
汇报人：

大 连 理 工 大 学

2016年11月29日

Semantic Estimation for Texts in 
Software Engineering

Reporter：Xiaochen Li
Dalian University of Technology, China



2

Oscar Lab

 Ph.D. candidate at OSCAR Lab, in Dalian University of

Technology, China, under supervision with Prof. He Jiang

from 2015. OSCAR: Optimizing Software by Computation from ARtificial intelligence



3

Oscar Lab
 Mining software repositories

 API mining

 Crowd testing reports

 Code search

 Design pattern mining

 Mobile APP mining

 Program & testing

 Model checking

 Complier optimization

 Search based software engineering

 Next release problem

 Software Task Allocation

 2 Professors

 1 Associate Professor

 1 Lecturer

 7 PhD. Candidates

 17 Master Students



4

Overview

Texts in Software Engineering (SE)

 > 4,200,000 test logs / year in industry

 > 300,000 projects in GitHub

Test logs Q&A in forumCodes & Comments Bug reports

 > 5,000,000 Q&A in Stack Overflow

 > 485,000 bug reports in Eclipse Repo.



5

Overview

Texts in Software Engineering (SE)

Classify test logs

Search APIs by queries

Seek codes by 
asking questions

Read bug reports

Texts mixed of Natural Language (NL) words
and APIs or codes in Software Language (SL)



6

Overview

Semantic estimation for SE texts

 Given texts mixed natural language words and software

APIs or codes,

➢ how to estimate the similarity betw. texts?

➢ how to find salient sentences in the text?

relatedness importance



7

Overview

Semantic estimation work

 Cosine similarity+ KNN

 Analyze the failure causes

of test scripts

re
la

te
d

n
e

ss
im

p
o

rt
an

ce

 Word embedding

 Recommend API sequences

 Link API documents to Ques.

 Crowdsourcing

 Summarize bug reports

 Deep neural network

 Summarize bug reports

Shallow
Bag-of-words

Deep
Continuous spaces



8

Overview

Semantic estimation work

 Cosine similarity+ KNN

 Analyze the failure causes

of test scripts

re
la

te
d

n
e

ss
im

p
o

rt
an

ce

 Word embedding

 Recommend API sequences

 Link API documents to Ques.

 Crowdsourcing

 Summarize bug reports

 Deep neural network

 Summarize bug reports

Shallow
Bag-of-words

Deep
Continuous spaces



9

Analyze failed test scripts

Semantic estimation work

 Cosine similarity+ KNN

 Analyze the failure causes

of test scripts

1. Why do we analyze failed test scripts?
➢ Failure causes are complex
➢ Testers manually read logs to analyze
➢ Logs are lengthy and complex 

2. How do we do that?
➢ Cosine similarity
➢ KNN

3. What are the results?



10

Background

System and integration testing (SIT)

 Continuous integration increases SIT’s frequency .

➢ DevOps: faster time to market

➢ Cloud-based system: run 1,000 test scripts in 25 minutes

 Running test scripts in SIT may fail.

➢ We find 6000+ failures in a single month in one product

 Testers need to figure out the failure causes

➢ Require the stakeholders to fix them



11

Background

Test alarms in SIT

 Test scripts may fail for various causes

➢ A test alarm is an alarm to warn the test script failure

ID Type of cause Testers’ solution

C1 Obsolete test update test scripts

C2 Product code defect submit bugs to developers

C3 Configuration error correct configuration files

C4 Test script defect debug test scripts

C5 Device anomaly submit bugs to instrument suppliers

C6 Environment issue diagnose the environment

C7 Software problem ask site reliability engineers to diagnose

Test scripts

Software 
under testing

Devices

Configuration

Environment
CPU/network

Third-party 
software

Test scripts



12

The Problem

Test alarm analysis

 Analyze the cause of test alarms (test script failure) by test logs

➢ Test logs are easy to get

➢ Testers also read test logs to analyze the alarms

Test script 
fails

Test log

Test 
alarm

Algorithm

Failure 
cause

collect

Find out



13

The Problem

A test log

 Bilingual documents: English & Chinese

 Long: more than 1000 lines, more than 10GB (14,000 logs)



14

Cause Analysis Model (CAM)

Framework

 CAM’s Idea

➢ Search the test logs of historical test alarms that may have

the same failure cause with the new test log



15

Cause Analysis Model (CAM)

Test log preprocess

 Language Detection

New test log snippet with function point “AUTO UPDATE 

SCHEMA (AUS)”

E [exception happens continuously for more than 20 times] 

[2015-06-28 02:10:52.964] timed out while waiting for more data



16

Cause Analysis Model (CAM)

Test log preprocess

 Language Detection

 English NLP

➢ Tokenization,

➢ Stop words removal

(single letters, punctuation marks, and numbers ),

➢ Stemming

New test log snippet with function point “AUTO UPDATE 

SCHEMA (AUS)”

