
汇报人：

大 连 理 工 大 学

2016年11月29日

IEEE/ACM International Conference on Program Comprehension 2018

Unsupervised Deep Bug Report
Summarization

Authors: Xiaochen Li1, He Jiang1, Dong Liu1, Zhilei Ren1, Ge Li2
1Dalian University of Technology, 2Peking University

2

BACKGROUND

Summarize software artifacts

The increasing software
artifacts motivate a large
body of work in software
artifacts summarization

Over
80 million
projects

Over
3 million

applications

Over
5 million

posts

Source code summarization
 Haiduc et al. 2010
 Moreno et al. 2013
 Sridhara et al. 2010
 McBurney and McMillan 2011

Source code comment summarization
 Rastkar et al. 2011
 Ying and Robillard 2013

Development activity summarization
 Treude et al. 2015

Bug report summarization
 Rastkarude et al. 2014
 Czarnecki et al. 2012
 Mani et al. 2012
 Jiang et al. 2017

3

BACKGROUND

Bug reports are increasing

A single bug repository, e.g., Eclipse Bugzilla repository,

has already collected over 485,000 historical bug reports.

4

BACKGROUND

Stakeholders refer to historical bug reports

S
o

ft
w

. U
se

rs

Te
st

e
rs

Fix newly reported

bugs by referring to

similar historical bug

reports for

possible solutions

Wade through

related bug reports

before submitting a

new one to avoid

duplications

D
ev

el
o

p
er

s

5

BACKGROUND

Stakeholders refer to historical bug reports

S
o

ft
w

. U
se

rs

Te
st

e
rs

Fix newly reported

bugs by referring to

similar historical bug

reports for

possible solutions

Wade through

related bug reports

before submitting a

new one to avoid

duplications

D
ev

el
o

p
er

s

Need to read 600 sentences (avg.), if

a user refers to only 10 historical bug reports

6

BACKGROUND

Summarize bug reports

Extracting and Highlighting
informative sentences (summary)
from description and comments

1. Open a large grayscale image of your choice
(e.g. ….
2. Use “Tools/Color Tools/Threshold” to apply
some threshold choosen.
3. Now you have a 8bit grayscale image, which acturally
consists only of color values “0” and color values
“255”. ….
……………

Xuan Baldauf 2005-03-18 14:46:31 UTC Description

7

MOTIVATION

Bug reports are special

Conversation-based text

with frequent

evaluation behaviors

Consist of different

sentence types

Combined with many

predefined fields

BUG
REPORTS
are

Bug report summarization
 Rastkarude et al. 2014
 Czarnecki et al. 2012
 Mani et al. 2012
 Jiang et al. 2017

8

MOTIVATION

1. Conversation-based text with frequent evaluation behaviors

The 'mono' palette option doesn't even bother
to star……

Adam D. Moss 2005-03-20 12:26:09 UTC Comment 10

<quote> The 'mono' palette option doesn't ……
I don't think that this operation is so rare, …

Xuân Baldauf 2005-03-20 13:06:07 UTC Comment 11

The evaluated sentences are
frequently discussed and

important

Be Evaluated

9

MOTIVATION

2. Consist of different sentence types

• Natural language sentences by
the reporter;

• Natural language sentences by
the participators;

• Software language sentences
(code snippets and system
messages).

reporter’s sentences >
participators’ sentences >

software sentences
(`>’means more informative)

10

MOTIVATION

3. Combined with many predefined fields

Product: GIMP

Component: General

Version: 2.2.x

Hardware: Other All

Sentences contain words in
the predefined fields may

be informative

11

MOTIVATION

Bug reports are special

Conversation-based text

with frequent

evaluation behaviors

Consist of different

sentence types

Combined with many

predefined fields

Summarize bug
reports by
considering the
special
characteristics

12

FRAMEWORK

The framework

Similar
Bug

Reports

New Bug
Report

Use the model to
calculate the weight of
words in the new bug

report

Calculate each
sentence score

by the word
weights

Generate
summary

according to
the sentence

scores

Use the new bug
reports and

similar ones to
train a machine
learning model

New Bug
Report

A

B C

D

13

FRAMEWORK

We select AutoEncoder as the machine learning model

The output layer is defined as
a pattern to reconstruct the
input layer

The hidden state provides a
compressed representation of
the input layer

The weights of words can be measured

by calculating how much information of

a word is reserved in the hidden states

A typical architecture
of AutoEncoder

Input layer

Output layer

Hidden
states/layersencoding

decoding

Why AutoEncoder?

14

FRAMEWORK

The inputs are word vectors of bug reports

0 0 … 0S1

0 0 … 1S6

1 0 … 1S7

3 4 … 3S8

3 4 … 3S9

0 3 … 2S10

0 2 … 1S11

0 1 … 2S12

New
Bug

Report

Similar
Bug

Reports

Transform
each

sentence
into a
vector

15

FRAMEWORK

The inputs are word vectors of bug reports

Conversation-based text with
frequent evaluation behaviors

0 0 … 0S1

0 0 … 1S6

1 0 … 1S7

3 4 … 3S8

3 4 … 3S9

0 3 … 2S10

0 2 … 1S11

0 1 … 2S12

Evaluation Enhancement

S9

evaluates
S8, if cosine
similarity
(S8, S9) >
threshold
(0.9).

