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Abstract—Runtime data is a rich source of feedback in-
formation which can be used to improve program analysis.
In this paper, we proposed a Profile directed Event driven
Dynamic AnalLysis (PEDAL) to effectively detect concurrency
bugs. PEDAL identifies important schedule points with the help
of profiling data, and generates a reduced set of schedule points
where preemptions could happen. The reduced preemption set is
then used to direct the search for erroneous schedules. PEDAL
is evaluated on a set of multithreaded benchmark programs,
including MySQL, the industrial level database server applica-
tion. Experimental results show that PEDAL is both efficient and
scalable, as compared with several existing analysis techniques.

Keywords—Bug Detection, Profiling, Dynamic Analysis, Con-
currency Testing

I. INTRODUCTION

Concurrent programs are notoriously hard to test or de-
bug. The intrinsic non-determinism has made concurrency
testing more than just generating a set of appropriate inputs.
The scheduling activities that make context switches between
threads or processes must also be considered.

Various techniques were used to analyze and test concurrent
programs. There are static analyses used to check different
types of concurrency bugs [1, 2]. They have been quite
successful in identifying potential concurrency bugs. However,
the effectiveness of static concurrency analyses are affected
by possible false positives. It is possible to eliminate false
positives, by checking them with manual work or dynamic
analysis. But those are often considerable extra efforts to take.
Up till now, there have been also abundant dynamic analysis
techniques invented to solve concurrency testing problems
[3, 4]. Those dynamic analyses are performed on program
execution traces. The problem is that they did not do enough
search in the schedule space of concurrent programs, which
can be very large. CHESS [5] handles the problem with an
iterative context bounded search for feasible schedules, and
provides a good way for systematic concurrency testing.

Our approach is based on the experience of testing con-
current programs with CHESS. The focus of our work is
to connect execution profiles with the schedule searching
process of a typical systematic concurrency testing algorithm.
The CHESS algorithm uses the schedule trace to calculate
the number of preemptions, and generates new schedules
according to the last schedule trace. However, it does not take
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care of the rich identification information within each schedule
point, which can be retrived at runtime. That information
may be useful for concurrency bug detection. Based on this
observation, we proposed PEDAL (Profile directed Event
driven Dynamic AnaLysis) to thoroughly evaluate the benefits
of rich profile data in systematic concurrency testing. The
major contributions of this paper are as follows:

o Present a profile directed analysis technique for concur-
rent programs. The analysis is highly scalable with a
light-weight on-the-fly profiler.

Introduce the concept of reduced preemption set (RPS).
An RPS is a set of schedule points selected based on
the profiling information related to each schedule point.
With RPS, we made an enhancement to the basic search
procedure. The benefit of RPS is that it can narrow the
search space to where we are most interested in. RPS can
also serve as a basis for customization of concurrency
testing tools.

Propose the PEDAL algorithm. The algorithm has two
stages: preprocessing, and the RPS-directed schedule
search. The preprocessing stage is used to avoid unnec-
essary search if multiple-locking-cycle deadlock is likely
to occur in the program under test.

We have conducted experiments on several real world appli-
cations. Results show that PEDAL finds the erroneous sched-
ules within less run time than existing techniques, thanks to
the reduced preemption set generated from execution profiles.
Experience of using PEDAL on the MySQL server application
assures us that our technique is scalable.

II. PRELIMINARIES

PEDAL takes an event driven view over the execution of
concurrent programs. It monitors all the events, and records
event-related data as execution profiles. As PEDAL is designed
for concurrency analysis, it keeps track of only those events
that may contribute to the manifestation of concurrency bugs.
Those interesting events are mostly certain program operations
on certain objects at critical program locations.

We call those objects that may trigger concurrency events
Concurrent Objects(Definition 2.3). Typical concurrent objects
include thread objects, shared variables, mutexes, condition
variables, etc.
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Definition 2.1 (Concurrent Object): A concurrent object is
a tuple co = (addr,type), where addr is the address of the
concurrent object, and type is the type of the object.

And for those program locations where concurrency
events are generated, we name them Concurrent Loca-
tions(Definition 2.2). Concurrent locations denote the places
where the scheduler makes scheduling decisions, or where
the program states should be updated in order to keep the
scheduler going correctly.

