
 1



Abstract—API related questions are increasingly posted

and discussed by developers in popular Question and

Answer (Q&A) forums like Stack Overflow. However, their

extremely long resolution time seriously delays the working

schedules of developers. Despite researchers have

investigated how to automatically resolve API related

questions by recommending correct APIs for them, there is

still much room for additional improvement. In this paper,

we propose a novel approach named RASH towards

recommending correct APIs for API related questions in

Stack Overflow by leveraging both API specifications and

historical resolved questions. Given a new API related

question, RASH recommends APIs for it guided by two

central observations. First, the more lexically similar the

functional description in an API’s specification is to the

new question, the more likely that the API can resolve the

new question. Second, the APIs that have resolved more

historical similar questions can also help to resolve the new

question. To verify the effectiveness of RASH, we construct

and publish a corpus containing 1,234 API related

questions with their correct APIs from Stack Overflow, and

conduct extensive experiments over it. The experimental

results show that RASH is relatively stable and robust to

different quality of questions. In addition, RASH hits

nearly 70% correct APIs and outperforms the

state-of-the-art approach by 15.64% when recommending

15 APIs for each question.

Index Terms—Application Programming Interfaces,

Information Retrieval, Recommendation System, Stack Overflow

I. INTRODUCTION

oftware developers tend to reuse Application Programming

Interfaces (APIs) in existing frameworks and libraries to

facilitate their development process [1, 2, 3]. When they have

no idea about what exact APIs to use or how to use specific

APIs properly, they usually submit questions illustrating the

API usage problems to seek professional help in Stack

Overflow, a popular technical Question and Answer (Q&A)

forum attracting over 50 million visitors each month [4, 5, 6, 7].

This paper is partially supported by the National Natural Science

Foundation of China under Grant No. 61722202 and Grant No. 61370144.

J. Zhang, H. Jiang, Z. Ren, and X. Chen are with the School of Software,

Dalian University of Technology, Dalian, China. E-mail: jingxuanzhang@
mail.dlut.edu.cn, jianghe@dlut.edu.cn, zren@dlut.edu.cn, chenxin4391@

mail.dlut.edu.cn.

However, resolving these API related questions may take a

very long time, since it is difficult to propose an accepted

answer, which needs to be discussed continuously by

developers [8]. For example, the average resolution time of API

related questions in the constructed corpus is nearly 17 days,

which is 3 days longer than that of other questions (see Section

II.B). Such a long resolution time may heavily decrease the

working efficiency and seriously delay the working schedules

of developers [9, 10]. Furthermore, API related questions

usually receive wide attentions from developers who may

encounter the same or similar API usage problems. For instance,

an API related question is viewed more than 4,600 times on

average, which is twice as many as that of other questions (see

Section II.B). Hence, automatically resolving API related

questions could bring tremendous benefits for developers.

Recently, a new task named Question-to-API

recommendation (Q2API) is issued [11]. When a new API

related question is submitted to Stack Overflow, this task aims

to automatically resolve it by recommending correct APIs,

whose API specifications have non-trivial semantic overlap

with the accepted answer. Therefore, by checking the

recommended APIs and reading through their API

specifications, the submitter can efficiently program with the

correct APIs or easily think out the solution on his/her own,

even before the accepted answer is posted [11]. In such a way,

addressing this task could accelerate the resolution of API

related questions and boost submitters’ productivity.

In the literature, Ye et al. propose a seminal approach

towards addressing the Q2API task based on the word

embedding technique [11]. Given a new API related question,

this approach aims to rank all the APIs in the same

programming language (e.g., Java) as the new question and

recommend the top ranked APIs for it. More specifically, this

approach first achieves three features for each API by

calculating similarities between this new question and the

functional description in API specifications, including the

cosine similarity and two word embedding based similarities.

Then, a weighting scheme is employed to calculate the final

score for each API by combining the three features, and the

weight of each feature is achieved by a leaning-to-rank system.

At last, all the APIs are ranked in a descending order based on

their final scores, and the top ranked APIs are recommended.

Evaluated over a non-publicly available corpus, this approach

is superior to the simple method, which only uses the cosine

similarity to rank APIs. However, the existing approach does

not leverage the domain specific knowledge to address the

Recommending APIs for API Related Questions

in Stack Overflow

Jingxuan Zhang, Student Member, IEEE, He Jiang, Zhilei Ren, Member, IEEE, and Xin Chen

S

 2

Q2API task. Hence, there is still much room for improvement.

In this paper, we propose a novel approach of

Recommending APIs for API related questions based on API

Specifications and Historical resolved questions (RASH). In

contrast to the existing approach, RASH fully leverages the

domain specific knowledge in Stack Overflow to better address

the Q2API task. By observing plentiful API related questions

with their correct APIs in Stack Overflow, we find that if more

overlapping words are contained in both the new API related

question and the functional description in an API’s

specification, the API is highly likely to resolve the new

question (see Section II.C). In addition, similar questions can

be resolved by similar or the same correct APIs. Hence, we can

leverage the correct APIs that have resolved historical similar

questions to resolve the new API related question (see Section

II.C). These important observations motivate us to consider and

better leverage the valuable information in API specifications

and historical resolved questions.

