
How are Issue Units Linked?
Empirical Study on the Linking Behavior in GitHub

Lisha Li1, Zhilei Ren1, Xiaochen Li1, Weiqin Zou2, He Jiang1
1School of Software, Dalian University of Technology, Dalian, China

2State Key Laboratory for Novel Software Technology, Nanjing University, China
{leelisa, li1989}@mail.dlut.edu.cn, {zren, jianghe}@dlut.edu.cn, wqzou@smail.nju.edu.cn

Abstract—Issue reports and Pull Requests (PRs) are two
important kinds of artifacts of software projects in GitHub. It is
common for developers to leave explicit links in issues/PRs that
refer to the other issues/PRs during discussions. Existing studies
have demonstrated the value of such links in identifying complex
bugs and duplicate issue reports. However, there are no broad
examinations of why developers leave links within issues/PRs
and the potential impact of such links on software development.
Without such knowledge, practitioners and researchers may miss
various opportunities to develop practical techniques for better
solving bug-fixing or feature implementation related tasks. To
fill this gap, we conducted the first empirical study to explore
the characteristics of a large number of links within 642,281
issues/PRs of 16,584 popular (>50 stars) Python projects in
GitHub. Specifically, we first constructed an Issue Unit Network
(IUN, we refer to issue reports or PRs as issue units) by making
use of the links between issue units. Then, we manually checked a
sample of 1,384 links in the IUN and concluded six major kinds
of linking relationships between issue units. For each kind of
linking relationships, we presented some common patterns that
developers usually adopted while linking issue units. By further
analyzing as many as 423,503 links that match these common
patterns, we found several interesting findings which indicate
potential research directions in the future, including detecting
cross-project duplicate issue reports, using IUN to help better
identify influential projects and core issue reports.

Index Terms—issue units, linking Behavior, issues and pull
requests, empirical study, software maintenance

I. INTRODUCTION

Issue reports and Pull Requests (PRs) are two important
kinds of artifacts of software projects on GitHub [1], [2]. Issue
reports are used to record software bugs, required features
and any problems encountered in software development and
maintenance [3], while PRs are designed to document the code
changes and bug fixing patches for software bugs [4]. Till to
2017, more than 100 million issue reports or PRs have been
submitted to GitHub [5]. Such a large number of issues/PRs
contains a large amount of knowledge about different projects,
and thus are commonly referred by developers when they
handle newly submitted issues/PRs. Specifically, developers
usually leave explicit links (e.g., hyperlinks) in issues/PRs to
link relevant issues/PRs together [6].

Existing studies have demonstrated the potential value of
such links in identifying complex bugs across projects [6]
and detecting duplicate bug reports1 [7]. However, there are

1Issue reports which concern software bugs are usually called bug reports.

no broad examinations of why developers leave links within
issues/PRs and what potential impact such links have on
software development. Without such knowledge, practitioners
and researchers may miss various opportunities to develop
practical techniques that can help developers better perform
bug-fixing or feature implementation related tasks. To fill this
gap, we conducted the first large-scale study to explore the
characteristics of those links developers left in issues/PRs.

Specifically, we first identified 957,132 links from 642,281
issues/PRs from 16,584 Python projects with more than 50
stars in GitHub. For simplicity, in this paper, we refer either
issue report or pull request as an issue unit. Based on the
links between these issue units, we construct an Issue Unit
Network (IUN) to explore the characteristics of developers’
linking behavior.

Then, we randomly sampled 1,384 links from the IUN
and manually analyzed the relationships of the linked issue
units. We found that there are six major kinds of relation-
ships between issue units, namely dependent relationship,
duplicate relationship, relevant relationship, referenced rela-
tionship, fixed relationship, and enhanced relationship. These
relationships well explained for what reasons developers tend
to explicitly link issue units. To dig deeper into developers’
linking behavior, for each kind of relationships, we further
summarized some common patterns which developers fol-
lowed while linking issue units, e.g., one common pattern
“duplicate of #Num” for duplicate relationship.

At last, we did a large-scale analysis on 423,503 links
that match those common patterns and explored the influence
of such links on software development. Some interesting
findings can be found in Table I. Specifically, we found that:
(1) IUN is an indicator in identifying influential software
projects and high-priority issue reports, (2) 7.76% issue units’
resolutions heavily depend on the resolutions of other issue
units within or across projects, which indicates the importance
of developing a mechanism (e.g., by automatically identi-
fying such dependency) to increase developers’ awareness
of these issue units while resolving relevant problems; (3)
5.97% duplicate relationship happens across projects, which
implies a promising direction in detecting duplicates across
projects; (4) 54.20% enhanced relationship happens between
pull requests. The main reasons to enhance pull requests are
the incompleteness of logs, documentation, and test cases. The
enhanced relationship between pull requests provides good

TABLE I: Findings on IUN and their implications.

Overview of Linking Behavior Implications
F1 More than 27% (27.48%) of issue units contain links that refer to other

issue units. For those issue units, each issue unit on average has 1.49
links.

Linking issue units is a common practice developers adopted when
conducting issue units related tasks.

F2 The in-degree of a project is a potential indicator of the project’s
influence: The correlation coefficient between a project’s in-degree and
the number of projects affected by the project is 0.62.

It would be valuable for software platforms like GitHub to identify key
activities in high in-degree projects, and then notify any other projects
which may be affected by these key activities.

Reasons for Linking Behavior Implications
F3 There are mainly six kinds of relationships between issue units, includ-

ing dependent relationship, duplicate relationship, relevant relationship,
referenced relationship, fixed relationship and enhanced relationship.

The pervasiveness of these relationships between issue units indicates
that it would be worthwhile to develop techniques that can automatically
link issue units based on the concluded relationship categories.

F4 7.76% issue units depend on other issue units, which means they can
only be fully fixed after the dependent issue units are fixed first.

Some efforts could be made to develop a mechanism that can au-
tomatically identify dependent relationship between issue units. Such
a mechanism may greatly help developers in fixing issue units of
dependent relationships.

F5 40.54% issue units were marked as “duplicate” in more than one day.
Notably, 27.96% of issue units were marked as “duplicate” after 10 days.
Among those duplicate issue units, 40.97% are duplicate pull requests.