Definition 2.2 (Concurrent Location): A concurrent location
is represented as a tuple conLoc = (op, conObj, cs), where
op is the operation on the concurrent object conObj, and cs is
the call stack used to uniquely represent the program location.

We use Schedule Point (Definition 2.3) to describe those
concurrent locations where scheduling decisions must be
made. PEDAL is based on those schedule point data.

Definition 2.3 (Schedule Point): A schedule point is a tuple
sp = (op, conObj, conLoc), where op is the operation that
is issued on the concurrent object conObj, conLoc is the
concurrent location of this schedule point.

The execution profiles that PEDAL records is a schedule
trace 7 = (sp1, Spa, . . ., SPn), which is made up of schedule
points. For a schedule point sp; in trace 7, if the current thread
can go on without yielding the CPU, but the scheduler forces
the context switch at sp;, then we call sp; a preemption in the
context of schedule trace 7.

Ty Ty Ts

//point 1.0 //point 2.0 //point 3.0
lock(ly); lock(ls); lock(l3);
//point 1.1 //point 2.1 //point 3.1
lock(ls); lock(l3); lock(ly);
//point 1.2 //point 2.2 //point 3.2
eat(); eat(); eat();
//point 1.3 //point 2.3 //point 3.3
unlock(ls); unlock(l3); unlock(ly);
//point 1.4 //point 2.4 //point 3.4
unlock(ly); unlock(l2); unlock(ls);

Fig. 1. Philosopher Example

Fig. 1 is an example to demonstrate the concepts of sched-
ule point and preemption. We mark 9 schedule points in
the three threads, and observe from a partial schedule trace
1.0 - 11— 1.2 — 2.0 —» 3.0 — 3.1. In this partial trace,
schedule point 1.2 is a preemption, while 1.0, 1.1, 2.0, 3.0
are not. For schedule point 1.2, T} go past it without yielding
the CPU since the operation next to the point is non-blocking.
But the scheduler forces a context switch at schedule point 1.2,
which makes it a preemption. As for point 1.0, 1.1 and 3.0,
they are preemption candidates, but no context switch happens
at either point. Therefore, those three points can not be called
preemptions. At point 2.0, thread 75 is going to apply for
mutex lock /5, which is held by 77. We can tell that 75 is not
a preemption in this partial trace. For schedule point 3.1, it
can not be a preemption either. Because the operation next to
point 3.1 in T3 is a blocking operation.

TABLE I
DESCRIPTION OF PROFILING ACTION FOR THREE PTHREAD APIS

API

pthread_create
pthread_mutex_lock
pthread_mutex_unlock

interposition action

add new thread to thread map

update lock and thread status, do scheduling
update lock and thread status, do scheduling

Generally, during one run of a real-world concurrent pro-
gram, there tend to be a huge set of schedule points where
preemptions could be made. However, only very few of them
may be critical for a certain concurrency bug. In the next
section we are going to illustrate how to reduce the huge set
of preemption candidates to a reduce preemption set, and use
that to guide the schedule search algorithm during systematic
concurrency testing.

III. OUR APPROACH

PEDAL collects schedule traces with an on-the-fly profiler.
Each time the search algorithm explores a schedule, the
profiler will monitor the run under that schedule, and update
the execution profile accordingly. The updated profile will then
be processed and used as guidance to help generate a reduced
preemption set (RPS). The schedule search algorithm uses the
RPS to effectively detect and reproduce concurrency bugs.
Next in this section, we will discuss our technique in details.

A. Profiling

The on-the-fly profiler is an essential part of PEDAL. It
keeps track of most of the interesting schedule points via
library API interposition. API interposition is an efficient
light-weight technique, which has been successfully used in
quite a few program analysis tools, e.g. Thrille [6]. To do
the API interposition, the PEDAL profiler provides a set
of wrappers named after the original synchronization APIs.
In each wrapper function, preprocessing and postprocessing
codes are added before and after the actual invocation of the
original API function. When the program runs, each time a
synchronization API function is called, the control flow will
be directed to the wrapper, and the extra code added by the
profiler will be executed accordingly. It is in those extra codes
that profiler control happens.