More specifically, RASH works as follows. Given a new API

related question targeted towards a specific programming

language (e.g., Java), RASH first achieves two correlation

scores for each API in the same programming language by

leveraging both API specifications and historical resolved

questions. RASH obtains the first correlation score by

calculating the cosine similarity between the new question and

the functional description in each API’s specification. Next,

RASH ranks all the APIs based on their correlation scores and

selects the top 500 APIs as candidate APIs, which are likely to

be correct APIs. Meanwhile, RASH also achieves the second

correlation score for each API by analyzing similar questions

that have been resolved in history with their correct APIs. Then,

after normalizing the two correlation scores, RASH calculates

their arithmetic mean and treats it as the final score for each

API. Finally, RASH employs an API ranking scheme based on

candidate APIs with their final scores, and recommends the top

ranked APIs to the submitter of the new API related question.

We collect and construct a corpus containing 1,234 API

related questions with their correct APIs from Stack Overflow,

and open it to the public [12]. We conduct extensive

experiments over the corpus to evaluate the performance of

RASH. From the experimental results we can see that, in terms

of parameter selection, RASH achieves the best results when

the number of candidate APIs is equal to 500. From the

perspective of robustness, RASH performs similarly over

high-quality questions and low-quality questions, which

indicates that RASH is insensitive to different quality of API

related questions. In terms of stability, the performance of

RASH is steadily increasing when the number of API related

questions is accumulated large enough, i.e., 200. In terms of

effectiveness, RASH achieves the Hit@15 (Hit Rate when

recommending 15 APIs) of 69.12% and outperforms the

state-of-the-art approach by 15.64%.

In summary, this paper makes the following contributions:

 We propose a novel approach named RASH, which

leverages the information in both API specifications and

historical resolved questions, to better recommend correct

APIs for API related questions.

Fig. 1. A Q&A pair example

 Experiments over the constructed corpus show that RASH

outperforms the state-of-the-art approach by 15.64% in

terms of Hit@15.

 We construct a corpus containing 1,234 API related

questions with their correct APIs from Stack Overflow and

open it to the public [11]. Other researchers can benefit

from it for further research.

The remainder of the paper is organized as follows. In

Section II, we first show the motivation of this study. We

illustrate the framework of RASH with its main components in

Section III. Then, we elaborate the experimental setup and

experimental results in Section IV and Section V, respectively.

Next, in Section VI and Section VII, we introduce the threat to

validity and related work. At last, we make a conclusion and

mention future work in Section VIII.

II. MOTIVATION

In this section, we first present some preliminaries about how

submitters post API related questions in Stack Overflow. Next,

we demonstrate the importance of API related questions in

Stack Overflow, which motivates us to propose an approach to

address the Q2API task. Finally, we show our observations on

API related questions, which motivate us to better leverage the

information in API specifications and historical resolved

questions.

A. Preliminaries

Fig. 1 shows a Q&A pair example1 with several essential

items, such as question title, question body, and tags. Generally,

when a developer (submitter) encounters an API usage problem

and wants to seek professional help from experienced

developers, he/she needs to follow a series of guidelines to

1 https://stackoverflow.com/questions/2228462/are-there-any-good-cachedrowse

t-implementations-other-than-the-proprietary-sun-o.

Question

Title View

Count

Tags

Question

Body

User

Score

Favorite

Count

Accepted

Answer

Answerer

Submitter

 3

submit a new question in Stack Overflow. First, the submitter

should summarize and refine the key point of the problem using

one sentence, which is called question title. Then, the submitter

should specify the details of the problem, which is called

question body, in natural language with some code samples (if

necessary). In addition, the submitter is required to mark this

new question with some keywords, which are called tags, to

categorize this new question. Other developers can answer the

new question (answer), vote for the question or the answer

based on its quality (user score of the question or the answer),

and mark it as favorite (favorite count). Stack Overflow also

automatically records the view times of the new question (view

count). After verifying the posted answers, the submitter can

select one of them as the solution and mark it as accepted

(accepted answer). However, the submitter may have to wait an

extremely long time until the accepted answer is posted, thus

decreasing the working efficiency of the submitter [8].

As shown in Fig. 1, BenM asks a question on Feb. 9, 2010 to

find a good API, which can implement CachedRowSet other

than the proprietary Sun one. After an extremely long time until

Apr. 14, 2014, PaoloC posts an answer which is accepted. We

can see that it takes more than 4 years to resolve this question.

In addition, there is a hyperlink to Java API specifications in the

accepted answer. By parsing the hyperlink, we can find that the

javax.sql.rowset.RowSetProvider API is the correct API to

resolve this question. In addition, this Q&A pair has been

viewed 5,531 times, which implies that abundant developers

may encounter the same or similar API usage problems.

B. The Importance of API Related Questions

Table I

COMPARISON BETWEEN API RELATED QUESTIONS AND OTHER QUESTIONS

Question

Avg.

Question

Score

Avg.

Answer

Score

Avg.

View

Count

Avg.

Favorite

Count

Avg.

Resolution Time

(days)

API

Related
4.26 5.26 4,609 0.83 16.97

Others 1.96 3.13 2,225 0.62 13.69

Developers tend to reuse APIs in existing libraries to help

them program [13, 14]. Hence, they may encounter various API

usage problems when programming with APIs. It is difficult for

developers to learn APIs by themselves, and seeking help from

experienced developers by asking or searching questions in

Stack Overflow is a common practice [4, 5, 6]. In such a way,

API related questions usually receive wide attentions from

developers, thus making API related questions more important

than other questions.