To avoid redundant work in fixing the same problems, it would be
valuable to detect both duplicate issue reports and pull requests in
practice.

F6 5.97% duplicate relationship happens across projects. It would be a promising research direction to detect duplicate issue units
across projects.

F7 Among referenced links, 63.04% links directed developers to previous
comments or discussions that provide additional information for current
issue units.

Our results verified that historical issue units indeed contain tremendous
knowledge that developers could make use of to address new issue units.

F8 Issue units with high in-degree in IUN tend to have high priority. Developers could try to make use of the in-degree of the IUN when
they need to identify and further study some high-priority or core issue
units of a project.

F9 54.20% enhanced relationship happens between PRs. The main reasons
to enhance pull requests include the lacking or incompleteness of test
scripts,logging statements, etc.

It would be helpful for developers to refer to issue units of enhance
relationship, so as to learn how to submit a good pull request.

hints on how to submit high-quality pull requests.
The contributions of this work are as follows:
• To the best of our knowledge, we are the first to broadly

examine developers’ linking behavior in GitHub.
• We identify six major reasons for why developers link

issue units in GitHub projects.
• We propose some major semantic patterns which devel-

oper generally followed in linking issue units. These pat-
terns can help to automatically analyze the relationships
between issue units.

• We analyze the influence of links between issue units
on software development and report several interesting
findings which is able to motivate future studies on issue
units related tasks.

The remainder of this paper is organized as follows. Section
II introduces the background of this study. Section III presents
our way to construct the IUN. Section IV summarizes the rea-
sons for linking behavior and introduces the semantic patterns
to automatically analyze the reasons. We discuss the influence
of the linking behavior on software development in Section V.
Threats to validity and related work are presented in Section
VI and Section VII respectively. Section VIII concludes this
paper.

II. BACKGROUND

A. Issue Units

Software stakeholders, e.g., developers, testers, managers
and users, keep tracking the process of software development

and maintenance by documenting software activities. These
documents are referred as issue reports [8] and pull requests
[2], which are used to report software bugs, suggest new
features, explain source code changes, and record bug fixing
patches. In this study, we uniformly name issue reports and
pull requests as issue units. Due to the importance of issue
units in recording software activities, software stakeholders
frequently discuss and refer to historical issue units by adding
links between issue units [9].

B. Issue Unit Network (IUN)

IUN is a directed acyclic graph to represent the connections
between issue units. We denote an IUN graph as IUN(V , E),
in which the set of vertexs V contains issue units and the set
of edges E refers to links between issue units. For all issue
units, if the content of an issue unit vs contains a link to
another issue unit vt, we create a directed edge from vs to vt,
denoted as us→ut. With vs, vt and the link vs→vt, an atomic
IUN emerges. Repeating the above process, we can eventually
create a large IUN regarding all the issue units in a data set. In
this IUN, we denote the in-degree of an issue unit v (a vertex)
as degin(v), which represents the degree of attention that the
issue unit u attracts. Similarly, we denote the out-degree of v
as degout(v), which represents the degree that developers refer
to other issue units when discussing v. In this study, we focus
on the issue units that degin(v) + degout(v) > 0, namely the
non-isolated issue units that connect to another issue unite at
least once.

III. OVERVIEW OF LINKING BEHAVIOR

In this section, we create IUN to analyze the linking
behavior. First, we introduce the data for IUN construction.
Then, the process to construct the IUN is presented. At last,
we describe the basic information of the constructed IUN.

A. Data Collection

To understand the linking behavior between issue units,
in this study, we collect and analyze the issue units from
Python projects in GitHub. We analyze these issue units
for two reasons. On the one hand, GitHub is currently the
largest software development platform in the world [10],
which contains millions of software projects. Compared with
other repositories, e.g., Bugzilla repository, linking behavior in
GitHub is more complex, because developers may frequently
add links between different projects [6]. On the other hand, we
analyze Python projects since Python is one of the top three
most popular programming languages in GitHub [11]. Millions
of developers participate in projects written in Python. Hence,
analyzing the linking behavior in Python projects may better
reflect the activities of the majority of developers in IUN.

We collect the issue units in two steps. First, we collect a
set of Python projects in GitHub. We traverse the projects
written in Python from 2008 to 2016, since these projects
usually obtain enough issue units compared to newly created
ones. Of all the collected projects, we investigate the projects
with more than 50 stars, because these projects are usually
active projects with regular maintenance and public concerns
[12]. We implement the above process by GitHub APIs2. In
this process, 16,584 Python projects are collected. Second,
we crawl the issue units from these projects. For each project,
we download all the issue units created before Sep. 2017 with
GitHub APIs. GitHub APIs return the plain text of the contents
of issue units. At last, 2,337,651 issue units are acquired,
including 1,205,512 issue reports and 1,132,139 pull requests.

B. IUN Construction

We construct IUN based on the collected issue units. In
GitHub, a common way to refer to other issue units is to leave
an explicit link in issue units [6], i.e., developers mention an
existing issue unit following link patterns like “#Num” and
“User/Project#Num”3 [13]. For example, in the issue unit
#9243 of the numpy project4, Eric-Wieser added a link #8916

in the comment “this is a duplicate of #8916”5 to refer to the
issue unit #8916 in the same project. Therefore, we can use
patterns of “#Num” and “User/Project#Num” to match links
between issue units. After identifying all the links, we remove
the following three types of links:

• Loop links. For an issue unit, developers may add links to
the sentences in the same issue unit to quote or comment

2https://developer.github.com/v3/
3User/Project#Num refers to the issue unit from https://github.com/

User/Project/issues/#Num
4https://github.com/numpy/numpy/issues/9243
5https://github.com/numpy/numpy/issues/8916

TABLE II: Distribution of links among difference directions

#links i→i i→pr pr→i pr→pr total

within-project 220,435 152,433 258,311 184,943 816,122
cross-project 47,760 17,970 42,743 32,537 141,010

total 268,195 170,403 301,054 217,480 957,132
rating 28.03% 17.8% 31.45% 22.72% 100%

these sentences. We remove such links, since they do not
help developers transfer knowledge between issue units.

