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Abstract—Runtime data is a rich source of feedback in-
formation which can be used to improve program analysis.
In this paper, we proposed a Profile directed Event driven
Dynamic AnaLysis (PEDAL) to effectively detect concurrency
bugs. PEDAL identifies important schedule points with the help
of profiling data, and generates a reduced set of schedule points
where preemptions could happen. The reduced preemption set is
then used to direct the search for erroneous schedules. PEDAL
is evaluated on a set of multithreaded benchmark programs,
including MySQL, the industrial level database server applica-
tion. Experimental results show that PEDAL is both efficient and
scalable, as compared with several existing analysis techniques.

Keywords—Bug Detection, Profiling, Dynamic Analysis, Con-
currency Testing

I. INTRODUCTION

Concurrent programs are notoriously hard to test or de-

bug. The intrinsic non-determinism has made concurrency

testing more than just generating a set of appropriate inputs.

The scheduling activities that make context switches between

threads or processes must also be considered.

Various techniques were used to analyze and test concurrent

programs. There are static analyses used to check different

types of concurrency bugs [1, 2]. They have been quite

successful in identifying potential concurrency bugs. However,

the effectiveness of static concurrency analyses are affected

by possible false positives. It is possible to eliminate false

positives, by checking them with manual work or dynamic

analysis. But those are often considerable extra efforts to take.

Up till now, there have been also abundant dynamic analysis

techniques invented to solve concurrency testing problems

[3, 4]. Those dynamic analyses are performed on program

execution traces. The problem is that they did not do enough

search in the schedule space of concurrent programs, which

can be very large. CHESS [5] handles the problem with an

iterative context bounded search for feasible schedules, and

provides a good way for systematic concurrency testing.

Our approach is based on the experience of testing con-

current programs with CHESS. The focus of our work is

to connect execution profiles with the schedule searching

process of a typical systematic concurrency testing algorithm.

The CHESS algorithm uses the schedule trace to calculate

the number of preemptions, and generates new schedules

according to the last schedule trace. However, it does not take

care of the rich identification information within each schedule

point, which can be retrived at runtime. That information

may be useful for concurrency bug detection. Based on this

observation, we proposed PEDAL (Profile directed Event

driven Dynamic AnaLysis) to thoroughly evaluate the benefits

of rich profile data in systematic concurrency testing. The

major contributions of this paper are as follows:

• Present a profile directed analysis technique for concur-

rent programs. The analysis is highly scalable with a

light-weight on-the-fly profiler.

• Introduce the concept of reduced preemption set (RPS).

An RPS is a set of schedule points selected based on

the profiling information related to each schedule point.

With RPS, we made an enhancement to the basic search

procedure. The benefit of RPS is that it can narrow the

search space to where we are most interested in. RPS can

also serve as a basis for customization of concurrency

testing tools.

• Propose the PEDAL algorithm. The algorithm has two

stages: preprocessing, and the RPS-directed schedule

search. The preprocessing stage is used to avoid unnec-

essary search if multiple-locking-cycle deadlock is likely

to occur in the program under test.

We have conducted experiments on several real world appli-

cations. Results show that PEDAL finds the erroneous sched-

ules within less run time than existing techniques, thanks to

the reduced preemption set generated from execution profiles.

Experience of using PEDAL on the MySQL server application

assures us that our technique is scalable.

II. PRELIMINARIES

PEDAL takes an event driven view over the execution of

concurrent programs. It monitors all the events, and records

event-related data as execution profiles. As PEDAL is designed

for concurrency analysis, it keeps track of only those events

that may contribute to the manifestation of concurrency bugs.

Those interesting events are mostly certain program operations

on certain objects at critical program locations.

We call those objects that may trigger concurrency events

Concurrent Objects(Definition 2.3). Typical concurrent objects

include thread objects, shared variables, mutexes, condition

variables, etc.

978-1-4673-6161-3/13 c© 2013 IEEE AST 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

47



Definition 2.1 (Concurrent Object): A concurrent object is

a tuple co = 〈addr, type〉, where addr is the address of the

concurrent object, and type is the type of the object.

And for those program locations where concurrency

events are generated, we name them Concurrent Loca-

tions(Definition 2.2). Concurrent locations denote the places

where the scheduler makes scheduling decisions, or where

the program states should be updated in order to keep the

scheduler going correctly.

