149 2216 2185 30.61% 1.40% 32134 126488 31002 3.52% 75.49%
DEL#2 5930 1154 599 0 100.00% 100.00% 13565 44789 10932 19.41% 75.59%
DEL#3 3252 1682 0 0 100.00% 0/0 12945 11482 4505 65.20% 60.76%
MOD#1 3252 1682 1080 1002 40.43% 7.22% 14553 16297 10628 26.97% 34.79%
MOD#2 3252 1680 716 632 62.38% 11.73% 14147 13784 7953 43.78% 42.30%
MOD#3 8310 2377 1068 964 59.44% 9.74% 22772 32889 14593 35.92% 55.63%

total/average 72244 17891 9100 8085 54.81% 11.15% 181582 432860 141147 22.27% 67.39%

GreenTrie gets better reuse ratio and saves more time when the
scale of execution increases.

Table 1: Experimental results of reuse in single run
Program n0 n1 n2 n3 R

0
R

00
t0(ms) t1(ms) t2(ms) t3(ms) T

0
T

00

Trityp 32 28 28 28 0.00% 0.00% 1040 915 922 995 -8.74% -7.92%
Euclid 642 552 464 464 15.94% 0.00% 5105 6503 7274 6311 2.95% 13.24%
TCAS 680 41 20 14 65.85% 30.00% 12742 3356 2182 2165 35.49% 0.78%
TreeMap1 24 24 24 24 0.00% 0.00% 871 942 947 882 6.37% 6.86%
TreeMap2 148 148 140 140 5.41% 0.00% 2918 2542 2851 2606 -2.52% 8.59%
TreeMap3 1080 956 833 806 15.69% 3.24% 21849 10729 11809 9871 8.00% 16.41%
BinTree1 84 41 25 25 39.02% 0.00% 1476 1103 1092 1027 6.89% 5.95%
BinTree2 472 238 133 118 50.42% 11.28% 4322 3648 3156 2872 21.27% 9.00%
BinTree3 3252 1654 939 873 47.22% 7.03% 36581 17197 14764 12041 29.98% 18.44%
BinomialHeap1 448 32 23 19 40.63% 17.39% 3637 2137 2046 2017 5.62% 1.42%
BinomialHeap2 3184 190 85 68 64.21% 20.00% 27165 7653 6442 6071 20.67% 5.76%
BinomialHeap3 23320 988 337 288 70.85% 14.54% 249224 28549 31892 21392 25.07% 32.92%
MerArbiter 60648 21 15 13 38.10% 13.33% >10min 304726 290854 272813 10.47% 6.20%
total/average 94014 4913 3066 2880 41.38% 6.07% / 390000 374012 341063 12.55% 9.35%

Table 2: Experimental results of reuse across runs (program Euclid)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 492 432 5 3 99.54% 60.00% 3896 1375 1329 65.89% 3.35%
ADD#2 438 331 216 216 34.74% 0.00% 2830 3275 2284 19.29% 30.26%
ADD#3 220 170 32 2 98.82% 93.75% 1382 972 552 60.06% 43.21%
DEL#1 438 322 156 126 60.87% 19.23% 3428 2670 2171 36.67% 18.69%
DEL#2 492 426 350 134 68.54% 61.71% 3777 4483 2046 45.83% 54.36%
DEL#3 642 552 112 111 79.89% 0.89% 4649 2560 2049 55.93% 19.96%
MOD#1 642 552 464 463 16.12% 0.22% 4851 6899 4400 9.30% 36.22%
MOD#2 642 552 464 462 16.30% 0.43% 4765 7094 4351 8.69% 38.67%
MOD#3 642 551 442 433 21.42% 2.04% 4505 7481 4240 5.88% 43.32%