• Duplicate links. If links in an issue unit point to the same
issue units, we remove the duplicate versions of the links.

• Invalid links. Since the strings matching pattern #Num

and User/Project#Num may be invalid or unreachable
links, we ping the identified links to remove invalid ones.

Based on the above rules, we identify 957,132 links from
642,281 issue units. Considering we in total collect 2,337,651
issue units in the high-quality Python projects, the identified
642,281 issue units mean that the linking behavior is a
common practice among developers which accounts for nearly
one-third (27.48%) issue units. For all issue units contain links,
developers on average add 1.49 links in an issue unit.

According to the source and target issue units of a link,
we can classify the links into four directions, i.e., issue
report→issue report (i→i), issue report→pull request (i→pr),
pull request→issue report (pr→i), and pull request→pull
request (pr→pr). For example, i→pr means the source issue
unit is an issue report and the target issue unit is a pull request.
In addition, on the basis of the project that the issue units
belong, we can also classify these links into within-project
links and cross-project links. Within-project links link source
and target issue units in the same projects. In contrast, cross-
project links mean that the source and target issue units belong
to different projects. The distribution of links belonging to
different directions is shown in Table II.

As show in Table II, the direction of linking behavior is
complex. The majority (816,122 links, over 79%) of links are
within-project links and about 15% are cross-project links. For
the within-project links, a larger proportion of the links is
pr→i (258,311). It seems that developers usually associated
a pull request with a specific issue report during software
maintenance. For cross-project links, i→i (47,760) and pr→i
(42,743) happen frequently, which takes up more than 60% of
all the cross-project links. It looks like the issue reports for a
specific project also attract frequent attention from developers
of other projects. Developers discuss these cross-project issues
reports in the issue units of their own projects. The above
complex behaviors motivate us to specifically analyze the
reasons for developers to add links between issue units.

Finding 1. Linking behavior appears in nearly one-third
(27.48%) issue units. Among those, each issue unit has
1.49 links on average. These links connect issue units
both within and across projects.

Fig. 1: IUN in terms of projects

C. Basic Information of IUN

In order to investigate the interaction between issue units,
we visualize the IUN constructed by the collected Python
projects in Fig. 1. Since there are more than 900 thousand
links, we present IUN in terms of projects. However, each
project still has complex linking behavior as shown in the red
subgraphs. In Fig. 1, each node is a project and each edge
means a link between issue units in different projects. The
size of the project name means the in-degree of a project,
which is calculated as the sum of in-degrees of all the issue
units in this project. For clarity, we only display projects with
more than 100 project in-degrees.

To understand the projects in IUN, we rank all the projects
according to the project in-degree. Table III lists the top 20
projects. The first column is the project name. The in-degree,
out-degree and the number of stars of each project are listed
in the following three columns. In the fifth column, we list
the number of projects that has at least one link to the current
project. At last, we give the type of each project.

As depicted in Table III, the top 20 projects can be classified
into 3 types, including tools for development support, tools for
scientific computing, and tools for network and cloud. These
high in-degree projects usually affect a large number of other
projects. Hence, we can define the in-degree of a project as
an indicator to the influence of a project. A large project in-
degree means that the issue units in the project have a broader
impact on the issue units in other projects, i.e., developers
may frequently refer to the issue units in this project when
conducting software activities. For example, the issue units in
ansible/ansible affect more than 2,400 issue units from
over 90 other projects. We calculate the Pearson correlation
coefficient between the project in-degree of each project in
IUN and the number of its affecting projects. The correlation
coefficient is 0.62, which shows a position correlation between
the project in-degree and affected projects. However, when
two projects affect the same number of projects, the project
in-degrees may still be different. Hence, we can measure the

influence of a project by its project in-degree.
Considering that previous studies usually use project stars

to measure the popularity of a project, we find that the project
influence is different from project popularity. The correlation
coefficient between project in-degree and project star is only
0.17. Hence, these two indicators reflect two aspects of a
software project. In addition, identifying the project with high
project influence is important. Since the activities in these
projects may affect many other projects, it is important for a
software platform like GitHub to identify key activities in high
in-degree projects, e.g., API deprecation [14], and immediately
notice these activities to other projects.

Finding 2. The correlation coefficient between project
in-degree and the number of affected projects is 0.62.
The project in-degree is one of indicators to evaluate the
influence of a project.

IV. REASONS FOR LINKING BEHAVIOR

This section discusses the reasons for linking behavior and
the way to automatically detect these reasons.

A. Manual Classification Process
To analyze the reasons for linking behavior, we randomly

collect a set of links from IUN for analysis. To make our
sample representative, we collect the sample by the method of
Stratified sample [15] considering a confidence level of 95%,
which leads to a sample of 1,384 links. The different strata are
represented by four linking directions, including i→pr, pr→pr,
pr→i, and i→i. Each link is associated with two issue units,
i.e., a source issue unit and a target issue units.

Based on the sample, we following the strategy used by Ye.
et al. [16] to manual analysis on the relationship of two linked
issue units. The analysis is performed by two authors of this
study, denoted as A1 and A2. They both have computer science
background with programming experience over 5 years. The
analysis involves three stages. In stage 1, we randomly select
200 links from the sample. A1 analyzed the source and target
issue units of the links to infer the reasons for adding the
links. A1 wrote the classification rules in classifying these
links. Then, A2 used the classification rules to classify the
same 200 links, during which the classification rules were
revised and refined. In this stage, two authors developed draft
categories and classification rules from the 200 links. In stage
2, the authors applied the classification rules in stage 1 to
independently classify the remaining 1,184 links into different
categories. The authors can either classify a link into the
predefined categories or in a new category, if he/she detected a
new one. In stage 3, two authors discussed the different cases
in the classification. For the 1,184 links, the categories of 137
links are conflicted, i.e., the consistent rate is 0.883. Most
conflicts were caused by some new categories detected by any
one of the authors in stage 2. In such cases, the definition of
the new categories may not be consistent between the two
authors. Hence, after classification, two authors conducted a
pair-wise discussion to revise and redefine the classification
rules and categories to achieve the final ones.