Synchronization related library functions are the main
targets of API interception. E.g. in the pthread library,
pthread_create/pthread_mutex_lock/pthread_mutex_unlock()
are three important phread functions. TABLE I shows what
actions should be taken after they are intercepted.

For memory accesses to shared variables, they can also be
important schedule points that may contribute to concurrency
bugs like race conditions, or atomicity violations. To track
memory related schedule points, we insert hook functions
before and after shared memory accesses by source annotation,
or static instrumentation.

The two major tasks of the profiler are logging, and new
schedule generation. As for logging, the profiler records sched-
ule points during each monitored program run. The infor-
mation contained in the schedule point, including concurrent
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TABLE T
COMPARISON BETWEEN CHESS AND PEDAL

CHESS_search() PEDAL_search(RPS rps)

if w.tid € enabled(s) then if w.tid € enabled(s) then
sp = getCurrentSchedulePoint();
for t € enabled(s)\{w.tid}
and sp € rps do

for t € enabled(s)\{w.tid} do

... [*preemption happens*/
done
else
.../*non-preemptions*/
fi fi

done
else
.../*non-preemptions*/

objects, operations, and the concurrent locations, are retrieved
as a by-product of API interposition.

In order to direct thread scheduling in the way we like, a
scheduler is integrated into the profiler. With the scheduler,
PEDAL will take over the thread scheduling task. It maintains
a thread map to keep track of the status of running threads. At
each schedule point, the scheduler is invoked to make schedul-
ing decision or update the thread map. When generating new
schedules from an old one, the scheduler need to make a
different decision at certain schedule point as specified by the
search algorithm.

B. Search with Reduced Preemption Set

PEDAL uses a modified version of the CHESS algo-
rithm as the core search algorithm, which we have named
PEDAL_search. We list the main search procedure of both
CHESS and PEDAL to make it clear where we made the
change, as in Table II.

PEDAL_search takes a reduced preemption set(RPS) as pa-
rameter, which denotes the set of locations where preemptions
are allowed to be made during the search. It is a restricted
version of CHESS algorithm.

The RPS is the key to PEDAL_search. The process for
contructing an RPS is straightforward:

« given a schedule trace 7 = (sp1, $pa, ..., SPn)-

o preemption set PS = {}

o for each sp; in 7, if sp; is a preemption candidate then
add sp; to PS.

e RPS « filter(PS).

The filter process can be adapted to different conditions. For
deadlock detection, we may want to first check for existence
of long-locking-cycle deadlocks. In this case, we can construct
the RPS as following:

« split schedule trace 7 into per-thread traces.

« check for the trace of each thread, if at certain position,
the thread requests a lock while holding another lock,
then add the location to RPS

If we are checking for race conditions or atomicity viola-
tions, we may be interested in preemptions at access points
on certain shared memories. In this case, the filtering process
can be done like this:

e given a schedule trace 7 =
shared object O

o for each sp; in 7, if sp;.conObj is equal to O, then add
sp; to RPS

The change that PEDAL_search made makes the search
process customizable. You can group schedule points with
certain criteria to form an RPS to guide the search. The
guiding preemption set in PEDAL _search will also be useful
when we want to test just a specified area of the program to
check if error could happen due to operations on any specific
concurrent objects, say, a mutex.

(sp1,8p2, ..., Spn), and

C. PEDAL Algorithm

The PEDAL algorithm (Algorithm 1) is mainly composed
of two parts: (1) first check for deadlock bugs that may require
large number of preemptions to reproduce (line 1-11); (2) then
restart a PEDAL search process to continue search, starting
from preemption bound 0, until the max preemption bound is
reached (line 12-15).

There is a sound reason for introducing the first part.
From our observation, the number of preemptions required
to reproduce deadlocks due to long locking cycles can be
linear to the number of threads that help make the deadlock.
Under this circumstance, standard CHESS will spend much
time searching at low preemption bound settings without the
possibility of hitting the deadlock. PEDAL fixed this by first
scanning the per-thread trace to find dangerous schedule points
that are very likely to get involved in a deadlock (line 2-6).
By dangerous schedule points, we mean those locations in
a thread where the thread is holding a lock while trying to
acquire another lock. PEDAL calculates the number of threads
that have dangerous locations in their trace, and then uses the
dangerous location set as an RPS to search.