total/average 4648 3888 2241 1949 49.87% 13.03% 34083 36809 23422 31.28% 36.37%

Table 3: Experimental results of reuse across runs (program TCAS)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 1036 9 4 2 77.78% 50.00% 1889 1535 1564 17.20% -1.89%
ADD#2 2920 4 2 1 75.00% 50.00% 3511 2639 2652 24.47% -0.49%
ADD#3 6730 3 0 0 100.00% 0/0 5015 3577 3576 28.69% 0.03%
DEL#1 2920 0 0 0 0/0 0/0 2675 2051 2077 22.36% -1.27%
DEL#2 1036 0 0 0 0/0 0/0 912 727 807 11.51% -11.00%
DEL#3 678 0 0 0 0/0 0/0 632 599 594 6.01% 0.83%
MOD#1 1406 2 2 0 100.00% 50.00% 2322 1917 1801 22.44% 6.05%
MOD#2 1406 4 2 0 100.00% 50.00% 1888 1490 1440 23.73% 3.36%
MOD#3 994 0 0 0 0/0 0/0 1020 817 797 21.86% 2.45%

total/average 19126 22 10 3 86.36% 91.36% 19864 15352 15308 22.94% 0.29%

Table 4: Experimental results of reuse across runs (program BinTree)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 5930 1689 803 746 55.83% 7.10% 17978 20355 11889 33.87% 41.59%
ADD#2 13358 3938 2618 2556 35.09% 2.37% 35382 105190 32465 8.24% 69.14%
ADD#3 15602 540 0 0 100.00% 0/0 18106 61586 17180 5.11% 72.10%
DEL#1 13358 3149 2216 2185 30.61% 1.40% 32134 126488 31002 3.52% 75.49%
DEL#2 5930 1154 599 0 100.00% 100.00% 13565 44789 10932 19.41% 75.59%
DEL#3 3252 1682 0 0 100.00% 0/0 12945 11482 4505 65.20% 60.76%
MOD#1 3252 1682 1080 1002 40.43% 7.22% 14553 16297 10628 26.97% 34.79%
MOD#2 3252 1680 716 632 62.38% 11.73% 14147 13784 7953 43.78% 42.30%
MOD#3 8310 2377 1068 964 59.44% 9.74% 22772 32889 14593 35.92% 55.63%

total/average 72244 17891 9100 8085 54.81% 11.15% 181582 432860 141147 22.27% 67.39%

Evaluation
❖ Reuse across Runs

GreenTrie gets better reuse ratio and saves more time than both
Green and KLEE’s approach.

Table 1: Experimental results of reuse in single run
Program n0 n1 n2 n3 R

0
R

00
t0(ms) t1(ms) t2(ms) t3(ms) T

0
T

00

Trityp 32 28 28 28 0.00% 0.00% 1040 915 922 995 -8.74% -7.92%
Euclid 642 552 464 464 15.94% 0.00% 5105 6503 7274 6311 2.95% 13.24%
TCAS 680 41 20 14 65.85% 30.00% 12742 3356 2182 2165 35.49% 0.78%
TreeMap1 24 24 24 24 0.00% 0.00% 871 942 947 882 6.37% 6.86%
TreeMap2 148 148 140 140 5.41% 0.00% 2918 2542 2851 2606 -2.52% 8.59%
TreeMap3 1080 956 833 806 15.69% 3.24% 21849 10729 11809 9871 8.00% 16.41%
BinTree1 84 41 25 25 39.02% 0.00% 1476 1103 1092 1027 6.89% 5.95%
BinTree2 472 238 133 118 50.42% 11.28% 4322 3648 3156 2872 21.27% 9.00%
BinTree3 3252 1654 939 873 47.22% 7.03% 36581 17197 14764 12041 29.98% 18.44%
BinomialHeap1 448 32 23 19 40.63% 17.39% 3637 2137 2046 2017 5.62% 1.42%
BinomialHeap2 3184 190 85 68 64.21% 20.00% 27165 7653 6442 6071 20.67% 5.76%
BinomialHeap3 23320 988 337 288 70.85% 14.54% 249224 28549 31892 21392 25.07% 32.92%
MerArbiter 60648 21 15 13 38.10% 13.33% >10min 304726 290854 272813 10.47% 6.20%
total/average 94014 4913 3066 2880 41.38% 6.07% / 390000 374012 341063 12.55% 9.35%

