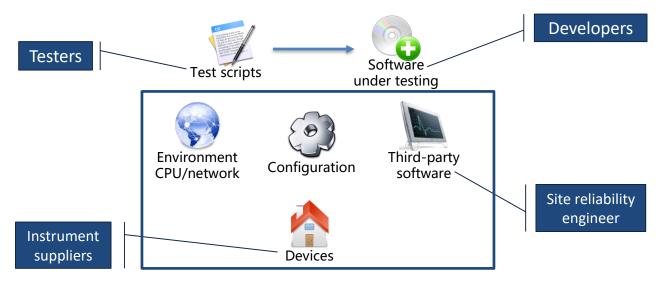
The 39th International Conference on Software Engineering

What Causes My Test Alarm? Automatic Cause Analysis for Test Alarms in System and Integration Testing

Authors: He Jiang¹, Xiaochen Li¹, Zijiang Yang², Jifeng Xuan³ ¹Dalian University of Technology, ²Western Michigan University, ³Wuhan University

System and integration testing (SIT)


- Continuous integration increases SIT's frequency.
 - > DevOps: faster time to market
 - Cloud-based system: run 1,000 test scripts in 25 minutes
- Running test scripts in SIT may fail.
 - > We find 6000+ failures in a single month in one product
- Testers need to figure out the failure causes
 - Require the stakeholders to fix them

Background

Test software in SIT

- To test software
 - > Many artifacts and stakeholders are involved
 - > Any artifact may have defects

Background

Test alarms in SIT

- Test scripts may fail for various causes
 - > A test alarm is an alarm to warn the test script failure

ID	Type of cause	Testers' solution	
C1	Obsolete test	update test scripts	Test scripts
C2	Product code defect	submit bugs to developers	Software Sunder testing
C3	Configuration error	correct configuration files	Configuration
C4	Test script defect	debug test scripts	Test scripts
C5	Device anomaly	submit bugs to instrument suppliers	Devices
C6	Environment issue	diagnose the environment	Environment CPU/network
C7	Software problem	ask site reliability engineers to diagnose	Third-party software

Related Work

lab.Oscar

Software

under testing

Software

under testing

Test scripts

Test scripts

Test scripts

Classify test alarms (academic)

- Product code defect or Test script defect [Rogstad et al. 15]
 - For database applications
- Product code defect or Obsolete test [Hao et. al. 13]
 - Unit testing
 - First decision tree
- Product code defect or others [Herzig & Nagappan 15]
 - Association rules / Binary Classification

REF:

- 1. E. Rogstad, and L. C. Briand, Clustering deviations for black box regression testing of database applications. IEEE Trans. on Reliability
- 2. D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang. Is this a bug or an obsolete test? In ECOOP
- 3. K. Herzig and N. Nagappan. Empirically detecting false test alarms using association rules. ICSE, 2015

Related Work

Lab.Oscar

Classify test alarms (academic)

- Product code defect or Test script defect [Rogstad et al. 15]
 - For database applications
 For database applications
 Fest scripts
 Product code defect or Obsolete test [Hao et. al. 13]
 Unit testing
 - First decision tree
- Product code defect or othe
 - Association rules / Binary Q

The causes are more complex than binary classification

Test scripts

REF:

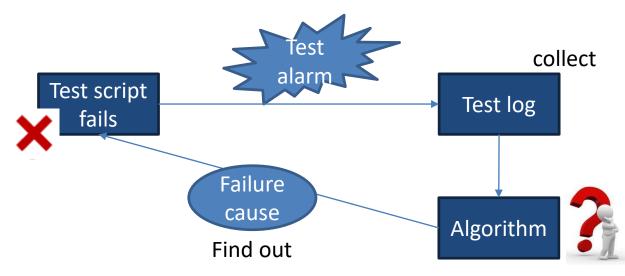
- 1. E. Rogstad, and L. C. Briand, Clustering deviations for black box regression testing of database applications. IEEE Trans. on Reliability
- 2. D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang. Is this a bug or an obsolete test? In ECOOP
- 3. K. Herzig and N. Nagappan. Empirically detecting false test alarms using association rules. ICSE, 2015

Related Work

Classify test alarms (industry)

- A survey to industry testers
 - > They collect test logs of failed test scripts
 - > They manually build regular expressions for classification
 - Accuracy is 20%-30% over distinct projects