To demonstrate the importance of API related questions, we

compare Java API related questions in the constructed corpus

(see Section IV.B) against other Java tagged questions with

several characteristics shown in Table I. Obviously, both API

related questions and their answers achieve higher average user

scores than other Java tagged questions and their answers. For

example, the average user score of API related questions is

4.26. In contrast, it is only 1.96 for other Java tagged questions.

The average view count for API related questions is more than

4.6 thousand, which is more than twice as many as that of other

Java tagged questions. The average resolution time of API

related questions is nearly 17 days and 3 days longer than that

of other Java tagged questions.

In summary, API related questions achieve higher quality,

attract more developers, and take longer time to be resolved.

Hence, automatically resolving API related questions is

significant to abundant developers.

C. Observations on API Related Questions

After observing plentiful API related questions, we have the

following two observations, based on which we design our

novel approach RASH.

(1) The more lexically similar the functional description in an

API’s specification is to the new API related question, the

more likely that the API can resolve this new question.

(2) The APIs that have resolved similar questions in history can

also be used to resolve the new API related question.

Fig. 2. An API related question and the functional description of its correct API

We present an example to illustrate the first observation. Fig.

2 shows a simplified API related question2 in Stack Overflow.

Once the question is submitted, other developers try to resolve

it by providing a correct API among thousands of possible APIs.

After a series of discussions, the correct API is recommended,

i.e., java.text.SimpleDateFormat, whose functional description

in API specification3 is also shown in Fig. 2. We can see that

many overlapping words (in bold fonts) appear in both the

question and the functional description of its correct API, such

as date, time, format, and calendar, hence there is a good

lexical match between them.

To better present the second observation, we list all the

correct APIs in the constructed corpus (see Section IV.B) and

count their frequencies to resolve API related questions. We

2https://stackoverflow.com/questions/11933137/how-to-get-iso-format-from-tim

e-in-milliseconds-in-java.
3 http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html.

A new API related question in Stack Overflow

Question Title: How to get ISO format from time in milliseconds in
Java?

Question Body: Is it simple way to get yyyy-MM-dd HH:mm:ss,SSS

from time in millisecond? I've found some information how to do this
from new Date() or Calendar.getInstance(), but couldn't find if it can

be done from long (e.g. 1344855183166)

Tags: <Java> <date>

Functional description in SimpleDateFormat

SimpleDateFormat is a concrete class for formatting and parsing dates

in a locale-sensitive manner. It allows for formatting (date -> text),

parsing (text -> date), and normalization…Date and time formats are
specified by date and time pattern strings…

If the formatter's Calendar is the Gregorian calendar…

Date or Time Component: Millisecond…
The following examples show how date and time patterns are

interpreted in the U.S. locale:

yyyy-MM-dd'T'HH:mm:ss.SSSZ"…

 4

rank the correct APIs by their frequencies and show the results

in Fig. 3. The x-axis shows the correct API id and the y-axis

shows the frequency to resolve questions. We can see that,

there are totally 419 correct APIs for 1,234 API related

questions in the corpus. On average, one correct API can

resolve nearly 3 API related questions. The most frequent

correct API is java.lang.String, which can resolve as many as

51 API related questions. In addition, 212 correct APIs (more

than half correct APIs) can resolve no less than 2 API related

questions.

Fig. 3. The correct API frequency in the corpus

In conclusion, if there exists a good lexical match between

the new API related question and the functional description in

an API’s specification, the API is highly likely to resolve this

new question. In addition, correct APIs are overlapped for API

related questions in Stack Overflow. Hence, the correct APIs of

historical resolved questions can also be used to resolve this

new API related question. These observations motivate us to

consider both API specifications and historical resolved

questions to better resolve the Q2API task.

III. FRAMEWORK

New Question

Historical

Resolved

Questions

API

Specifications

Scoring based on

API Specifications

Selecting

Candidate APIs

Scoring based on

Historical Resolved

Questions

Combining Scores

Ranking APIs

Ranked

 APIs

Correlation

Scores

Correlation

Scores

Candidate

APIs

Final

Scores

Top ranked

APIs

RASH

Fig. 4. The framework of RASH

In this section, we illustrate the framework of RASH shown

in Fig. 4. The goal of RASH is to resolve API related questions

in Stack Overflow by recommending correct APIs for them.

RASH takes in the new API related question, API

specifications, and historical resolved questions as input, and

outputs top ranked APIs for the new question. Hence, the

submitter of the new question can check the recommended

APIs one by one until the correct APIs are found. In such a way,

the correct APIs can be quickly located. Obviously, it could be

ideal if the correct APIs are ranked as high as possible. RASH

consists of five components, including Scoring based on API

Specifications, Selecting Candidate APIs, Scoring based on

Historical Resolved Questions, Combining Scores, and

Ranking APIs. In the following part of this section, we take the

API related question in Fig. 2 as an example to clearly illustrate

how each component works.

A. Scoring based on API Specifications

This component aims to achieve a correlation score for each

API in the same programming language (e.g., Java) as the new

API related question based on API specifications. This

component is designed by the rationality that, the more

lexically similar the functional description in an API’s

specification is to the new API related question, the more likely

that they describe the same or similar API usages, thus the more

likely that the API can resolve this new question [11].