Table 2: Experimental results of reuse across runs (program Euclid)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 492 432 5 3 99.54% 60.00% 3896 1375 1329 65.89% 3.35%
ADD#2 438 331 216 216 34.74% 0.00% 2830 3275 2284 19.29% 30.26%
ADD#3 220 170 32 2 98.82% 93.75% 1382 972 552 60.06% 43.21%
DEL#1 438 322 156 126 60.87% 19.23% 3428 2670 2171 36.67% 18.69%
DEL#2 492 426 350 134 68.54% 61.71% 3777 4483 2046 45.83% 54.36%
DEL#3 642 552 112 111 79.89% 0.89% 4649 2560 2049 55.93% 19.96%
MOD#1 642 552 464 463 16.12% 0.22% 4851 6899 4400 9.30% 36.22%
MOD#2 642 552 464 462 16.30% 0.43% 4765 7094 4351 8.69% 38.67%
MOD#3 642 551 442 433 21.42% 2.04% 4505 7481 4240 5.88% 43.32%

total/average 4648 3888 2241 1949 49.87% 13.03% 34083 36809 23422 31.28% 36.37%

Table 3: Experimental results of reuse across runs (program TCAS)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 1036 9 4 2 77.78% 50.00% 1889 1535 1564 17.20% -1.89%
ADD#2 2920 4 2 1 75.00% 50.00% 3511 2639 2652 24.47% -0.49%
ADD#3 6730 3 0 0 100.00% 0/0 5015 3577 3576 28.69% 0.03%
DEL#1 2920 0 0 0 0/0 0/0 2675 2051 2077 22.36% -1.27%
DEL#2 1036 0 0 0 0/0 0/0 912 727 807 11.51% -11.00%
DEL#3 678 0 0 0 0/0 0/0 632 599 594 6.01% 0.83%
MOD#1 1406 2 2 0 100.00% 50.00% 2322 1917 1801 22.44% 6.05%
MOD#2 1406 4 2 0 100.00% 50.00% 1888 1490 1440 23.73% 3.36%
MOD#3 994 0 0 0 0/0 0/0 1020 817 797 21.86% 2.45%

total/average 19126 22 10 3 86.36% 91.36% 19864 15352 15308 22.94% 0.29%

Table 4: Experimental results of reuse across runs (program BinTree)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 5930 1689 803 746 55.83% 7.10% 17978 20355 11889 33.87% 41.59%
ADD#2 13358 3938 2618 2556 35.09% 2.37% 35382 105190 32465 8.24% 69.14%
ADD#3 15602 540 0 0 100.00% 0/0 18106 61586 17180 5.11% 72.10%
DEL#1 13358 3149 2216 2185 30.61% 1.40% 32134 126488 31002 3.52% 75.49%
DEL#2 5930 1154 599 0 100.00% 100.00% 13565 44789 10932 19.41% 75.59%
DEL#3 3252 1682 0 0 100.00% 0/0 12945 11482 4505 65.20% 60.76%
MOD#1 3252 1682 1080 1002 40.43% 7.22% 14553 16297 10628 26.97% 34.79%
MOD#2 3252 1680 716 632 62.38% 11.73% 14147 13784 7953 43.78% 42.30%
MOD#3 8310 2377 1068 964 59.44% 9.74% 22772 32889 14593 35.92% 55.63%

total/average 72244 17891 9100 8085 54.81% 11.15% 181582 432860 141147 22.27% 67.39%