TABLE III: Top 20 projects according to the value of in-degree

project name in-degree out-degree stars affected project type

ansible/ansible 2409 2859 27047 94 development support
ansible/ansible-modules-core 1751 1555 1047 40 development support

moby/moby 927 0 47937 136 development support
pytest-dev/pytest 906 176 2293 195 development support
numpy/numpy 890 0 6481 141 scientific computing

pypa/pip 872 362 3992 450 development support
ansible/ansible-modules-extras 838 673 872 27 development support

requests/requests 766 400 31014 307 network and cloud
travis-ci/travis-ci 669 0 6549 407 development support

easybuilders/easybuild-easyblocks 618 0 51 4 development support
ipython/ipython 541 718 12533 142 scientific computing

pandas-dev/pandas 512 578 13419 112 scientific computing
conda/conda 453 692 1993 105 development support

ContinuumIO/anaconda-issues 451 0 215 129 development support
Azure/azure-rest-api-specs 419 0 271 2 network and cloud

shazow/urllib3 417 203 1526 127 network and cloud
matplotlib/matplotlib 417 385 6903 103 scientific computing
tensorflow/tensorflow 415 0 92525 123 scientific computing

frappe/erpnext 390 327 2904 2 scientific computing
conda/conda-build 351 439 113 36 scientific computing

B. Relationship of Linked Issue Units

After manual analysis, we identify six major relationships
for the linked issue units, which are the main reasons for the
linking behavior.

(1) Dependent Relationship. In dependent relationship,
developers add a link between two issue units, because the
resolution of the source issue unit is dependent on the target
one. In other words, the source issue unit is blocked by the
target one. Developers usually discuss dependent relationship
with phrases such as “this is blocked by #Num”, “the upstream
issue is #Num”, “it depends on #Num”, etc. For example, in
ClusterHQ/flocker#1791, Itamarst left an explicit link to
explain that “this (the source issue unit) depends on #1767

(the target issue unit) being merged first.”
The dependent relationship also exists between cross-project

issue units, where the source issue unit is blocked by a problem
introduced from another project. Thus, the source issue unit
can only be fully fixed after the fixing of the target one. For
the cross-project issues, developers usually use a workaround
to temporarily handle the source issue unit [6]. The dependent
relationship across projects can be deduced by the phrases
as “it’s caused by #Num”, “it was because of #Num”, “it is
introduced by #Num”, etc.

(2) Duplicate Relationship. The duplicate relationship
means two issue units discuss the same problem. For this re-
lationship, after reading the source issue unit, developers tend
to leave an explicit link to its duplicate issue unit. Specifically,
in the context of links, developers usually comment the links
as “duplicate of #Num”, “dupe of #Num”, “closing as in favor
of #Num instead”, etc. These links help other developers look
deep into the source and target issue units, and bring more
evidences to understand the source issue units.

(3) Relevant Relationship. The relevant relationship is
different from the duplicate one. When two issue units are
duplicate, it means that they address exactly the same problem.
However, for the relevant relationship, it usually means that

two issue units are similar but not exactly the same. For
example, the source and target issue units may discuss similar
bugs, share the same topic, or address bugs in the same
component or source code file. We find that developers usually
explicitly mark a source issue unit as similar or related to
another issue unit by phrases like “related to #Num”, “this is
similar to #Num”, “they appear to be relevant”.

(4) Referenced Relationship. The referenced relationship
means the knowledge in the target issue unit may be use-
ful in understanding the source issue unit. In the refer-
enced relationship, the target issue unit may explain a cer-
tain concept, approach, or background knowledge for the
source issue unit. Besides, the target issue unit may also
provide a working example for the source one. For exam-
ple, in ansible/ansible-modules-core#2421, Gregdek
commented as “also adding a backport request, per #2557,
which means this belong in core review instead. cc: @an-
sible/core”. The user suggested to refer to the example in
the issue unit ansible/ansible-modules-core#2557 to
address the current problem.

(5) Fixed Relationship. The fixed relationship means that
the source issue unit submits a patch or solution to address the
problem reported in the target issue units. Such relationship
usually happens in two situations. First, the source issue unit
completely solves the reported problem in the target one,
thus developers directly close the target issue unit. Second,
developers partially solve the reported problem and point out
which part of the target issue unit has been solved. The
fixed relationship can be easily recognized by some predefined
phrases, e.g., “Fixed by #Num”, “Done in #Num”, “#Num
addressed this”, and “Close by #Num”.

(6) Enhanced Relationship. The enhanced relationship is
defined as that the source issue unit conducts some changes
on the target issue unit to make the target issue unit robust or
meet the requirements. On the one hand, developers may use
the source issue unit to modify or deprecate the contents of the

dependent duplicate relevant referenced fixed enhanced other

within 93 168 64 223 429 61 143

cross 16 28 11 38 74 11 25

6.72%

12.14%

4.62%

16.11%

31%

4.41%

10.33%

1.16% 2.02% 0.79%
2.75%

5.35%

0.79%
1.81%

0

50

100

150

200

250

300

350

400

450

500
N

u
m

b
er

 o
f

Is
su

e
U

n
it

s

within-project cross-project

Fig. 2: Distribution of the sampled data.

target issue unit. On the other hand, the target issue unit may
be reverted, re-based, or revised in the source issue unit. The
enhanced relationship often happens when developers wrongly
address the problem in the target issue units. For example, in
DataDog/dd-agent#1274, Obi11235 added a new feature
that allow users to create custom MySQL metrics for their
applications. Because of missing test scripts and logging state-
ments, another two issue units DataDog/dd-agent#1793

and DataDog/dd-agent#1673 enhance it.
As shown in Fig. 2, 87.86% links belong to the above

six relationships in the 1,384 sampled issue units. Hence,
they are the main reasons for the linking behavior between
issue units. Besides these relationships, links can also be used
to explain a release schedule, indicate the arrangement of
software development6, etc. In this study, we only focus on
the identified six relationships for analysis, since they cover
more than half of the linking behavior.

Finding 3. We identify six main relationships for linked
issue units, including dependent relationship, duplicate re-
lationship, relevant relationship, referenced relationship,
fixed relationship and enhanced relationship.