Definition 2.2 (Concurrent Location): A concurrent location

is represented as a tuple conLoc = 〈op, conObj, cs〉, where
op is the operation on the concurrent object conObj, and cs is

the call stack used to uniquely represent the program location.

We use Schedule Point (Definition 2.3) to describe those

concurrent locations where scheduling decisions must be

made. PEDAL is based on those schedule point data.

Definition 2.3 (Schedule Point): A schedule point is a tuple

sp = 〈op, conObj, conLoc〉, where op is the operation that

is issued on the concurrent object conObj, conLoc is the

concurrent location of this schedule point.

The execution profiles that PEDAL records is a schedule

trace τ = 〈sp1, sp2, . . . , spn〉, which is made up of schedule

points. For a schedule point spi in trace τ , if the current thread

can go on without yielding the CPU, but the scheduler forces

the context switch at spi, then we call spi a preemption in the

context of schedule trace τ .

T1 T2 T3

//point 1.0 //point 2.0 //point 3.0

lock(l1); lock(l2); lock(l3);

//point 1.1 //point 2.1 //point 3.1

lock(l2); lock(l3); lock(l1);

//point 1.2 //point 2.2 //point 3.2

eat(); eat(); eat();

//point 1.3 //point 2.3 //point 3.3

unlock(l2); unlock(l3); unlock(l1);

//point 1.4 //point 2.4 //point 3.4

unlock(l1); unlock(l2); unlock(l3);

Fig. 1. Philosopher Example

Fig. 1 is an example to demonstrate the concepts of sched-

ule point and preemption. We mark 9 schedule points in

the three threads, and observe from a partial schedule trace

1.0 → 1.1 → 1.2 → 2.0 → 3.0 → 3.1. In this partial trace,

schedule point 1.2 is a preemption, while 1.0, 1.1, 2.0, 3.0

are not. For schedule point 1.2, T1 go past it without yielding

the CPU since the operation next to the point is non-blocking.

But the scheduler forces a context switch at schedule point 1.2,

which makes it a preemption. As for point 1.0, 1.1 and 3.0,

they are preemption candidates, but no context switch happens

at either point. Therefore, those three points can not be called

preemptions. At point 2.0, thread T2 is going to apply for

mutex lock l2, which is held by T1. We can tell that T2 is not

a preemption in this partial trace. For schedule point 3.1, it

can not be a preemption either. Because the operation next to

point 3.1 in T3 is a blocking operation.

TABLE I
DESCRIPTION OF PROFILING ACTION FOR THREE PTHREAD APIS

API interposition action

pthread create add new thread to thread map
pthread mutex lock update lock and thread status, do scheduling
pthread mutex unlock update lock and thread status, do scheduling

Generally, during one run of a real-world concurrent pro-

gram, there tend to be a huge set of schedule points where

preemptions could be made. However, only very few of them

may be critical for a certain concurrency bug. In the next

section we are going to illustrate how to reduce the huge set

of preemption candidates to a reduce preemption set, and use

that to guide the schedule search algorithm during systematic

concurrency testing.

III. OUR APPROACH

PEDAL collects schedule traces with an on-the-fly profiler.

Each time the search algorithm explores a schedule, the

profiler will monitor the run under that schedule, and update

the execution profile accordingly. The updated profile will then

be processed and used as guidance to help generate a reduced

preemption set (RPS). The schedule search algorithm uses the

RPS to effectively detect and reproduce concurrency bugs.

Next in this section, we will discuss our technique in details.

A. Profiling

The on-the-fly profiler is an essential part of PEDAL. It

keeps track of most of the interesting schedule points via

library API interposition. API interposition is an efficient

light-weight technique, which has been successfully used in

quite a few program analysis tools, e.g. Thrille [6]. To do

the API interposition, the PEDAL profiler provides a set

of wrappers named after the original synchronization APIs.

In each wrapper function, preprocessing and postprocessing

codes are added before and after the actual invocation of the

original API function. When the program runs, each time a

synchronization API function is called, the control flow will

be directed to the wrapper, and the extra code added by the

profiler will be executed accordingly. It is in those extra codes

that profiler control happens.