API specifications play an important role in explaining API

usages, including functionalities, behaviors, concepts, and

directives, etc., and developers highly expect to find their

desired information in API specifications [15]. In this paper, we

take Java API (version 7) as a case study and construct a corpus

containing 1,234 Java API related questions with their correct

Java APIs. Java API specifications are generated through

Javadoc following a set of conventions with a uniform style and

structure. They are organized as a series of HTML webpages,

each of which introduces a specific Java API package or API

type [15]. The same as [11], we introduce all the Java interface

APIs, class APIs, exception APIs, and error APIs as the

possible APIs to rank and recommend, and eventually achieve

3,871 Java APIs in total. As a result, it is challenging to

recommend correct APIs within so many APIs for API related

questions.

For each API, we achieve a correlation score by calculating

the widely used cosine similarity between the new API related

question and its functional description in API specification [16].

Before calculating the cosine similarity, both the new question

and the functional description are transformed into vectors

(known as Vector Space Model), where each dimension stands

for a term and its corresponding value presents the term’s

weight. This process consists of a series of natural language

processing steps, i.e., tokenization (including camel case

splitting), stemming, and stop word removal [16]. Then, each

term is given a weight measuring its importance. In this study,

we employ the widely used Term Frequency (TF) × Inverse

Document Frequency (IDF) to measure the weight for each

term. Given a document (the new question or the functional

description in this study), TF and IDF of a term in this

document can be calculated as follows.

TFt =
Tt

∑ Tn
i=1 i

 (1)

where t stands for a term, n stands for the number of distinct

terms, and Tt corresponds to the frequency (occurrence number)

of term t in the document.

0

10

20

30

40

50

60

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8
1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

F
re

q
u
en

cy

Correct API Id

Correct API Frequency

 5

𝐼𝐷𝐹𝑡 = 𝑙𝑜𝑔
|𝐷|

|{𝑗:𝑡∈𝑑𝑗}|
 (2)

where |D| is the number of documents in total and |{𝑗: 𝑡 ∈ 𝑑𝑗}|

means the number of documents containing term t.

Based on TF and IDF, the weight of a term t can be

calculated by the following formula.

𝑊𝑒𝑖𝑔ℎ𝑡𝑡 = 𝑇𝐹𝑡 × 𝐼𝐷𝐹𝑡 (3)

In such a way, we can measure the importance of each term

and transform both the new API related question and the

functional description in each API’s specification into vectors.

As shown in Fig. 1, a new API related question contains both

question title and question body. We first transform question

title and question body into two vectors separately using the

above-mentioned method. Then, we combine the two vectors to

form a final vector as the representation of the new question.

Inspired from existing related studies [17, 18], we double the

weights of terms in question title to strength their impact, since

question title is a concise summary of the problem. Therefore,

the final weights of the terms in the final vector of the new API

related question can be calculated as follows.

𝑊𝑡 = 2 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑡∈𝑡𝑖𝑡𝑙𝑒 + 1 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑡∈𝑏𝑜𝑑𝑦 (4)

After transforming the new API related question and the

functional description in each API’s specification into vectors,

their cosine similarity is calculated by the following formula.

𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄, 𝐴) = 𝑐𝑜𝑠(𝑄, 𝐴) =
∑ (𝑄𝑖×𝐴𝑖)𝑛

𝑖=1

√∑ (𝑄𝑖)2 𝑛
𝑖=1 √∑ (𝐴𝑖)2𝑛

𝑖=1

 (5)

where Q is the new question and A is an API. Qi and Ai are the

final weights of term i in Q and A’s functional description.

Running Example. Given the API related question in Fig. 2,

RASH achieves a correlation score for each API, ranging from

0.3708 to 0. The correlation scores of more than 1,600 APIs are

0, so there is no overlapping word in the new question and their

functional description in API specifications. The correlation

score of the correct API java.text.SimpleDateFormat is 0.3506,

which is the second highest correction score in all the APIs.

B. Selecting Candidate APIs

This component aims to achieve candidate APIs after

obtaining a correlation score for each API. Intuitively, the

higher the correlation score of an API, the more likely the API

can resolve the new API related question. Hence, we rank APIs

based on their correlation scores and select top 500 APIs as

candidate APIs (i.e., #candidate=500), which are highly likely

to be the correct APIs to resolve the new API related question.

Empirically, the bottom ranked APIs may introduce noises and

impose a negative impact on the recommendation results.

Hence, they are less likely to be the correct APIs and filtered

out. In the Experimental Results section, we will validate

whether selecting top 500 APIs as candidates is effective (see

Section V.A).

A New Question

A historical

resolved question

A historical

resolved question

A historical

resolved question...

...

A li nk den o tes t he s im ilar it y

between the new question and a

historical question is larger than 0

A l i nk de n ot es a

q u e s t i o n c an b e

resolved by a API

Fig. 5. The new question and APIs linking graph

Running Example. Taking the API related question in Fig.

2 as an example, RASH obtains candidate APIs (i.e., top 500

APIs) based on their correlation scores in this component. The

correct API java.text.SimpleDateFormat ranks the second

highest, so it is also regarded as a candidate API. Those APIs

whose functional description has no overlapping word with this

question (i.e., achieving correlation scores equaling to 0) are

filtered out. It implies that RASH can retain correct APIs and

remove incorrect APIs as many as possible.