V. FINDINGS IN LINKING BEHAVIOR

In this section, we investigate whether we can automatically
identify these relationships by simply applying a series of
syntactic patterns and conduct a detail analysis on the linking
behavior.

A. Automatic Classification of the Linking Behavior

The syntactic patterns are inspired from the manual clas-
sification process. For instance, in spack/spack#3863,
Adamjstewart commented as “(it is) duplicate of #3346”,
in which the keyword “duplicate” indicates a duplicate
relationship between issue units spack/spack#3863 and
spack/spack#3346. Hence, we take “duplicate” as a syntac-
tic pattern to identify duplicate relationship. Similarly, other
relationships have their associated syntactic patterns.

6https://github.com/aio-libs/aiohttp/issues/2250

TABLE IV: The number of automatically identified data.

Relationships Rating Num
all within-link cross-link

dependent 7.76% 32,899 25,475 7,424
duplicate 16.69% 70,686 66,339 4,347
relevant 7.9% 33,444 28,747 4,697

referenced 11.53% 48,812 41,855 6,957
fixed 50.85% 215,342 203,324 12,018

enhanced 5.27% 22,320 18,788 3,532

We use a tuple (pattern, pattern loc) to represent each syn-
tactic pattern. The “pattern” denotes the keywords or regular
expression to match the context of a link. The “pattern loc”
is the location of a pattern, which has three values {−1, 0, 1}.
The value “-1” means that we use the pattern to match the
context before a link. “1” indicates that the pattern is used to
match the context after a link. “0” represents that we match
either before or after the link. In this study, we look up five
words before or after a link according to our pilot study.

Table V lists all the pattern tuples used in this study. The
last column presents the link direction. For example, for the
duplicate relationship, we only use these patterns to match
links from issue report to issue report and from pull request to
pull request, because issue reports and pull requests are never
labeled as duplicate in our sample. If a sentence is matched
by more than one pattern, the relationship is determined as the
one that the closest pattern belongs to.

Given the 957,132 links we collected, the patterns match
423,503 links. Hence, the matching rate is 0.44. The low
matching rate causes by the fact that the meaning of a
sentence can be expressed in diverse ways, many of which
are not exactly the same with the patterns in Table V. For
the identified 423,503 links, we sample 384 links with 5%
confidence interval to evaluate the accuracy of the identified
links. The accuracy is 0.79. We show the distribution of
different relationships in the identified links in Table IV. The
distribution is similar with the sampled data in Fig. 2. For
example, in the sampled data, fixed relationship is the largest
one, which accounts for 41.37% of the issue units belonging to
the six relationships. Similarly, in Table IV, 50.85% links are
automatically identified as the fixed relationship. We calculate
the correlation between the two distribution, the result is 0.95.
Due to the similar distribution, we use the identified 423,503
links to analyze the influence of developers’ linking behavior.

B. Revisit the linking behavior

Dependent Relationship. As shown in Table. IV, the
fixing of 7.76% issue units (dependent relationship) heavily
depend on other issue units within or across projects. In
Fig. 4, we present the distribution of dependent relation-
ship on distinct linking directions. Most of the dependent
relationship happens in pr→pr, i→i and i→pr. In pr→pr
(43.07%), developers complain that the problem of a pull
request causes the failure of another pull request or the merge
of a pull request is blocked by another pull request7. For

7https://github.com/Yelp/paasta/pull/1394

TABLE V: The relationships and their associated syntactic patterns.

Category Syntactic Patterns Link Direction

Depended relationship
(block*, 0), (cause*, -1), (depend*, -1), (upstream, 0), (downstream, 0), (introduced by, -1),
(wait*, -1), (because of, -1), (side-effect, -1), (first fix*, 0), (first step, -1), (requir*, -1),
(need, -1), (prefix, -1)

i→i, i→pr, pr→i, pr→pr

Duplicate relationship
(duplicate*, 0), (dupe, 0), (close*, -1), (in favor of, -1), (fixed, 0), (done, -1), (address*,
0),(supercede*, 0), (supercsede*, 0), (obsolete, -1), (replace, -1), (same, 0)

i→i, pr→pr

Relevant relationship (relate*, -1), (similar, -1), (relevant, 0) i→i, i→pr, pr→i, pr→pr

Enhanced relationship
(add*, -1), (modifi*, 0), (revert*, 0), (rebas*, 0), (revis*, 0), (improv*, -1), (continuation of,
-1),(original issue, 0), (based on, -1), (supplement, -1)

i→i, i→pr, pr→i, pr→pr

Fixed relationship (fix, 0), (done, -1), (address, 0), (submitted for, -1), (duplicate, 0), (close, 0), (resolv*, 0) i→pr, pr→i

Reference relationship
(comment, 0), (discussion, 0), (motivat*, -1), (example, 0), (e.g, -1), (suggestion, 0),
(background, 0) , (referenc*, -1)

i→i, i→pr, pr→i, pr→pr

example, in the issue unit astropy/astropy#2363, Embray
commented “(The issue) is probably a regression introduced by
spacetelescope/PyFITS#23, incidentally, before this was fixed
the comment entry wasn’t preserved at all upon write”. In i→i
(27.84%), the dependent relationship shows that an issue report
is blocked/caused by a target issue report. In i→pr (16.22%),
most links indicate the relationship that the bugs in the source
issue reports are introduced by some target pull requests.

As complained by developers, the dependent relationship
tends to delay the fixing of source issue units. The problem
is severer when two issue units are in different projects [6].
Hence, a mechanism to identify the dependent relationship
may facilitate developers fixing both source and target issue
units.

Finding 4. The resolution of 7.76% issue units heavily
depend on other issue units within or across projects. A
mechanism to identify the dependent relationship may
facilitate developers’ work.

Duplicate Relationship. There are 70,686 links with du-
plicate relationship in the identified links, which account for
16.69%. Fig. 3 shows the time span between submitting an
issue unit and the time of first labeling it as “duplicate”. For
15.16% of these issue units, submitters seem to already aware
that the current issue units are duplicate as soon as they are
submitted. Hence, submitters directly link these issue units to
the possibly duplicate ones. We find that 79.35% of these links
usually contain some uncertain words in their context, e.g.,
“possible”, “may”, “unsure”. It means that most submitters are
still unsure whether the duplicate relationship is true. Besides,
59.46% linking behavior happened in a relatively short time (<
1 day). However, 40.54% issue units still have a long latency
period (> 1 day) before duplicate detection. Notably, 27.96%
issue units were first marked as “duplicate” after 10 days. For
these issue units, developers are more likely wasting their time
in solving already fixed issue units.