Synchronization related library functions are the main

targets of API interception. E.g. in the pthread library,

pthread create/pthread mutex lock/pthread mutex unlock()

are three important phread functions. TABLE I shows what

actions should be taken after they are intercepted.

For memory accesses to shared variables, they can also be

important schedule points that may contribute to concurrency

bugs like race conditions, or atomicity violations. To track

memory related schedule points, we insert hook functions

before and after shared memory accesses by source annotation,

or static instrumentation.

The two major tasks of the profiler are logging, and new

schedule generation. As for logging, the profiler records sched-

ule points during each monitored program run. The infor-

mation contained in the schedule point, including concurrent
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TABLE II
COMPARISON BETWEEN CHESS AND PEDAL

CHESS search() PEDAL search(RPS rps)

. . . . . .
if w.tid ∈ enabled(s) then if w.tid ∈ enabled(s) then
. . . . . .

sp = getCurrentSchedulePoint();
for t ∈ enabled(s)\{w.tid} do for t ∈ enabled(s)\{w.tid}

and sp ∈ rps do
. . . /*preemption happens*/ . . .

done done
else else
. . . /*non-preemptions*/ . . . /*non-preemptions*/

fi fi

objects, operations, and the concurrent locations, are retrieved

as a by-product of API interposition.

In order to direct thread scheduling in the way we like, a

scheduler is integrated into the profiler. With the scheduler,

PEDAL will take over the thread scheduling task. It maintains

a thread map to keep track of the status of running threads. At

each schedule point, the scheduler is invoked to make schedul-

ing decision or update the thread map. When generating new

schedules from an old one, the scheduler need to make a

different decision at certain schedule point as specified by the

search algorithm.

B. Search with Reduced Preemption Set

PEDAL uses a modified version of the CHESS algo-

rithm as the core search algorithm, which we have named

PEDAL search. We list the main search procedure of both

CHESS and PEDAL to make it clear where we made the

change, as in Table II.

PEDAL search takes a reduced preemption set(RPS) as pa-

rameter, which denotes the set of locations where preemptions

are allowed to be made during the search. It is a restricted

version of CHESS algorithm.

The RPS is the key to PEDAL search. The process for

contructing an RPS is straightforward:

• given a schedule trace τ = 〈sp1, sp2, . . . , spn〉.
• preemption set PS = {}
• for each spi in τ , if spi is a preemption candidate then

add spi to PS.

• RPS ← filter(PS).

The filter process can be adapted to different conditions. For

deadlock detection, we may want to first check for existence

of long-locking-cycle deadlocks. In this case, we can construct

the RPS as following:

• split schedule trace τ into per-thread traces.

• check for the trace of each thread, if at certain position,

the thread requests a lock while holding another lock,

then add the location to RPS

If we are checking for race conditions or atomicity viola-

tions, we may be interested in preemptions at access points

on certain shared memories. In this case, the filtering process

can be done like this:

• given a schedule trace τ = 〈sp1, sp2, . . . , spn〉, and

shared object O

• for each spi in τ , if spi.conObj is equal to O, then add

spi to RPS

The change that PEDAL search made makes the search

process customizable. You can group schedule points with

certain criteria to form an RPS to guide the search. The

guiding preemption set in PEDAL search will also be useful

when we want to test just a specified area of the program to

check if error could happen due to operations on any specific

concurrent objects, say, a mutex.

C. PEDAL Algorithm

The PEDAL algorithm (Algorithm 1) is mainly composed

of two parts: (1) first check for deadlock bugs that may require

large number of preemptions to reproduce (line 1-11); (2) then

restart a PEDAL search process to continue search, starting

from preemption bound 0, until the max preemption bound is

reached (line 12-15).

There is a sound reason for introducing the first part.

From our observation, the number of preemptions required

to reproduce deadlocks due to long locking cycles can be

linear to the number of threads that help make the deadlock.

Under this circumstance, standard CHESS will spend much

time searching at low preemption bound settings without the

possibility of hitting the deadlock. PEDAL fixed this by first

scanning the per-thread trace to find dangerous schedule points

that are very likely to get involved in a deadlock (line 2-6).

By dangerous schedule points, we mean those locations in

a thread where the thread is holding a lock while trying to

acquire another lock. PEDAL calculates the number of threads

that have dangerous locations in their trace, and then uses the

dangerous location set as an RPS to search.