E [exception happens continuously for more than 20 times] 

[2015-06-28 02:10:52.964] timed out while waiting for more data

E [] [2015-06-28 02:10:52.964] \ timed \ out \ while \ waiting \ for

\ more \ data



17

Cause Analysis Model (CAM)

Test log preprocess

 Language Detection

 English NLP

➢ Tokenization,

➢ Stop words removal

(single letters, punctuation marks, and numbers ),

➢ Stemming

 Chinese NLP

➢ Word segmentation

New test log snippet with function point “AUTO UPDATE 

SCHEMA (AUS)”

E [exception happens continuously for more than 20 times] 

[2015-06-28 02:10:52.964] timed out while waiting for more data

E [] [2015-06-28 02:10:52.964] \ timed \ out \ while \ waiting \ for

\ more \ data

exception \ happens \ continuously \ for more than \ 20 \times



18

Cause Analysis Model (CAM)

Test log preprocess

 Language Detection

 English NLP

➢ Tokenization,

➢ Stop words removal

(single letters, punctuation marks, and numbers ),

➢ Stemming

 Chinese NLP

➢ Word segmentation

 Term Integration

New test log snippet with function point “AUTO UPDATE 

SCHEMA (AUS)”

E [exception happens continuously for more than 20 times] 

[2015-06-28 02:10:52.964] timed out while waiting for more data

exception \ happens \ continuously \ for more than \ 20 \times

exception \ happens \ continuously \ for more than \ times \

time \ while \ wait \ more \ data

E [] [2015-06-28 02:10:52.964] \ timed \ out \ while \ waiting \ for

\ more \ data

bag-of-words



19

Cause Analysis Model (CAM)

Cause prediction

 Log similarity with historical logs

➢ 2-shingling terms (successfully applied in information retrieval)

➢ TF-IDF based cosine similarity

exception \ happens \ continuously \ for more than \ times \

time \ while \ wait \ more \ data

exception happens \

happens continuously \

continuously for more than \

for more than times \

times time \

time while \

while wait \

wait more \

more data 

Logs Func. Point Simlog Cause

his3 AUS 0.586 C2

his4 AUS 0.472 C3

his1 AUS 0.322 C3

his2 AUS 0.320 C3

his5 AUS 0.134 C2



20

Cause Analysis Model (CAM)

Cause prediction

Logs Func. Point Simlog Cause

his3 AUS 0.586 C2

his4 AUS 0.472 C3

his1 AUS 0.322 C3

his2 AUS 0.320 C3

his5 AUS 0.134 C2

 Predict by k-Nearest Neighbor

➢ Case 1: the similarity of top 1 log (his3) exceeds a threshold

➢ Case 2: the similarity of top 1 log (his3) is lower than a threshold

➢ C2=0.586+0.134; C3=0.472+0.311+0.320

Logs Func. Point Simlog Cause

his3 AUS 0.586 C2

his4 AUS 0.472 C3

his1 AUS 0.322 C3

his2 AUS 0.320 C3

his5 AUS 0.134 C2

Case 1 Case 2threshold=0.5 threshold=0.6



21

Experimental Setup

Evaluation Method

Baseline Algorithms

 Two industrial testing projects at Huawei-Tech Inc.

➢ 14,000 test logs of failed test scripts, manually labeled

 Evaluation method

➢ Accuracy、Area-Under-Curve

➢ Running time, memory consumption

➢ Incremental framework (simulate testers’ daily work)

 Baseline Algorithms: bag-of-words

➢ Lazy Associative Classifier (LAC)

➢ Best First Tree (BFT).

➢ Topic Model (TM)



22

Experimental Results

Overall performance

 How does CAM perform against baseline algorithms?

➢ Outperform the baseline algorithms (p<0.05)

➢ Superior over the majority of cause types

➢ Resources saving, take about 0.1s and less than 4GB memory to

process a test log.

Fig. 1 Accuracy

Fig. 2 Comparison on computation resources



23

Experimental Results

Evaluation in real scenario

 How does CAM perform in a real development scenario?

➢ 72% accuracy after running for two months.

 Feedback

➢ CAM is better than manually building regular expressions.

➢ Actually, I will not believe in an automatic tool. However,

after presenting the historical test logs, I can quickly decide

whether the prediction is correct. CAM accelerates my work.

➢ Suggestions: labeling the defect-related snippets, provide

suggestions on how to fix defects



24

Overview

Semantic estimation work

 Cosine similarity+ KNN

 Analyze the failure causes

of test scripts

re
la

te
d

n
e

ss
im

p
o

rt
an

ce

 Word embedding

 Recommend API sequences

 Link API documents to Ques.

 Crowdsourcing

 Summarize bug reports

 Deep neural network

 Summarize bug reports

Shallow
Bag-of-words

Deep
Continuous spaces



25

Word2API

Semantic estimation work

 Word embedding

 Recommend API sequences

 Link API documents to Ques.