For the 70,686 links with duplicate relationship, 59.03% are
duplicate issues (i→i) and 40.97% are duplicate pull requests
(pr→pr) (in Fig. 4). Considering that existing studies for
duplicate detection mainly focused on detecting duplicate issue
reports [7], the statistic shows that detecting duplicate pull

15.16%

17.84%

26.46%

12.58%

15.83%

12.13%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 <1 1h-1d 1d-10d 10d-100d >100d

N
u

m
b

er
 o

f
 I

ss
u

e
U

n
it

s
x
 1

0
4

Latency time

Fig. 3: Distribution of latency time (h:hour, d:day)

requests is also meaningful, as it saves developers time in
reviewing and testing these pull requests.

Finding 5. 40.54% of issue units are first marked as
“duplicate” in more than one day. Notably, 27.96% issue
units are first marked after 10 days. Detecting duplicate
issue reports and pull requests are both important.

In addition, previous studies usually detect duplications
within a single project [17], e.g., Eclipse, Mozilla. However, as
a software ecosystem, the duplicate relationship may happen
across projects, i.e., developers in different projects submit
duplicate issues that caused by the same upstream projects.
5.97% links with duplicate relationship are related to different
projects. Since these issue units refer to the same root cause,
the source issue units may provide more evidence for upstream
projects to fix root issue reports or test upstream pull requests.
Hence, identifying duplication in an ecosystem is promising
for study.

Finding 6. 5.97% duplicate relationship is related to
different projects. It is promising to conduct duplicate
detection from the point of a software ecosystem view.

Relevant Relationship. Relevant Relationship mainly ap-
pears in i→i(60.9%). In relevant relationship, the source and
target issue units may discuss similar bugs, share the same
topic, or similar solution. By manually analyzing relevant

38.01%

16.04%

25.3%

20.65%

0% 20% 40% 60% 80%

referenced

27.84%

16.22%

12.87%

43.07%

0% 20% 40% 60% 80%

i→i

i→pr

pr→i

pr→pr

dependent

59.03%

0%

0%

40.97%

0% 20% 40% 60% 80%

duplicate

60.9%

9.21%

17.92%

11.97%

0% 20% 40% 60% 80%

i→i

i→pr

pr→i

pr→pr

relevant

0%

25.48%
74.52%

0%

0% 20% 40% 60% 80%

i→i

i→pr

pr→i

pr→pr

fixed

19.57%

10.38%

15.85%

54.2%

0% 20% 40% 60% 80%

enhanced

within-project cross-project

Fig. 4: Distribution of automatically identified relationships.

issue units, we find that developers prefer to studying rele-
vant issue units when resolving new issue units. The links
facilitate the process of bug fixing and make developers
more efficient in handling a series of issue units [18]. For
examples, in beetbox/beets#1228, sampsyo pointed out
“Hey, @brunal this looks similar to #1226.”. Then developers
discuss beetbox/beets#1226 and quickly solve the prob-
lem.

Referenced Relationship. In Table. IV, the referenced
relationship accounts for 11.53%. It seems that developers are
likely to quoting an existing issue unit, in order to provide
additional information for the current problem or promote the
current communication. The information provided by refer-
enced relationship is different from the relevant relationship.
Relevant issues let developers understand specific solution
and facilitate the process of bug fixing, while referenced
issue is used to help developers understand specific concepts,
background and motivations etc. As shown in Fig. 4, the
referenced relationship mainly happens in i→i (38.01%) and
pr→i (25.3%). In i→i, the target issue units may play the role
as background, motivation, example, concept explanation of
the source issue units. In pr→i, developers link a target issue
unit to explain the source code and methods for the source
issue unit. According to the results of automatic classification,
63.04% referenced relationship is identified by the patterns
of ‘comment*’ and ‘discuss*’. By manually investigating the
large-scale matched sentences, we find that developers usually
use the sentences like “as discussed in #Num”, “see the
comment in #Num”, etc. Hence, it reconfirms that historical
issue units contain tremendous knowledge for developers to
address new issue units.

Finding 7. 63.04% links in referenced relationship are
recommending developers to refer to historical comments
or discussion. It reconfirms that historical issue units
contain tremendous knowledge to address the new ones.

Fixed Relationship. We detect fixed relationship in pr→i
and i→pr. In pr→i, the fixed relationship means the devel-
oper submits a pull request to fix an issue report. In i→pr,
developers link an issue report to a pull request because the
pull request has totally or partially addressed the problem in
the issue report. As shown in Table. IV, the fixed relationship
is a predominant relationship, which accounts for more than
50.85% links in all the identified links.

For the fixed relationship, we find that the in-degree of
an IUN is an indicator to reveal the importance (priority)
of the fixed issue units. The fixed issue units with high
priority are inclined to have greater in-degree in the IUN.
To prove this finding, we split the issue units in our data
set into high-priority and low-priority ones by analyzing the
labels of the issue units. High-priority issue units are usually
associated with the labels of “high (priority/server)”, “critical”,
and “urgent”. In contrast, low-priority issue units are labeled
by “low (priority/server)”. In this way, we discovered 6,318
high-priority issues units and 6,120 low-priority ones. We
calculate the in-degree of each collected issue units in the
IUN. The mean values of the in-degree for the high-priority
and low-priority issue units are 0.44 and 0.24 respectively.
Clearly, high priority issue units have greater in-degree than
the low priority ones. The observation passes the Wilcoxon-
Mann-Whitney test [19] with p=1.94e−24, i.e., the in-degree
of a randomly selected issue unit in the high-priority sample
is usually greater than that in the low-priority sample.

Hence, an IUN can help new comers of a project identify
the core issue units in the project. The new comers may better
understand a project by studying these issue units.

Finding 8. The in-degree of issue units is an factor to
indicate their importance. By analyzing IUN, new comers
can identify and study the core issue units of a project.