#	Regular expression	Cause type	Severity
1	topomatch fail	Environment issue	normal
2	Info: GEN_ERROR_FILE_OPEN	Environment issue	normal
3	Error: The current mode is unframed mode. Please delete it first	Test script defect	normal
4	Error: Operation abnormal	Product code defect	severe


The Problem

Tab.Oscar

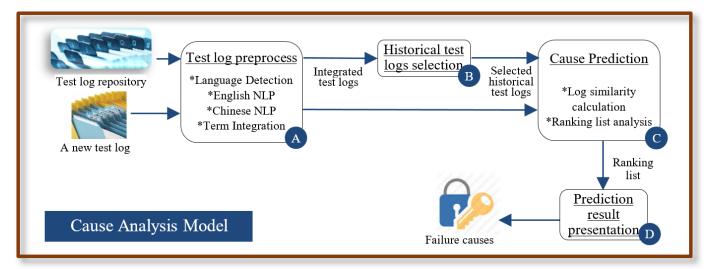
Test alarm analysis

- Analyze the cause of test alarms
 - > Test logs are easy to get
 - Testers also read test logs to analyze and anarms

Classification before bug location, bug fixing etc.

The Problem

A test log


- Bilingual documents: English & Chinese
- Long: more than 1000 lines, more than 10GB (14,000 logs)

ab.Oscar

Framework

- CAM's Idea
 - Search the test logs of historical test alarms that may have the same failure cause with the new test log

An example snippet

- A test log snippet of function point "AUTO UPDATE SCHEMA" (AUS)
 - > Each test script is associated with a func. point
 - > Func. points are functional requirements for the software
 - A test script verifying function "configure network proxy" may add "NETCONF_PROXY_FUNC" as the func. point

New test log snippet with function point "AUTO UPDATE SCHEMA (AUS)" E [exception happens continuously for more than 20 times] [2015-06-28 02:10:52.964] timed out while waiting for more data

Test log preprocess

• Language Detection

New test log snippet with function point "AUTO UPDATE SCHEMA (AUS)"

E [exception happens continuously for more than 20 times] [2015-06-28 02:10:52.964] timed out while waiting for more data

Test log preprocess

- Language Detection
- English NLP
 - > Tokenization,
 - Stop words removal

New test log snippet with function point "AUTO UPDATE SCHEMA (AUS)"

E [exception happens continuously for more than 20 times] [2015-06-28 02:10:52.964] timed out while waiting for more data

E [] [2015-06-28 02:10:52.964] \ time<mark>d</mark> \ out \ while \ waiting \ for \ more \ data

(single letters, punctuation marks, and numbers),

Stemming

Test log preprocess

- Language Detection
- English NLP
 - > Tokenization,
 - Stop words removal

New test log snippet with function point "AUTO UPDATE SCHEMA (AUS)"

E [exception happens continuously for more than 20 times] [2015-06-28 02:10:52.964] timed out while waiting for more data

E [] [2015-06-28 02:10:52.964] \ time<mark>d</mark> \ out \ while \ waiting \ for \ more \ data

(single letters, punctuation marks, and numbers),

- Stemming
- Chinese NLP

Word segmentation

Test log preprocess

- Language Detection
- English NLP
 - > Tokenization,
 - Stop words removal

New test log snippet with function point "AUTO UPDATE SCHEMA (AUS)"

E [exception happens continuously for more than 20 times] [2015-06-28 02:10:52.964] timed out while waiting for more data

E [] [2015-06-28 02:10:52.964] \ time<mark>d</mark> \ out \ while \ waiting \ for \ more \ data

(single letters, punctuation marks, and numbers),

- Stemming
- Chinese NLP
 - Word segmentation
- Term Integration

exception \ happens \ continuously \ for more than \ 20 \times

exception \ happens \ continuously \ for more than \ times \ time \ while \ wait \ more \ data

Historical test log selection

- Select historical test logs by func. point
 - > Select all, if no matched func. point

New test log snippet with function point "AUTO UPDATE SCHEMA" (AUS) E [exception happens continuously for more than 20 times] [2015-06-28 02:10:52.964] timed out while waiting for more data

Logs	Func. Point	Cause
his3	AUS	C2
his4	AUS	С3
his1	AUS	С3
his2	AUS	С3
his5	AUS	C2
his6	NPF	C1
his7	NPF	C3

Cause prediction

- Log similarity with selected logs
 - > 2-shingling terms (successfully applied in information retrieval)
 - TF-IDF based cosine similarity