C. Scoring based on Historical Resolved Questions

This component aims to achieve another correlation score for

each API based on historical resolved questions with their

correct APIs. When a new API related question is submitted to

Stack Overflow, we can examine and analyze historical similar

questions with their correct APIs, since similar questions tend

to be resolved by similar or the same APIs (see Section II.C).

The correct APIs that have resolved similar questions in history

can also help to resolve the new API related question. To the

best of our knowledge, the information in historical resolved

questions has not been used to address the Q2API task, and we

first consider and fully leverage it in this paper.

We order all the questions based on their submission time.

For the new API related question, we consider the linking

information in the historical resolved API related questions,

which have been submitted and resolved before the new

question, with their correct APIs. As shown in Fig. 5, the first

layer and the second layer present the new API related question

and historical resolved questions, respectively, and the third

layer shows all the APIs. We first calculate the cosine similarity

between the new question and historical resolved questions

using formula (5). If their cosine similarity is greater than 0, we

link them together. Furthermore, for the historical resolved

questions in the second layer, we link them to their correct APIs.

In such a way, all the APIs can be indirectly linked to the new

API related question through the historical resolved questions

as middle agents. Hence, the correlation score for each API can

be obtained by the following formula.

𝑠𝑖𝑚_ℎ𝑖𝑠(𝑄, 𝐴) = ∑ (𝑐𝑜𝑠 (𝑄, ℎ𝑖𝑠𝑞)/𝑚𝑞)ℎ𝑖𝑠𝑞∈ℎ𝑖𝑠_𝑠𝑜𝑙(𝐴) (6)

where Q is the new question and A is an API. ℎ𝑖𝑠_𝑠𝑜𝑙(𝐴) is the

set of historical questions that can be resolved by A, and mq

means the number of correct APIs hisq has [16].

 6

Table II
THE API RANKING SCHEME

Input: candidate APIs and the final scores of all APIs

1

2

3
4

5

6
7

8

9

obtain the final scores for all the candidate APIs

PriorSet = Φ

foreach (API A in candidate APIs)
 if (A appears in the question title and tags)

 add A to PriorSet

if (PriorSet is not null)
rank APIs in PriorSet based on their frequencies in the question

title and tags. If two APIs have the same frequency, rank them

based on their first emerging locations
if (the number of ranked APIs is less than 15)

rank the rest candidate APIs based their final scores

Output: a ranked API recommendation list containing 15 APIs

Running Example. The API related question in Fig. 2 is

submitted on Aug. 13, 2012. Before the submission of this

question, 302 API related questions have been resolved in the

constructed corpus (see Section IV.B). The correct API

java.text.SimpleDateFormat have resolved 9 API related

questions in history. After analyzing these historical resolved

questions, RASH achieves the second correlation score for the

correct API of 2.2012, which is the highest in all the APIs.

D. Combining Scores

This component aims to achieve a final score for each API.

After obtaining the two correlation scores for each API, we first

normalize them into the range from 0 to 1 by divided by their

maximal values. Then, we combine the two correlation scores

into a final score by calculating their arithmetic mean as

follows.

𝐹𝑖𝑛𝑎𝑙𝑆𝑜𝑐𝑟𝑒(𝑄, 𝐴) =
𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄,𝐴)+𝑠𝑖𝑚_ℎ𝑖𝑠(𝑄,𝐴)

2
 (7)

where 𝑋 means the normalized value of X, e.g., 𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄, 𝐴)

is the normalized 𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄, 𝐴).
In this study, the two correlation scores for each API are

given the same weight due to two major reasons. First, treating

the two correlation scores equally is a simple but efficient

method [17]. Second, we find that the weights of the correlation

scores have little effect on the final results of RASH in some

preliminary experiments. In the Experimental Results section,

we will validate the effectiveness of treating them equally (see

Section V.B).

Running Example. For the API related question in Fig. 2,

RASH achieves the final score for each API in this component.

The two normalized correlation scores of the correct API

java.text.SimpleDateFormat are 0.9455 and 1, respectively.

Hence, the final score of the correct API is 0.9728, which is the

highest in all the APIs.

E. Ranking APIs

This component aims to rank candidate APIs and

recommend top 15 APIs by an API ranking scheme.

Recommending top 15 results is a common practice in the

recommendation systems within the software engineering

domain, and many similar works also employ the same

mechanism [11, 16]. The API ranking scheme is designed by

the following observations. If a candidate API appears in the

question title or tags of the new API related question, it is

highly likely that the question is discussing the usage of the

candidate API, since the submitter sometimes puts the APIs,

which he/she does not know the proper usages, in the question

title or tags to make the question easy to be found and resolved.

Hence, such candidate APIs should be ranked the highest. In

contrast, if there is no candidate API in the question title or tags

of the new question, the candidate APIs achieving the larger

final scores should be ranked higher.