In the second part, PEDAL filters out some uninteresting
preemption candidates with the help of profiled schedule
point information, and builds a normal preemption set (line
12). Then PEDAL starts searching from preemption bound 0,
constrained by the normal preemption set (line 13-15). We can
set the value MAX_BOUND to make PEDAL stop when the
preemption bound reaches this threshold.

D. Using Object Level RPS

Besides the usage of normal preemption set, we also tried to
build reduced preemption set(RPS) at finer granularity levels.

After each run, we study the summarized information, and
build an RPS for each concurrent object. To build the object
level RPS, we first build the set of concurrent objects. This
set is continuously updated when the search algorithm try new
schedules. Then we examine each historical trace for those
program locations where an concurrenct object is manipulated.
Finally, we get a set of concurrent objects, and map each
objects to a set of concurrent locations.

For each concurrent object, an object level RPS is the set of
preemption candidates in the set of concurrent locations asso-
ciated with a certain concurrent object. We made a preliminary
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Algorithm 1 PEDAL
1: dlBound = 0,

2: for all thread ¢ in current test case do

3 if hasDangerousLocation(t) then

4 dlBound++;

5 end if

6: end for

7

8

9

: if dlBound > 1 then
preemption Bound = dl Bound,

. preemptionSet = danger LocSet,;
10:  PEDAL_search(preemptionSet);
11: end if
12: Preemption normalSet = reducePreemptionSetNormal();
13: for preemption Bound = 0 to MAX_BOUND do
14:  PEDAL_search(normalSet);
15: end for

study of multiple concurrent bug detection with Object level
RPS, as described later in the Evaluation section.

IV. EVALUATION

We make a first demonstration of our work on the philoso-
pher example. Then we conduct experiments on some real
world multithreaded applications to demonstrate the efficiency
and scalability of PEDAL.

All experiments were conducted within a 32bit Ubuntu
Linux 12.04 system (Intel Core Duo T7100, 4G memory).
And in the experimental results, the times and memory con-
sumptions are measured in seconds and MBs respectively.

A. Checking the Philosopher Deadlock

The deadlock error in the philosopher problem is a typical
multiple-lock-cycle example. In each philosopher thread, the
schedule point before the second lock operation is highly
dangerous. Those dangerous schedule points are put into an
RPS to guide the search in the first phase.

We compare PEDAL with the CHESS implementation of
THRILLE (see TABLE III). The underlying profiling mecha-
nism is pretty much the same with PEDAL and CHESS. So if
we do not use the deadlock-special RPS to make restrictions,
their performance would be very similar. In this section, we
are going to demonstrate that using RPS in the preprocessing
stage could be of much help for quickly detecting multi-cycle
deadlock errors.

Results shows that with 3 philosophers, THRILLE could
spot the deadlock in a couple of seconds. But when the number
of philosopher increases, the time required to detect the bug
grows rapidly. Thanks to the guiding preemption set, PEDAL
spot the deadlock within 1 second, even though the number
of philosophers grows.

B. Bug Detection on Real World Applications

We evaluated PEDAL on several real-world applications.
The results are listed in TABLE IV.

Two of them, pfscan and pbzip2, are from the PARSEC
benchmarks. We take them from the benchmark release of

TABLE III
TIME COMPARISON ON PHILOSOPHER
benchmark Thrille PEDAL
Philosopher (3) | 4 <1
Philosopher (5) | 510 <1
Philosopher (7) | > 3600 | <1
TABLE IV
RESULTS ON REAL WORLD APPLICATIONS
Bug Thrille Maple PEDAL
Time Mem | Time Mem | Time Mem
pfscan 40 0.01 380¢ 14 1 0.01
pbzip2 300 0.20 12 50 1.68 0.16
MySQL #10224 - - - - 117 5.0
MySQL #10602 - - - - 17 5.0

“Maple reaches its threshold, and does not find the bug

THRILLE [6]. Pfscan is a parallel file scanner. A hard-to-
reproduce error is injected into pfscan as described in [6].
The error will eventually trigger a segmentation fault with
the erroneous schedule. Pbzip2 is a parallel file zipper. In
pbzip2, one mutex is possibly destroyed before it is used again.
A segmentation fault will occur if the erroneous schedule
is executed. Experimental results show that THRILLE and
PEDAL detect the bugs in the two PARSEC benchmarks, with
almost the same memory consumption. PEDAL excels in that
it detects the bug quicker than THRILLE. As for Maple [7],
the memory consumption is much higher. It is reasonable as
Maple is using a heavy weight dynamic instrumentation tool in
its analysis engine. On pfscan, Maple searched for 380 seconds
without detecting the bug. With pbzip2, it can detect the bug,
but the time may vary on different runs.