**exception \ happens \ continuously \ for more than \ times ** time \ while \ wait \ more \ data

exception happens \
happens continuously \
continuously for more than \
for more than times \
times time \
time while \
while wait \
wait more \
more data

Logs	Func. Point	Sim _{log}	Cause
his3	AUS	0.586	C2
his4	AUS	0.472	С3
his1	AUS	0.322	С3
his2	AUS	0.320	С3
his5	AUS	0.134	C2

Cause prediction

- Predict by k-Nearest Neighbor
 - > Case 1: the similarity of top 1 log (his3) exceeds a threshold
 - Case 2: the similarity of top 1 log (his3) is lower than a threshold
 - C2=0.586+0.134; C3=0.472+0.311+0.320

	Case 1	thres	shold=0.5	5
Logs	Func. Point	Sim _{log}	Cause	
his3	AUS	0.586	C2	
his4	AUS	0.472	C3	
his1	AUS	0.322	C3	
his2	AUS	0.320	С3	
his5	AUS	0.134	C2	

Case	2 three	shold=0.	.6
Func. Point	Sim _{log}	Cause	
AUS	0.586	C2	-
AUS	0.472	C3	-
AUS	0.322	C3	-
AUS	0.320	C3	-
AUS	0.134	C2	-
	Func. Point AUS AUS AUS AUS	Func. Point Sim _{log} AUS 0.586 AUS 0.472 AUS 0.322 AUS 0.320	Func. Point Sim _{log} Cause AUS 0.586 C2 AUS 0.472 C3 AUS 0.322 C3 AUS 0.320 C3

Prediction result presentation

- Present differences between the new log and the most similar test log of the same cause
 - > Testers are familiar with historical test logs
 - > Comparison may be more easier

new test log

cd/opt/VNFP/0 -bash: cd imageVMNPSO-001 assertion fails

historical test log

rm /opt/VNFP/0 imageVMNPSO-001 assertion fails

Experimental Setup

Dataset

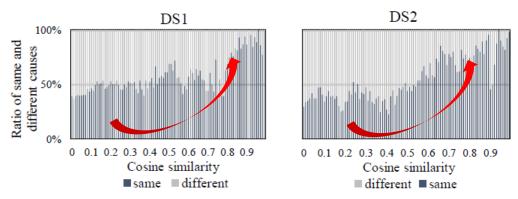
- Two industrial testing projects at Huawei-Tech Inc.
- Logs about one month per project
- More than 14,000 test logs

• Focus on

one failure cause per test log

#	Dataset Info	D	S1	D	82	
1	# Test logs	76	563	69	77	
2	Size	4.7	2GB	6.00	6GB	
3	Time Frame	June 1st – Ju	ly 30th, 2015		Nov. 16th, 15	
4	# Testing day	40	day	22	day	
5	# Test logs per day	1	92	317		
6	# Avg. lines	942 lines		1375 lines		
7	# Avg. test steps	247 test steps		344 te	st steps	
8	# Obsolete test (C1)	1185	15.46%	*	*	
9	# Product code defect (C2)	4459	58.19%	1963	28.14%	
10	# Configuration error (C3)	761	9.93%	345	4.94%	
11	# Test script defect (C4)	892	11.64%	3259	46.71%	
12	# Device anomaly (C5)	335	4.37%	298	4.27%	
13	# Environment issue (C6)	19	0.28%	168	2.41%	
14	# Software problem (C7)	12	0.17%	944	13.53%	
15	# Avg. type of causes per day	3.85 p	oer day	3.86 p	er day	

Experimental Setup



- Evaluation method
 - Accuracy、Area-Under-Curve
 - Running time, memory consumption
 - Incremental framework (simulate testers' daily work)
- Baseline Algorithms: bag-of-words
 - Lazy Associative Classifier (LAC)
 - Best First Tree (BFT).
 - Topic Model (TM)

Evaluate CAM's hypothesis

• Are the test logs with the same causes more similar than those with different causes ?

- As the similarity grows, more and more test logs are in the same failure cause
- > Test logs with the same causes are more similar

Overall performance

• How does CAM perform against baseline algorithms?

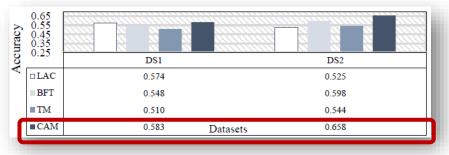


Fig. 1 Accuracy for algorithms on two datasets

Outperform the baseline algorithms (p<0.05)

Overall performance

• How does CAM perform against baseline algorithms?