Table II shows the API ranking scheme, which takes in

candidate APIs as well as the final scores of all APIs, and

outputs the top 15 ranked APIs. First, we obtain the final scores

for all the candidate APIs, since we only consider candidate

APIs and filter out the rests (line 1). Next, we define an API set

named PriorSet, which is initialized as empty (line 2). The

APIs in PriorSet are first-rank APIs, so they are ranked the

highest in the recommendation list. Then, for each candidate

API (line 3), we check whether it appears in the question title

and tags of the new API related question (line 4). If true, this

candidate API is added into the PriorSet (line 5). In such a way,

after checking all the candidate APIs, we can obtain an API

PriorSet. For the APIs in PriorSet (line 6), we rank them based

on their frequencies in the question title and tags of the new

API related question. If any two APIs have the same frequency,

we rank them based on their first emerging locations, i.e., the

APIs emerging in the front are ranked higher. In such a way, we

can rank candidate APIs in PriorSet (line 7). Finally, if the

number of ranked APIs is less than 15 (line 8), we rank the rest

candidate APIs based on their final scores (line 9). In this

manner, we can obtain a ranked API recommendation list

containing 15 APIs and recommend them to the submitter of

the new API related question.

Running Example. Still taking the API related question in

Fig. 2 as an example, there is no API contained in the question

title and tags of the question. As a result, the PriorSet is empty.

Then, all the candidate APIs are ranked based on their final

scores. The correct API java.text.SimpleDateFormat achieves

the largest final score, so it is ranked the highest. Obviously, the

correct API can be easily found by the submitter of the question,

thus accelerating the resolution of this question.

IV. EXPERIMENTAL SETUP

In this section, we first describe the experiment settings.

Next, we present how we collect and construct the corpus used

in the experiments. Then, we illustrate the details of the

baseline approach. Finally, we show the evaluation metrics

used in this paper.

A. Experiment Settings

In this study, we conduct all the experiments on a Core i7

CPU computer with 8 GB memory running Windows 7. RASH

is implemented in the Java Programming language compiled by

JDK 7. In addition, we are to open all source code of RASH

after this paper is published.

B. Data Collection

In the previous study [11], Ye et al. propose a seminal

 7

approach towards addressing the Q2API task, and evaluate

their approach over a corpus of 604 API related questions with

their correct APIs. However, this corpus is not publicly

available. Hence, we construct a new corpus and open it to the

public [12]. Similarly, we follow four steps described in [11] to

construct the corpus.

(1) We download the Stack Overflow dump files published in

September 20164, and combine the questions tagged with

Java with their accepted answers to generate a series of

Q&A pairs. Eventually, we obtain 990,923 Java tagged

Q&A pairs in this step.

(2) For the Java tagged Q&A pairs, we only retain those Q&A

pairs whose accepted answers have hyperlinks to the Java

API specifications. In such a way, we can ensure that these

questions are API related questions. After this step, we

achieve 3,926 Q&A pairs.

(3) For the retained Q&A pairs, we further filter out those Q&A

pairs whose user score of either the question or the accepted

answer is lower than 0. This step can reduce low-quality

Q&A pairs and false positive correct APIs as many as

possible. After this step, 1,234 high-quality Q&A pairs can

be obtained.

(4) For each question in the retained Q&A pair, we obtain the

correct APIs by parsing the hyperlinks to the Java API

specifications in the accepted answer. In such a way, the

API specifications of the correct APIs have semantic

overlap with the accepted answers, thus the correct APIs

can resolve the API related questions. In this step, we

eventually achieve 1,234 Java API related questions with

their correct APIs.

It should be noted that Stack Overflow contains more API

related questions in reality. To make it easy to obtain the correct

APIs, conform to the definition of Q2API, and follow the same

procedures as [11], we construct the corpus containing 1,234

API related questions, which is more than twice as large as the

corpus in [11]. In the future, we plan to introduce more API

related questions to verify RASH.

Table III

 CHARACTERISTICS OF THE CORPUS

Avg. distinct words in question title 4.60

Avg. distinct words in question body 46.12

Avg. tags each question has 3.07

Avg. sentences in question body 5.12

Submission time of the first question Sep. 9, 2008

Submission time of the last question Aug. 31, 2016

The characteristics of the corpus are shown in Table III. On

average, a question title includes 4.60 distinct words, while a

question body contains 46.12 distinct words within 5.12

sentences. In addition, each question involves nearly 3 tags.

The first question is submitted on Sep. 9, 2008 and the last

question is submitted on Aug. 31, 2016.

C. The Baseline Approach

Ye et al. first issue the task of Q2API and present their

4 https://archive.org/details/stackexchange

attempts toward resolving this task using an IR technique. It is

the state-of-the-art approach, so we employ it as the baseline

approach for comparison [11]. This baseline approach uses the

word embedding technique to calculate similarities and

recommend APIs for API related questions. Word embedding

is a technique to map words into vectors of real numbers. Based

on word embedding, the similarity between two words can be

calculated. Furthermore, the asymmetric document similarity

can also be calculated.

More specifically, for each new API related question, the

baseline approach calculates three features for each API based

on API specifications, including the cosine similarity, the word

embedding based similarity from the new question to API, and

the word embedding based similarity from API to the new

question. The cosine similarity is calculated between the new

question and the functional description in each API’s

specification. In the word embedding based similarity, an

asymmetric similarity is calculated between them after words

are represented into vectors. Then, a weighted sum of the three

features is calculated, and the weight of each feature is trained

from a training set using a learning-to-rank system, which aims

to optimize the rank so that the correct APIs are ranked in the

top of the training set. Finally, all the APIs are ranked based on

their weighted sums, and the top ranked APIs are recommended.