New
Bug

Report

Similar
Bug

Reports

16

FRAMEWORK

The inputs are word vectors of bug reports

0 0 … 0S1

0 0 … 1S6

1 0 … 1S7

6 8 … 6S8

0 0 … 0S9

0 3 … 2S10

0 2 … 1S11

0 1 … 2S12

Evaluation Enhancement

Conversation-based text with
frequent evaluation behaviors

S9

evaluates
S8, if cosine
similarity
(S8, S9) >
threshold
(0.9).

New
Bug

Report

Similar
Bug

Reports

17

FRAMEWORK

Encode vectors according to their importance

Consist of different
sentence types

1 0 … 2

0 6 … 5

6 8 … 6

S6+ S7

S1+ S9+ S10

S8+ S11+ S12

Software Vector

Participator Vector

Reporter Vector

Inputs

reporter’s sentences > participators’

sentences > software sentences

E1 Participator Vector

Reporter Vector

Encode less important sentences (software vector) three times to
reduce their influence.

Hidden states = E3(E2(E1(Software Vector)))

E2

E3

Hidden states

Software Vector

18

FRAMEWORK

Initialize the network by predefined fields

Combined with many predefined fields

Randomly initialize

the network

parameters, e.g., E1,

E2, E3, and then

maximize some

parameters if it

connects a word in

the predefined

fields (the red

element).

Participator Vector

Reporter Vector

Software Vector

Stepped AutoEncoder

E1

E2

E3

19

FRAMEWORK

Revisit the framework (DeepSum)

Similar
Bug

Reports

New
Bug

Report

Participator Vector

Reporter Vector

Software Vector

E1

E2

E3

A. train a machine
learning model

B. calculate the weight
of words by the trained
parameters, e.g., E1, E2, E3,
E4, E5.

Weight of wordi =
E3(E2(E1(wordi in software vector)))
+ E3(E4(wordi in participator vector))
+ E5(wordi in reporter vector))

E1

E2

E3 E5

E4

wordi in software vector

in participator vector

in reporter vector

New Bug
Report

20

FRAMEWORK

Revisit the framework (DeepSum)

C. calculate each sentence
score. sentence score =

𝒘𝒐𝒓𝒅 𝒘𝒆𝒊𝒈𝒉𝒕 ∗ 𝒘𝒐𝒓𝒅 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚

D. generate summary, select a set
of sentences sselect by:

(1) maximizing the total sentence
score of sselect;

(2) total length of sselect< a length
limitation (25% length of the
bug report)

0 0 … 0S1

0 0 … 1S6

1 0 … 1S7

6 8 … 6S8

0 0 … 0S9

0 6 … 5S10

0 0 … 0S11

0 0 … 0S12

We generate a summary of the new
bug report by dynamic programing.
The summary is about ¼ length of
the new bug report and has a high
total sentence score.

21

EVALUATION

Evaluate with six metrics over two data sets.

⚫ Evaluation metrics include precision, recall, F-score,
pyramid, R1, R2

⚫ Data sets SDS and ADS with 36+96 manually annotated bug
reports

22

EVALUATION

Influence on bug report characteristics

⚫ A: evaluation enhancement: conversation-based text with frequent evaluation behaviors
⚫ B: predefined fields enhancement: combined with many predefined fields

Remove a
module (do not
consider this
characteristic)

Both the characteristics have positive influence on
summarizing bug reports. DeepSum successfully integrates
these characteristics to summarize bug reports.

23

EVALUATION

Influence on calculating word weights with stepped AutoEncoder

⚫ TF Strategy: the word weights are the same as the Term Frequency in the new bug report
⚫ AE Strategy: calculating word weights with standard AutoEncoder, not the stepped one.

DeepSum’s word weighting strategy (consider different
sentence types) outperforms the alternatives, i.e., TF
strategy and AE strategy.

24

EVALUATION

We compare DeepSum against algorithms in previous studies

DeepSum shows promising
performance for
summarizing bug reports
over distinct evaluation
metrics.

Bug report summarization
 Rastkarude et al. 2014
 Czarnecki et al. 2012
 Mani et al. 2012
 Jiang et al. 2017

25

CONCLUSION AND FUTURE WORK

Conclusion
⚫ We propose an unsupervised deep learning algorithm for bug

report summarization.
⚫ Our model fully leverages the characteristics of bug reports.
⚫ Experiments over two public bug report datasets show that our

model outperforms the comparative algorithms by adopting
domain-specific characteristics.

Future Work
⚫ Investigate whether automatic bug report summarization is

useful in a real developing scenario.
⚫ Construct large bug report data sets to evaluate different models.

Unsupervised Deep Bug Report
Summarization

Thanks
Reporter：Xiaochen Li

Dalian University of Technology, China

Authors: Xiaochen Li1, He Jiang1, Dong Liu1, Zhilei Ren1, Ge Li2
1Dalian University of Technology, 2Peking University