Algorit	Cause hm	C1	C2	C3	C4	C5	C6	C 7
	LAC	0.61	0.57	0.48	0.52	0.50	0.33	0.51
DCI	BFT	0.73	0.65	0.66	0.60	0.77	0.40	0.70
DS1	TM	0.68	0.67	0.56	0.58	0.62	0.50	0.54
	CAM	0.77	0.71	0.59	0.61	0.62	0.50	0.62
	LAC	-	0.60	0.53	0.64	0.63	0.83	0.73
DCO	BFT	-	0.67	0.65	0.70	0.60	0.77	0.86
DS2	TM	-	0.62	0.51	0.68	0.52	0.77	0.78
	CAM	-	0.68	0.66	0.81	0.51	0.74	0.87

Fig. 2 Comparison on AUC

- Outperform the baseline algorithms (p<0.05)
- Superior over the majority of cause types

Overall performance

• How does CAM perform against baseline algorithms?

		Memory							
Algorithm	DS1 (73	56 test	logs)	DS2 (DS2 (6557 test logs)				
	Training	Test	Total	Training	Test	Total	DS1	DS2	
LAC	11.4	1	12.4	3.6	1.4	5	3 GB	3 GB	
BFT	208.6	0.3	208.9	46.8	0.2	47	22 GB	20 GB	
TM	75.1	2.8	77.9	142	4.3	146.3	8 GB	5 GB	
CAM	0	6.9	6.9	0	14.4	14.4	4 GB	4 GB	

Fig. 3 Comparison on computation resources consumption

- Outperform the baseline algorithms (p<0.05)
- Superior over the majority of cause types
- Resources saving, take about 0.1s and less than 4GB memory to process a test log.

Historical test log selection

- How does historical test log selection work?
 - CAM-FP: CAM without historical test log selection

	Algorithm		DS1		DS2			
	Algorithm	Accuracy	Total time	Memory	Accuracy	Total time	Memory	
Γ	CAM-FP	0.555	39.2 min	4GB	0.634	46.4 min	4GB	
	CAM	0.583	6.9 min	4GB	0.658	14.4 min	4GB	

Fig. 4 Accuracy, total time, and memory for CAM and CAM-FP

Selection reduces noisy and shortens running time

Historical test log selection

- How does historical test log selection work?
 - CAM-FP: CAM without historical test log selection

Algorithm		D81					DS2				
Algorithm	Accuracy	Tota	<u> </u>	-	-		.	1		1	1
CAM-FP	0.555	39.	Algorith	Cause	C1	C2	C3	C4	C5	C6	C 7
CAM	0.583	6.9	Dat	CAM-FP	0.73	0.70	0.59	0.57	0.59	0.50	0.62
			DS1	CAM	0.77	0.71	0.59	0.61	0.62	0.50	0.62
Fig. 4 Accura			DS2	CAM-FP	-	0.67	0.76	0.76	0.52	0.67	0.84
	Fig. 4 Accura for		D82	CAM	-	0.68	0.66	0.81	0.51	0.74	0.87

Fig. 5 AUC values for CAM and CAM-FP

- Selection reduces noisy and shortens running time
- > Without selection, CAM-FP still achieves competitive performance

Evaluation in real scenario

- How does CAM perform in a real development scenario?
 - > 72% accuracy after running for two months.
- Feedback
 - CAM is better than manually building regular expressions.
 - Actually, I will not believe in an automatic tool. However, after presenting the historical test logs, I can quickly decide whether the prediction is correct. CAM accelerates my work.
 - Suggestions: labeling the defect-related snippets, provide suggestions on how to fix defects

Conclusion

In this paper, we

- Propose a new approach to address automatically analyzing the test alarm causes in SIT.
- Construct two industrial datasets [<u>http://oscar-lab.org/cam/</u>].
 The failure causes are manually labeled and verified by testers.
- Conduct a series of experiments to investigate CAM.
 CAM is both effective and efficient.
- Deploy and evaluate CAM in a real development scenario.

Thanks

What Causes My Test Alarm? Automatic Cause Analysis for Test Alarms in System and Integration Testing

Reporter: Xiaochen Li Dalian University of Technology, China

Authors: He Jiang¹, Xiaochen Li¹, Zijiang Yang², Jifeng Xuan³ ¹Dalian University of Technology, ²Western Michigan University, ³Wuhan University

(梅纳 on) 自強不息 厚低笔学 知川合一