In the second part, PEDAL filters out some uninteresting

preemption candidates with the help of profiled schedule

point information, and builds a normal preemption set (line

12). Then PEDAL starts searching from preemption bound 0,

constrained by the normal preemption set (line 13-15). We can

set the value MAX BOUND to make PEDAL stop when the

preemption bound reaches this threshold.

D. Using Object Level RPS

Besides the usage of normal preemption set, we also tried to

build reduced preemption set(RPS) at finer granularity levels.

After each run, we study the summarized information, and

build an RPS for each concurrent object. To build the object

level RPS, we first build the set of concurrent objects. This

set is continuously updated when the search algorithm try new

schedules. Then we examine each historical trace for those

program locations where an concurrenct object is manipulated.

Finally, we get a set of concurrent objects, and map each

objects to a set of concurrent locations.

For each concurrent object, an object level RPS is the set of

preemption candidates in the set of concurrent locations asso-

ciated with a certain concurrent object. We made a preliminary
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Algorithm 1 PEDAL

1: dlBound = 0;

2: for all thread t in current test case do

3: if hasDangerousLocation(t) then

4: dlBound++;

5: end if

6: end for

7: if dlBound > 1 then

8: preemptionBound = dlBound;

9: preemptionSet = dangerLocSet;

10: PEDAL search(preemptionSet);

11: end if

12: Preemption normalSet = reducePreemptionSetNormal();

13: for preemptionBound = 0 to MAX BOUND do

14: PEDAL search(normalSet);

15: end for

study of multiple concurrent bug detection with Object level

RPS, as described later in the Evaluation section.

IV. EVALUATION

We make a first demonstration of our work on the philoso-

pher example. Then we conduct experiments on some real

world multithreaded applications to demonstrate the efficiency

and scalability of PEDAL.

All experiments were conducted within a 32bit Ubuntu

Linux 12.04 system (Intel Core Duo T7100, 4G memory).

And in the experimental results, the times and memory con-

sumptions are measured in seconds and MBs respectively.

A. Checking the Philosopher Deadlock

The deadlock error in the philosopher problem is a typical

multiple-lock-cycle example. In each philosopher thread, the

schedule point before the second lock operation is highly

dangerous. Those dangerous schedule points are put into an

RPS to guide the search in the first phase.

We compare PEDAL with the CHESS implementation of

THRILLE (see TABLE III). The underlying profiling mecha-

nism is pretty much the same with PEDAL and CHESS. So if

we do not use the deadlock-special RPS to make restrictions,

their performance would be very similar. In this section, we

are going to demonstrate that using RPS in the preprocessing

stage could be of much help for quickly detecting multi-cycle

deadlock errors.

Results shows that with 3 philosophers, THRILLE could

spot the deadlock in a couple of seconds. But when the number

of philosopher increases, the time required to detect the bug

grows rapidly. Thanks to the guiding preemption set, PEDAL

spot the deadlock within 1 second, even though the number

of philosophers grows.

B. Bug Detection on Real World Applications

We evaluated PEDAL on several real-world applications.

The results are listed in TABLE IV.

Two of them, pfscan and pbzip2, are from the PARSEC

benchmarks. We take them from the benchmark release of

TABLE III
TIME COMPARISON ON PHILOSOPHER

benchmark Thrille PEDAL

Philosopher (3) 4 < 1
Philosopher (5) 510 < 1
Philosopher (7) > 3600 < 1

TABLE IV
RESULTS ON REAL WORLD APPLICATIONS

Thrille Maple PEDALBug
Time Mem Time Mem Time Mem

pfscan 40 0.01 380a 14 1 0.01
pbzip2 300 0.20 12 50 1.68 0.16
MySQL #10224 - - - - 117 5.0
MySQL #10602 - - - - 17 5.0

aMaple reaches its threshold, and does not find the bug

THRILLE [6]. Pfscan is a parallel file scanner. A hard-to-

reproduce error is injected into pfscan as described in [6].

The error will eventually trigger a segmentation fault with

the erroneous schedule. Pbzip2 is a parallel file zipper. In

pbzip2, one mutex is possibly destroyed before it is used again.