1. Why do we need word embedding?
➢ Relatedness between words and APIs
➢ Better than bag-of-words

2. How do we do that?
➢ Collect large documents having words & APIs
➢ Word embedding

3. What are the results?



26

Background

Semantic gaps

 Gaps between natural languages and APIs

➢ High-level vs. Low-level

➢ For example: read a file

 java.io.File#new,

 java.io.FileReader#new,

 java.io.BufferedReader#new,

 java.io.BufferedReader#readLine



27

Word Embedding

Words into low-dimension vectors

 Easy to implement

➢ Prepare a dataset

➢ Word2Vec Tool

➢ Run CBOW or Skip-gram



28

Word Embedding

Continuous Bag-of-Words model CBOW

 Minimize differences between output and wx



29

Word Embedding

Challenge

 Acquisition challenge

➢ how to collect large numbers of documents that contain

diversity words and APIs

➢ org.w3c.dom.views.DocumentView#getDefaultView()

➢ java.x.swing.text.View.ComponentView#new()



30

Word Embedding

Challenge

 Alignment challenge

➢ how to make semantically related words and APIs co-occur in

a fixed window size



31

Word Embedding

Word2API

 Collect source codes and APIs from GitHub (acquisition)

 Pre-process words & APIs with NLP and Abstract Syntax Trees

 Shuffle words and APIs (alignment)

 Run Word Embedding Modeling



32

Word2API

Data acquisition

 GitHub from 2008-2016

➢ 391,690 Java projects

➢ 31,211,030 source code files

➢ Many words and APIs that

developers used



33

Word2API

Word-API Tuples Construction

 NLP

 tokenization,

 Stop word removal,

 Stemming

open a file and output the contents

Word sequence
<open, file, output, content>



34

Word2API

Word-API Tuples Construction

 AST (Abstract Syntax Trees)

 Finding API fully qualified name in the text

API Sequence
<java.io.File#new, 

java.io.FileReader#new, 
java.io.BufferedReader, 
java.lang.String#new, 

java.io.BufferedReader#readLine,
….>



35

Word2API

Word-API Tuples Construction

 13,883,230 tuples

<word1, word2, …, API1, API2…>



36

Word2API

Training Set Creation

 13,883,230 tuples

<word1, word2, word3, word4, word5,…, API1, API2, API3…>



37

Word2API

Training Set Creation

 The underlying reason of the above

procedure is that if a word and an

API are semantically related, they

tend to co-occur in the same tuple.

After shuffling, the related words

and APIs will have higher chances

to locate in the same window than

unrelated ones when the corpus is a

large

 138,832,300 shuffled results

 >30 GigaByte.



38

Word2API

Word Embedding Modeling

 87,270 word vectors

 37,431 API vectors

 Semantic estimation with these vectors

 Word-API similarity

 Words-APIs similarity



39

Application 1

Query augmentation

 For API Sequences Recommendation

Query API Seq.

These sequences are retrieved

from source code corpus, e.g.

GitHub corpus.

“read a file”



40

Application 1

Query augmentation algorithms

 Augment queries into API vectors

Query API Seq.

API vector

 SWIM: Word Alignment based Augmentation

 CodeHow: API Description based Augmentation

 Word2API based Augmentation



41

Application 1

Result

Position of first correct API seq. : lower is better
Ratio of correct API seq.: higher is better



42

Application 2

API documents linking

 Link API documents with Stack Overflow questions

➢ Question: "Are there any good CachedRowSet implementations

other than the proprietary Sun one?”

Linkage



43

Application 2

Word2API for API Doc. Linking

 Collect words in the question

➢ are there any good CachedRowSet implementations other

than the proprietary Sun one

 Collect APIs in API documents

➢ javax.sql.rowset.RowSetProvider#newFactory

➢ javax.sql.rowset.RowSetProvider#createCachedRowSet

➢ ……



44

Application 2

Results

 MAP: Mean Average Precision

 MRR: Mean Reciprocal Rank

 Algorithms

➢ VSM: bag-of-words

➢ Embedding: previous work

➢ VSM+XXX: combined

1. Word2API can bridge gaps betw. NL and SL
2. Word Embedding is better that bag-of words here
3. We can combine different techniques for better results



45

Conclusion

Semantic estimation work

 Cosine similarity+ KNN

 Analyze the failure causes

of test scripts

re
la

te
d

n
e

ss
im

p
o

rt
an

ce

 Word embedding

 Recommend API sequences

 Link API documents to Ques.

 Crowdsourcing

 Summarize bug reports

 Deep neural network

 Summarize bug reports

Shallow
Bag-of-words

Deep
Continuous spaces



Thanks
Reporter：Xiaochen Li

Dalian University of Technology, China