They validate their approach over a non-publicly available

corpus containing 604 Java API related questions with their

correct APIs. The results show that the baseline approach is

superior to the straightforward method, which only uses the

simple cosine similarity to rank APIs.

D. Evaluation Metrics

To measure the effectiveness of different approaches from

various aspects, inspired from [11, 16, 19], we employ four

evaluation metrics in this study, including Hit Rate,

Normalized Discounted Cumulative Gain (NDCG), Mean

Average Precision (MAP), and Mean Reciprocal Rank (MRR).

Among them, Hit Rate and NDCG are often used to evaluate

recommendation systems [20], and MAP as well as MRR are

widely used in IR [11, 16]. Since we recommend top 15 APIs

for each API related question, we calculate the four evaluation

metrics from top 1 to top 15 to clearly and incrementally

present the performance, which are denoted as Hit@K,

NDCG@K, MAP@K, and MRR@K (K is the recommended

number ranging from 1 to 15), respectively.

Hit Rate measures the percentage of questions that can be

resolved by the recommended APIs [20]. Hit Rate is calculated

by the number of questions whose correct APIs are exactly

recommended divided by the number of all the questions, of

which the formula is shown as follows.

𝐻𝑖𝑡@𝐾 =
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑜𝑝 𝐾 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐴𝑃𝐼𝑠

𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
 (8)

NDCG measures the quality of the rank by calculating the

gain of each result according to its position [20]. As a

normalized DCG, NDCG is calculated by divided by a special

ideal DCG, which ranks all 1s higher than 0s. Therefore,

NDCG can be calculated as follows.

 8

𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝑖𝑑𝑒𝑎𝑙 𝐷𝐶𝐺@𝐾
 𝐷𝐶𝐺@𝐾 = ∑

2𝑟𝑒𝑙(𝑖)−1

𝑙𝑜𝑔2(𝑖+1)

𝐾
𝑖=1 (9)

where i is the rank. 𝑟𝑒𝑙(𝑖) is a binary function to check whether

the API in rank i is correct or not. For example, if the API in

rank i is a correct API, 𝑟𝑒𝑙(𝑖) = 1. Otherwise, 𝑟𝑒𝑙(𝑖) = 0.

MAP measures the quality of the rank when a query (a new

API related question in this paper) may have multiple correct

answers (correct APIs in this paper) [11, 16]. MAP is the mean

of all the average precisions of queries, and it can be calculated

as follows.

𝑀𝐴𝑃@𝐾 =
1

|𝑄|
∑

∑ (𝑃(𝑖)×𝑟𝑒𝑙(𝑖))𝐾
𝑖=1

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

𝑄
𝑗=1 𝑃(𝑖) =

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑖

𝑖
 (10)

where j is a query, |Q| is the number of queries, and P(i) is the

precision at a given cut-off rank i.

MRR is another widely used evaluation metric to measure

the quality of the rank in IR [11, 16]. MRR is the average of the

reciprocal ranks for all the queries. The reciprocal rank of a

single query is the multiplicative inverse of the first correct

answer. Hence, MRR can be calculated as follows.

𝑀𝑅𝑅@𝐾 =
1

|𝑄|
∑

1

𝐾_𝑅𝑎𝑛𝑘𝑖

𝑄
𝑗=1 (11)

where K_Ranki means the rank position of the first correct

answer in the top K recommended list for the i-th query.

V. EXPERIMENTAL RESULTS

In this section, we investigate five Research Questions (RQs)

to investigate the effectiveness of RASH.

A. Investigation to RQ1

RQ1: How does the number of candidate APIs influence the

performance of RASH?

Motivation. In the Selecting Candidate APIs component of

RASH, the number of candidate APIs (#candidate) is set to 500

by default, i.e., #candidate=500. To verify whether setting

#candidate=500 is effective and close to the optimal value, we

set up this RQ.

Approach. We adjust #candidate by setting it to several

different values, including 100, 500, 1,000, and the number of

all the APIs (i.e., 3,871). By comparing the results among {100,

500, and 1,000}, we can know which value is the best and close

to the optimal value. In addition, regarding all the APIs as

candidate APIs is equal to removing the component of

Selecting Candidate APIs. By comparing the results between

500 and the number of all the APIs, we can know whether the

component of Selecting Candidate APIs is effective.

Result. Fig. 6 shows the results of RASH when setting

#candidate to different values in terms of Hit Rate and NDCG

from top 1 to top 15, and Table IV presents the results of RASH

in terms of MAP and MRR accordingly. A specific number in

the figure and table means setting #candidate equaling to it, e.g.,

100 means #candidate=100, and all means #candidate=the

number of all the APIs.