Enhanced Relationship. About 5.27% linking behavior
belongs to the enhanced relationship. Among these links,
54.20% enhanced relationship happens in pr→pr. In pr→pr,
an enhanced relationship usually means to revert, revise, or re-
base a pull request. This may cost developers additional effort
on a pull request. Hence, we manually analyze the reasons
to enhance a pull request in the sampled data in Section IV.
The main reasons are the incompleteness of the pull requests,
including the missing of new features, test scripts, logging
statements, and documentation. These reasons account for
59.32% in our sample for pr→pr. Hence, developers will
enhance the issue unit to make it meet the requirements. We
suggest that developers can pay close attention to the issue
units of enhance relationship, in order to learn how to submit
a good pull request.

Finding 9. 54.20% enhanced relationship happens in
pr→pr. There are many reasons to enhance the pull
requests, e.g., the incompleteness of test scripts, logging
statements, etc.

VI. THREATS TO VALIDITY

Our work is subject to several validity problems, including
the threats to IUN construction, manual classification, and
automatic classification.

IUN construction. To construct IUN, we identify links with
patterns “#Num” and “User/Project#Num”. However, not all
the links identified by these patterns are valid. First, the pattern
“#Num” may just indicate an natural number instead of an
issue unit ID. To mitigate these false positive links, we use
GitHub APIs to verify whether each number can reach a valid
issue unit. Second, as suggested by Kalliamvakou et al. [20],
one peril in mining GitHub repository is “a repository is not
necessarily a project”, i.e., a repository may be a fork of a base
repository, which will affect our judgments on cross-project
links. To avoid this peril, we define a base repository with
its forked repositories as the same project. In other word, we
consider a link from a forked repository to a base repository
as a within-project link. Hence, we recognize cross-project
links by comparing the name of source projects with the name
of both target projects and the parent of target projects. A
sampling validation shows that we achieve an accuracy value
of 92% in identifying issue unit links.

Manual Classification. Manual classification involves two
threats. The first one is the representativeness of the sampled
data, i.e., the 1,384 randomly sampled links. We addressed
this threat by performing the Stratified sample considering a
confidence level of 95% over different link directions to ensure
the data representativeness. Meanwhile, we only focus on the
main reasons for linking behavior. According to the results
of automatic classification, the main reasons in the sampled
data represent at least 44% linking behavior in the IUN. The
second threat is the mistakes in manual classification. Since
manual classification is subjective, it is hard to develop a
perfect coding schema with no conflicts among the categories.
To reduce the mistakes, we perform a three-stage classification
by two volunteers. The consistent rate is 0.883. Hence, the
rules for classification achieve reliable results.

Automatic Classification. In this study, we automatically
classify the linking behavior of high-quality Python projects.
Several findings depend on the classification results. However,
the automatic classification may contain errors. Hence, we
validate a sample of classification results, which shows an
accuracy of 79%. Besides, we mainly draw conclusions from
the major classes, since the error instances may dominate
when the instance number of a class is small. We note that
our automatic classification only cover about half of linking
behavior, i.e., 423,503 links. Hence, our findings may be only
valid on these links. Since the distribution of the identified
links is similar to the Stratified sampled data, we may draw
consistent findings when sampling another set of issue units

for analysis. In the future, we plan to improve the performance
of automatic classification and re-verify our findings on more
data. We also plan to automatically analyze the relationship
between a newly submitted issue unit and all the historical
ones to help developers immediately find dependent, duplicate,
referenced issue units.

VII. RELATED WORK

Our work is related to two research lines, including the
studies on issue units and the analysis on linked network.

A. Studies on Issue Units
Many studies explore the knowledge of issue units in

GitHub. Issue units include the issue reports and pull requests.
For issue reports in Github, researchers predict the attributes
of issue reports, such as the labels of issue reports [21], the
“mentions” be used in issue reports [22]. Some studies also
analyze the correlation between the process of reporting issue
reports and the success of software projects [23].

For pull requests, most previous studies focus on the re-
viewer recommendation for pull requests. They recommend
code reviewers by analyzing the working history of a developer
and collaboration history with other developers, including the
line change history [24], review comments [25], [26], project
directory structure [27] [28], developer collaboration network
[26], developer communication history, and cross-project ex-
perience [29]). Besides the above studies, many empirical
studies are also conducted with GitHub data. Gousios et al.
and Saito et al. explore how pull request based software
development works and how GitHub users feel with this
software development model respectively [4] [30]. The factors
that affect the acceptance of pull request have also been studied
in previous studies [31]–[33].

B. Linked Network Analysis
Recently, many studies investigate the knowledge network

for software development. In the social platforms, e.g., Stack
Overflow, Ye et al. and Xu et al. construct a large knowledge
network with the internal URLs in Stack Overflow posts [16]
and predict semantically linkable knowledge units using neural
language model and convolutional neural network (CNN) [34].
In issue tracking system, Correa et al. investigate the online
resources in Google Chromium Browser project [35]. They
studied the importance, distribution, and categorization of links
in issue reports. Similarly, links between pull requests were
researched by Zampetti et al [36], which investigates to what
extent and for which purpose developers refer to external
online resources.

In this study, we focus on the issue tracking system and
construct IUN with GitHub data. However, previous studies
only investigate the links to external online resources, i.e., the
links to other web sites. We find that developers also frequently
refer to the knowledge within the web site, e.g., the historical
issue units. We analyze the reasons for these linking behavior.
By analyzing the issue units network, we provide a series of
findings to promote software development and maintenance
activities.

VIII. CONCLUSION

In this paper, we conducted an empirical study to explore
developers’ linking behavior in GitHub by analyzing the links
they left within issue reports and PRs. Six major kinds of rela-
tionships (which well explained developers’ linking behavior)
were identified through manual analysis. We further proposed
several common patterns that can help automatically classify
linked issues/PRs into these relationship categories. At last, we
analyzed the influence of different relationships on software
development, and found several interesting findings, including
the importance of detecting cross-project duplicate bug reports,
the potential of using IUN to identify influential projects
and core issue reports, etc. These findings, to some extent,
provided a basis for researchers and relevant practitioners to
develop practical techniques that help improve developers’
experience in handling issues/PRs.