Evaluation

❖ Reuse across Runs

Table 1: Experimental results of reuse in single run
Program n0 n1 n2 n3 R

0
R

00
t0(ms) t1(ms) t2(ms) t3(ms) T

0
T

00

Trityp 32 28 28 28 0.00% 0.00% 1040 915 922 995 -8.74% -7.92%
Euclid 642 552 464 464 15.94% 0.00% 5105 6503 7274 6311 2.95% 13.24%
TCAS 680 41 20 14 65.85% 30.00% 12742 3356 2182 2165 35.49% 0.78%
TreeMap1 24 24 24 24 0.00% 0.00% 871 942 947 882 6.37% 6.86%
TreeMap2 148 148 140 140 5.41% 0.00% 2918 2542 2851 2606 -2.52% 8.59%
TreeMap3 1080 956 833 806 15.69% 3.24% 21849 10729 11809 9871 8.00% 16.41%
BinTree1 84 41 25 25 39.02% 0.00% 1476 1103 1092 1027 6.89% 5.95%
BinTree2 472 238 133 118 50.42% 11.28% 4322 3648 3156 2872 21.27% 9.00%
BinTree3 3252 1654 939 873 47.22% 7.03% 36581 17197 14764 12041 29.98% 18.44%
BinomialHeap1 448 32 23 19 40.63% 17.39% 3637 2137 2046 2017 5.62% 1.42%
BinomialHeap2 3184 190 85 68 64.21% 20.00% 27165 7653 6442 6071 20.67% 5.76%
BinomialHeap3 23320 988 337 288 70.85% 14.54% 249224 28549 31892 21392 25.07% 32.92%
MerArbiter 60648 21 15 13 38.10% 13.33% >10min 304726 290854 272813 10.47% 6.20%
total/average 94014 4913 3066 2880 41.38% 6.07% / 390000 374012 341063 12.55% 9.35%

Table 2: Experimental results of reuse across runs (program Euclid)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 492 432 5 3 99.54% 60.00% 3896 1375 1329 65.89% 3.35%
ADD#2 438 331 216 216 34.74% 0.00% 2830 3275 2284 19.29% 30.26%
ADD#3 220 170 32 2 98.82% 93.75% 1382 972 552 60.06% 43.21%
DEL#1 438 322 156 126 60.87% 19.23% 3428 2670 2171 36.67% 18.69%
DEL#2 492 426 350 134 68.54% 61.71% 3777 4483 2046 45.83% 54.36%
DEL#3 642 552 112 111 79.89% 0.89% 4649 2560 2049 55.93% 19.96%
MOD#1 642 552 464 463 16.12% 0.22% 4851 6899 4400 9.30% 36.22%
MOD#2 642 552 464 462 16.30% 0.43% 4765 7094 4351 8.69% 38.67%
MOD#3 642 551 442 433 21.42% 2.04% 4505 7481 4240 5.88% 43.32%

total/average 4648 3888 2241 1949 49.87% 13.03% 34083 36809 23422 31.28% 36.37%

Table 3: Experimental results of reuse across runs (program TCAS)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 1036 9 4 2 77.78% 50.00% 1889 1535 1564 17.20% -1.89%
ADD#2 2920 4 2 1 75.00% 50.00% 3511 2639 2652 24.47% -0.49%
ADD#3 6730 3 0 0 100.00% 0/0 5015 3577 3576 28.69% 0.03%
DEL#1 2920 0 0 0 0/0 0/0 2675 2051 2077 22.36% -1.27%
DEL#2 1036 0 0 0 0/0 0/0 912 727 807 11.51% -11.00%
DEL#3 678 0 0 0 0/0 0/0 632 599 594 6.01% 0.83%
MOD#1 1406 2 2 0 100.00% 50.00% 2322 1917 1801 22.44% 6.05%
MOD#2 1406 4 2 0 100.00% 50.00% 1888 1490 1440 23.73% 3.36%
MOD#3 994 0 0 0 0/0 0/0 1020 817 797 21.86% 2.45%

total/average 19126 22 10 3 86.36% 91.36% 19864 15352 15308 22.94% 0.29%

Table 4: Experimental results of reuse across runs (program BinTree)
Changes n0 n1 n2 n3 R