Another benchmark application is MySQL server, which
is widely used industrial-level database applications. Two
deadlock bugs in the MySQL server, MySQL bug #10602[8]
and #10224 [9], are used to evaluate the scalability of PEDAL.
We build input data with information from the MySQL bug
system, and feed the input to MySQL binary. Then PEDAL
works with the inputs and successfully detect the two bugs. As
described in the bug reports, these two bugs would be very
hard to detect and reproduce without the help of tools like
PEDAL. PEDAL detects the bugs within couple of seconds,
as can be seen in TABLE IV. When dealing with the MySQL
server, THRILLE lacks some concurrency control to make the
MySQL server work under it. As for Maple, the performance
problem becomes an critical issue facing the hugh amount of
schedule points in a MySQL trace. Therefore, we did not give
the results of THRILLE and Maple on MySQL.

The results are listed in TABLE IV. For real life appli-
cations, PEDAL detected bug in reasonable time(within 10-
110 seconds). The results show that PEDAL is scalable, and
capable of handling industrial level concurrent programs.

C. Results on Object Level RPS

We evaluated the usage of object level RPS on the pbzip2
benchmark. Two mutex objects were selected from the exe-
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TABLE V
OBJECT LEVEL RPS ON PBZIP2
RPS No. | Time | found bug
1 0.3 order violation
2 2.98 deadlock

cution profile of pbzip2, and used to create two object level
RPS with their associated schedule points. Then we use the
RPS to substitute the bigger normal set of preemption set in
the second phase of Algorithm 1.

The results are in TABLE V. With the first RPS, the bug
reported previously is spotted within 0.3 seconds, which is
much shorter than the 1.68 seconds with normal RPS (shown
in TABLE IV). While the more interesting thing is that, with
the second RPS, a deadlock bug is captured, which has not
been reported previously by any other tools.

V. RELATED WORKS

Two major areas of work are closely related to PEDAL: (1)
enforcement of schedules for bug reproduction; (2) searching
of the program space for erroneous schedules.

As for concurrency bug reproduction, LEAP [10] uses a
record-and-replay approach to reproduce bugs in Java multi-
threaded programs. ODR [11] presents a low-overhead replay
system for real world multicore applications.

There are lots of works on schedule search. CTrigger [12]
exposes the fact that real world concurrency bugs can often be
exposed with few thread interleavings. Calfuzzer [13] uses a
simple and fast race checking algorithm to get a set of racing
pairs first, and then use those pairs to make partial control
over the schedule in order to reproduce race conditions with
high probability. THRILLE [6] takes a step further and fully
controls the thread schedule and tries to generate a simplified
trace by eliminating schedule points that may not be interesting
for bug reproduction.

There are lots of works covering variant issues in con-
currency testing. Preemption sealing [14] is a technique that
selectively hides certain parts of the bug triggering part in
order to find multiple bugs. Dasarath studied the multicore
dumps to locate the root cause of concurrency bugs [15].
Researchers also tried to use some coverage related profile
to direct the process of uncovering concurrency bugs [7, 16].
IMUnit [17] present a novel approach for unit testing of
multithreaded code. It gives support for user to explicitly
annotate the schedule points in programs, which facilitates the
generation of unit test cases.

VI. CONCLUSION AND FUTURE WORKS

We proposed a profile directed concurrency analysis tech-
nique named PEDAL. It builds reduced preemption sets from
execution profiles, and uses them to guide a systematic search.
PEDAL is evaluated on several multithreaded benchmarks and
compared with existing techniques. Results show that PEDAL
is both efficient and scalable.

By using reduced preemption set to guide the schedule
search, PEDAL provides customization possibilities. Testers
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could create different preemption sets according to their own
criteria, and build demand driven analyses to fit their specific
needs. This will be explored in our future works.
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