REFERENCES

[1] G. Inc. (2018) About issues. [Online]. Available: https://help.github.
com/articles/about-issues/

[2] ——. (2018) About pull requests. [Online]. Available: https://help.
github.com/articles/about-pull-requests/

[3] C. C. M. Neto and D. O. B. Mrcio, “A structured survey on the usage of
the issue tracking system provided by the github platform,” in Brazilian
Symposium on Software Components, Architectures, and Reuse, 2017,
pp. 1–10.

[4] G. Gousios, M. Pinzger, and A. V. Deursen, “An exploratory study of the
pull-based software development model,” in International Conference on
Software Engineering, 2014, pp. 345–355.

[5] G. Inc. (2017) The state of the octoverse 2017. [Online]. Available:
https://octoverse.github.com/

[6] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do developers
fix cross-project correlated bugs? a case study on the github scientific
python ecosystem,” in Ieee/acm International Conference on Software
Engineering, 2017, pp. 381–392.

[7] Z. Li, G. Yin, Y. Yu, T. Wang, and H. Wang, “Detecting duplicate pull-
requests in github,” in Asia-Pacific Symposium on Internetware, 2017,
pp. 1–6.

[8] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” in International Conference
on Software Engineering, 2013, pp. 392–401.

[9] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the hurried bug
report reading process to summarize bug reports,” in IEEE International
Conference on Software Maintenance, 2012, pp. 430–439.

[10] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[11] G. Inc. (2017) Github octoverse 2017. [Online]. Available: https:
//octoverse.github.com/

[12] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors
that impact the popularity of github repositories,” in IEEE International
Conference on Software Maintenance and Evolution, 2017, pp. 334–344.

[13] K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in github and a
method for ecosystem identification using reference coupling,” in Mining
Software Repositories, 2015, pp. 202–207.

[14] J. Zhou and R. J. Walker, “Api deprecation: a retrospective analysis
and detection method for code examples on the web,” in ACM Sigsoft
International Symposium on Foundations of Software Engineering, 2016,
pp. 266–277.

[15] M. H. Hansen and W. N. Hurwitz, Sample survey methods and theory.
Vol. I. John Wiley And Sons, Inc.; New York, 1953.

[16] D. Ye, Z. Xing, and N. Kapre, “The structure and dynamics of
knowledge network in domain-specific q&a sites: a case study of stack
overflow,” Empirical Software Engineering, vol. 22, no. 1, pp. 1–32,
2017.

[17] G. Canfora, M. Cimitile, M. Cimitile, and M. D. Penta, “Social interac-
tions around cross-system bug fixings: the case of freebsd and openbsd,”
in Working Conference on Mining Software Repositories, 2011, pp. 143–
152.

[18] H. Rocha, M. T. Valente, H. Marques-Neto, and G. C. Murphy, “An
empirical study on recommendations of similar bugs,” in IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering,
2016, pp. 46–56.

[19] F. Dexter, “Wilcoxon-mann-whitney test used for data that are not
normally distributed,” 2013.

[20] Kalliamvakou, Eirini, Gousios, Georgios, Blincoe, Kelly, Singer, Leif,
and M. Daniel, “The promises and perils of mining github,” Empirical
Software Engineering, vol. 37, no. 5, pp. 1–10, 2006.

[21] J. Cabot, J. L. Canovas Izquierdo, V. Cosentino, and B. Rolandi,
“Exploring the use of labels to categorize issues in open-source software
projects,” in IEEE International Conference on Software Analysis,
Evolution and Reengineering, 2015, pp. 550–554.

[22] Y. Zhang, G. Yin, Y. Yu, and H. Wang, “A exploratory study of @-
mention in github’s pull-requests,” in Software Engineering Conference,
2015, pp. 343–350.

[23] T. F. Bissyande, D. Lo, L. Jiang, and L. Reveillere, “Got issues? who
cares about it? a large scale investigation of issue trackers from github,”
in IEEE International Symposium on Software Reliability Engineering,
2013, pp. 188–197.

[24] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in International Conference on Software Engineering, 2013, pp.
931–940.

[25] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change?: Putting text and file location analyses together for more accu-
rate recommendations,” in IEEE International Conference on Software
Maintenance and Evolution, 2015, pp. 261–270.

[26] Y. Yu, H. Wang, G. Yin, and C. X. Ling, “Reviewer recommender of
pull-requests in github,” in IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 609–612.

[27] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida,
“Improving code review effectiveness through reviewer recommenda-
tions,” in International Workshop on Cooperative and Human Aspects
of Software Engineering, 2014, pp. 119–122.

[28] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto, “Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering, 2015, pp. 141–150.

[29] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in Ieee/acm International Conference on Software Engineering
Companion, 2016, pp. 222–231.

[30] Y. Saito, K. Fujiwara, H. Igaki, N. Yoshida, and H. Iida, “How do github
users feel with pull-based development?” in International Workshop on
Empirical Software Engineering in Practice, 2016, pp. 7–11.

[31] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for it:
Determinants of pull request evaluation latency on github,” in Mining
Software Repositories, 2015, pp. 367–371.

[32] D. M. Soares, M. L. D. L. Jnior, L. Murta, and A. Plastino, “Rejection
factors of pull requests filed by core team developers in software
projects with high acceptance rates,” in IEEE International Conference
on Machine Learning and Applications, 2016, pp. 960–965.

[33] L. Murta and A. Plastino, “Acceptance factors of pull requests in open-
source projects,” in ACM Symposium on Applied Computing, 2015, pp.
1541–1546.

[34] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network,” in Ieee/acm International Conference on Automated
Software Engineering, 2016, pp. 51–62.

[35] D. Correa, S. Lal, A. Saini, and A. Sureka, “Samekana: A browser
extension for including relevant web links in issue tracking system
discussion forum,” in Software Engineering Conference, 2013, pp. 25–
33.

[36] F. Zampetti, L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, and
M. Lanza, “How developers document pull requests with external
references,” in Program Comprehension (ICPC), 2017 IEEE/ACM 25th
International Conference on. IEEE, 2017, pp. 23–33.