0
R

00
t1(ms) t2(ms) t3(ms) T

0
T

00

ADD#1 5930 1689 803 746 55.83% 7.10% 17978 20355 11889 33.87% 41.59%
ADD#2 13358 3938 2618 2556 35.09% 2.37% 35382 105190 32465 8.24% 69.14%
ADD#3 15602 540 0 0 100.00% 0/0 18106 61586 17180 5.11% 72.10%
DEL#1 13358 3149 2216 2185 30.61% 1.40% 32134 126488 31002 3.52% 75.49%
DEL#2 5930 1154 599 0 100.00% 100.00% 13565 44789 10932 19.41% 75.59%
DEL#3 3252 1682 0 0 100.00% 0/0 12945 11482 4505 65.20% 60.76%
MOD#1 3252 1682 1080 1002 40.43% 7.22% 14553 16297 10628 26.97% 34.79%
MOD#2 3252 1680 716 632 62.38% 11.73% 14147 13784 7953 43.78% 42.30%
MOD#3 8310 2377 1068 964 59.44% 9.74% 22772 32889 14593 35.92% 55.63%

total/average 72244 17891 9100 8085 54.81% 11.15% 181582 432860 141147 22.27% 67.39%

GreenTrie gains better scalability than KLEE’s approach

3421 constraints in
store

Running time increases
dramatically in KLEE’s

approach

Evaluation
❖ Reuse across Programs

Table 5: Experimental results of reuse across programs
Program Trityp Euclid TCAS TreeMap BinTree BinomialHeap MerArbiter
Trityp / 0, 0, 3 0, 0, 3 0, 4, 4 0, 2, 2 0, 6, 7 0, 0, 1
Euclid 0, 0, 1 / 2, 5, 5 0, 0, 0 0, 3, 4 0, 2, 2 0, 0, 2
TCAS 0, 0, 2 2, 2, 2 / 0, 0, 0 0, 2, 3 0, 3, 4 0, 3, 4
TreeMap 0, 0, 0 0, 0, 0 0, 0, 0 / 256, 326, 323 0, 0, 0 0, 0, 0
BinTree 0, 0, 0 0, 0, 0 0, 0, 0 256, 449, 470 / 0, 1, 1 0, 0, 0
BinomialHeap 2, 2, 5 2, 2, 5 2, 8, 6 0, 2, 3 1, 11, 10 / 0, 0, 0
MerArbiter 0, 1, 2 0, 2 0, 3 0, 0, 0 0, 0, 0 0, 0, 0 /

We also have shown that GreenTrie saves symbolic execu-
tion time with respect to Green and KLEE. One reason is
that, because of its higher reuse ratio, it invokes the solver
less times than Green. Another reason is that the logical
superset and subset querying algorithm is performed as ef-
ficiently or even better than that in Green and KLEE. As
shown in the experiments of Section 7.2, when both Green-
Trie, Green, and KLEE all gain high reuse ratios, GreenTrie
is still faster than other two approaches.

Unlike Green, which uses Redis to store and query solu-
tions, GreenTrie saves SCS and UCS as two files on disk and
loads them into memory when symbolic execution is started.
GreenTrie uses almost the same memory as Green for sym-
bolic execution. For example, in the case of Bintree-3 in
Section 7.1, GreenTrie uses 284Mb memory, and Green uses
288Mb (including 5M due to the Redis process). Green-
Trie also optimizes the space occupied by L-Tries: each ex-
pression is an object (a sub-constraint is also an expression
composed by smaller expressions), and its occurrences in dif-
ferent constraints in the trie and the IPOG are all references
to this object. Since the constraints in symbolic execution
are always composed by the same group of expressions/sub-
constraints, this optimization significantly decreases the space
occupied by L-Tries. As an example, in the case of Bintree-
3 the total size of SCS and UCS stores is 387 Kb for 873
cached constraints composed with 81 expressions.

GreenTrie has one limitation compared to the original
Green framework: by now GreenTrie is only able to reuse the
SAT solving results, and cannot reuse the model counting
results (that are utilized to calculate path execution proba-
bilities[24]) as Green instead does.