A segmentation fault will occur if the erroneous schedule

is executed. Experimental results show that THRILLE and

PEDAL detect the bugs in the two PARSEC benchmarks, with

almost the same memory consumption. PEDAL excels in that

it detects the bug quicker than THRILLE. As for Maple [7],

the memory consumption is much higher. It is reasonable as

Maple is using a heavy weight dynamic instrumentation tool in

its analysis engine. On pfscan, Maple searched for 380 seconds

without detecting the bug. With pbzip2, it can detect the bug,

but the time may vary on different runs.

Another benchmark application is MySQL server, which

is widely used industrial-level database applications. Two

deadlock bugs in the MySQL server, MySQL bug #10602[8]

and #10224 [9], are used to evaluate the scalability of PEDAL.

We build input data with information from the MySQL bug

system, and feed the input to MySQL binary. Then PEDAL

works with the inputs and successfully detect the two bugs. As

described in the bug reports, these two bugs would be very

hard to detect and reproduce without the help of tools like

PEDAL. PEDAL detects the bugs within couple of seconds,

as can be seen in TABLE IV. When dealing with the MySQL

server, THRILLE lacks some concurrency control to make the

MySQL server work under it. As for Maple, the performance

problem becomes an critical issue facing the hugh amount of

schedule points in a MySQL trace. Therefore, we did not give

the results of THRILLE and Maple on MySQL.

The results are listed in TABLE IV. For real life appli-

cations, PEDAL detected bug in reasonable time(within 10-

110 seconds). The results show that PEDAL is scalable, and

capable of handling industrial level concurrent programs.

C. Results on Object Level RPS

We evaluated the usage of object level RPS on the pbzip2

benchmark. Two mutex objects were selected from the exe-
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TABLE V
OBJECT LEVEL RPS ON PBZIP2

RPS No. Time found bug

1 0.3 order violation
2 2.98 deadlock

cution profile of pbzip2, and used to create two object level

RPS with their associated schedule points. Then we use the

RPS to substitute the bigger normal set of preemption set in

the second phase of Algorithm 1.

The results are in TABLE V. With the first RPS, the bug

reported previously is spotted within 0.3 seconds, which is

much shorter than the 1.68 seconds with normal RPS (shown

in TABLE IV). While the more interesting thing is that, with

the second RPS, a deadlock bug is captured, which has not

been reported previously by any other tools.

V. RELATED WORKS

Two major areas of work are closely related to PEDAL: (1)

enforcement of schedules for bug reproduction; (2) searching

of the program space for erroneous schedules.

As for concurrency bug reproduction, LEAP [10] uses a

record-and-replay approach to reproduce bugs in Java multi-

threaded programs. ODR [11] presents a low-overhead replay

system for real world multicore applications.

There are lots of works on schedule search. CTrigger [12]

exposes the fact that real world concurrency bugs can often be

exposed with few thread interleavings. Calfuzzer [13] uses a

simple and fast race checking algorithm to get a set of racing

pairs first, and then use those pairs to make partial control

over the schedule in order to reproduce race conditions with

high probability. THRILLE [6] takes a step further and fully

controls the thread schedule and tries to generate a simplified

trace by eliminating schedule points that may not be interesting

for bug reproduction.

There are lots of works covering variant issues in con-

currency testing. Preemption sealing [14] is a technique that

selectively hides certain parts of the bug triggering part in

order to find multiple bugs. Dasarath studied the multicore

dumps to locate the root cause of concurrency bugs [15].

Researchers also tried to use some coverage related profile

to direct the process of uncovering concurrency bugs [7, 16].

IMUnit [17] present a novel approach for unit testing of

multithreaded code. It gives support for user to explicitly

annotate the schedule points in programs, which facilitates the

generation of unit test cases.

VI. CONCLUSION AND FUTURE WORKS

We proposed a profile directed concurrency analysis tech-

nique named PEDAL. It builds reduced preemption sets from

execution profiles, and uses them to guide a systematic search.

PEDAL is evaluated on several multithreaded benchmarks and

compared with existing techniques. Results show that PEDAL

is both efficient and scalable.

By using reduced preemption set to guide the schedule

search, PEDAL provides customization possibilities. Testers

could create different preemption sets according to their own

criteria, and build demand driven analyses to fit their specific

needs. This will be explored in our future works.
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