9. CONCLUSION AND FUTURE WORK
We introduced a new approach to reuse the constraint

solving results in symbolic execution based on their logi-
cal relations. We presented GreenTrie, an extension to the
Green framework, which stores constraints and solutions
into two tries indexed by implication partial order graphs.
GreenTrie is able to carry out logical reduction and log-
ical subset and superset querying for given constraint, to
check if any solutions in stores can be reused. As our exper-
imental results show, GreenTrie not only saves considerable
symbolic execution time with respect to the case where con-
straint evaluations are not reused, but also achieves better
reuse and saves significant time with respect to Green and
KLEE approach.

Our future work will extend GreenTrie to support more
kinds of constraints other than linear integer constraints,
through adding implication rules and extending query al-
gorithm, as well as introducing the term rewriting tech-
nique[20] to simplify the complex constraints. We also plan

to make the summaries in compositional symbolic execu-
tion[25, 26] reusable at a finer granularity, considering that
the summary is a disjunctive constraint that composed by
pre and post conditions of paths of target method. This
work is part of our long-term e↵orts that aim at supporting
incremental and agile verification[27, 28, 29].

10. ACKNOWLEDGMENTS
We thank Domenico Bianculli, Srdjan Krstic, Giovanni

Denaro, Mauro Pezzè, Pietro Braione for comments and
suggestions in various stages of this work. This work was
supported by European Commission, Program IDEAS-ERC,
Project 227977-SMScom, National Natural Science Founda-
tion of China under Grant No.61272108, No.91118003 and
No.61373038, and the National High Technology Research
and Development Program of China, No. 2012AA011204-
01.

11. REFERENCES
[1] James C. King. Symbolic execution and program

testing. Communications of the ACM, 19(7):385–394,
July 1976.

[2] Ella Bounimova, Patrice Godefroid, and David
Molnar. Billions and billions of constraints: whitebox
fuzz testing in production. In Proceedings of the 2013
International Conference on Software Engineering,
pages 122–131. IEEE Press, May 2013.

[3] Thanassis Avgerinos, Alexandre Rebert, Sang Kil
Cha, and David Brumley. Enhancing Symbolic
Execution with Veritesting. In Proceedings of the 36th
International Conference on Software Engineering -
ICSE 2014, pages 1083–1094, Hyderabad, May 2014.
ACM Press.

[4] Cristian Cadar and Koushik Sen. Symbolic execution
for software testing: three decades later.
Communications of the ACM, 56(2):82–90, 2013.

[5] Corina S. Pasareanu and Willem Visser. A survey of
new trends in symbolic execution for software testing
and analysis. International Journal on Software Tools
for Technology Transfer, 11(4):339–353, August 2009.

[6] Saswat Anand. Techniques to facilitate symbolic
execution of real-world programs. PhD thesis, Georgia
Institute of Technology, 2012.

[7] Koushik Sen, Darko Marinov, and Gul Agha. CUTE:
A concolic unit testing engine for C. In Proceedings of
the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering -
ESEC/FSE-13, pages 263–272, New York, USA,
September 2005. ACM Press.

Numbers of reused constraints for
Green, KLEE approach and GreenTrie

GreenTrie achieves more inter-programs reuse than Green.
In some cases, GreenTrie has a little less reuse than KLEE’s approach.
The reason is that some constraints, which reuse the solution both across
programs and in same program in GreenTrie, can only reuse constraints
across programs in KLEE. Such constraints are counted for KLEE but not
counted for GreenTrie

Conclusion and Future Work

❖ Contributions

❖ Logical subset/superset based reuse

❖ Trie-based store indexed with implication partial order graph

❖ Efficient logical subset/superset checking algorithms

❖ Future works

❖ Support more kinds of constraints other than linear integer
constraints

❖ Reuse constraints which contains summaries

❖ Improve scalability for large-scale programs

Thanks

❖ Questions?