Fig. 6. Hit Rate and NDCG for different number of candidate APIs

Table IV

MAP AND MRR FOR DIFFERENT NUMBER OF CANDIDATE APIS

K
MAP MRR

100 500 1,000 all 100 500 1,000 all

1 0.2753 0.2769 0.2725 0.2583 0.2853 0.2869 0.2820 0.2674

2 0.3014 0.3020 0.2976 0.2763 0.3096 0.3100 0.3055 0.2836

3 0.3239 0.3244 0.3182 0.2961 0.3325 0.3329 0.3266 0.3039

4 0.3363 0.3376 0.3309 0.3065 0.3445 0.3457 0.3387 0.3140

5 0.3448 0.3456 0.3395 0.3167 0.3521 0.3530 0.3467 0.3241

6 0.3507 0.3521 0.3455 0.3227 0.3580 0.3595 0.3526 0.3299

7 0.3550 0.3559 0.3495 0.3271 0.3622 0.3631 0.3564 0.3339

8 0.3580 0.3596 0.3525 0.3314 0.3651 0.3666 0.3592 0.3380

9 0.3605 0.3621 0.3552 0.3341 0.3678 0.3694 0.3620 0.3406

10 0.3624 0.3639 0.3576 0.3362 0.3696 0.3711 0.3642 0.3428

11 0.3642 0.3657 0.3595 0.3383 0.3713 0.3728 0.3662 0.3448

12 0.3657 0.3670 0.3611 0.3401 0.3727 0.3740 0.3678 0.3465

13 0.3666 0.3679 0.3618 0.3412 0.3737 0.3749 0.3685 0.3478

14 0.3673 0.3688 0.3629 0.3421 0.3744 0.3758 0.3696 0.3486

15 0.3680 0.3694 0.3635 0.3430 0.3751 0.3765 0.3702 0.3495

First, we try to compare the results when setting #candidate

to {100, 500, and 1,000}. We can see from Fig. 6 and Table IV

that, RASH achieves the best results on the whole when setting

#candidate=500, especially when recommending 15 APIs. For

example, RASH achieves Hit@15 and NDCG@15 of 69.12%

and 0.4475. In contrast, when setting #candidate=100 and

#candidate=1,000, RASH achieves 64.34% and 68.64% in

terms of Hit@15 and 0.4427 and 0.4409 in terms of

NDCG@15, respectively. As for MAP and MRR, RASH also

achieves the best results when setting #candidate=500.

Therefore, setting #candidate=500 is close to the optimal value.

Comparing the results between 500 and the number of all the

APIs can show the effectiveness of the Selecting Candidate

APIs component. As shown in Fig. 6 and Table IV, RASH

achieves better results when setting #candidate=500 than that

when setting #candidate=all. For example, when setting

#candidate=500, RASH achieves Hit@15 and NDCG@15 of

69.12% and 0.4475, respectively. In contrast, when setting

#candidate=all, RASH achieves Hit@15 of 67.67% and

NDCG@15 of 0.4222, respectively. Additionally, in terms of

MAP and MRR, RASH also achieves better results when

setting #candidate=500. Therefore, the component of Selecting

Candidate APIs is effective.

0.20

0.30

0.40

0.50

0.60

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
D

C
G

H
it

 R
at

e

K
NDCG 100 NDCG 500 NDCG 1,000 NDCG all

Hit Rate 100 Hit Rate 500 Hit Rate 1,000 Hit Rate all

 9

Fig. 7. Hit Rate and NDCG for RASH and its variants

Table V

MAP AND MRR FOR RASH AND ITS VARIANTS

K
MAP MRR

RASH_spe RASH_his RASH RASH_spe RASH_his RASH

1 0.2761 0.2749 0.2769 0.2861 0.2844 0.2869

2 0.3041 0.2986 0.3020 0.3120 0.3063 0.3100

3 0.3204 0.3140 0.3244 0.3290 0.3220 0.3329

4 0.3306 0.3252 0.3376 0.3391 0.3329 0.3457

5 0.3376 0.3324 0.3456 0.3453 0.3394 0.3530

6 0.3434 0.3377 0.3521 0.3512 0.3447 0.3595

7 0.3468 0.3410 0.3559 0.3544 0.3478 0.3631

8 0.3492 0.3436 0.3596 0.3568 0.3505 0.3666

9 0.3509 0.3456 0.3621 0.3584 0.3525 0.3694

10 0.3522 0.3470 0.3639 0.3598 0.3539 0.3711

11 0.3540 0.3491 0.3657 0.3616 0.3560 0.3728

12 0.3551 0.3502 0.3670 0.3626 0.3570 0.3740

13 0.3561 0.3510 0.3679 0.3635 0.3579 0.3749

14 0.3566 0.3515 0.3688 0.3640 0.3584 0.3758

15 0.3570 0.3523 0.3694 0.3644 0.3591 0.3765

The reason may be that, using a small parameter value (e.g.,

#candidate=100) will filter out some correct APIs. In contrast,

using a large one (e.g., #candidate=1,000 or #candidate=all)

will retain too many irrelevant APIs. Hence, choosing a suitable

moderate value (e.g., #candidate=500) can retain correct APIs

and filter out irrelevant APIs as many as possible.

Conclusion. RASH achieves the best results, when setting

#candidate=500. The component of Selecting Candidate APIs

is effective to retain correct APIs and reduce irrelevant APIs.

B. Investigation to RQ2

RQ2: Whether the combination of both the two correlation

scores can achieve better results than any of them alone?

Motivation. RASH combines both the correlation scores

from API specifications and historical resolved questions to

rank APIs for new API related questions. To validate whether

combining them can achieve better results than any of them

alone, we set up this RQ.

Approach. We define two variants of RASH. The first

variant named RASH_spe, which uses the correlation scores

from API specifications to select candidate APIs, regards these

correlation scores as the final scores for APIs, and applies the

same API ranking scheme to rank and recommend candidate

APIs. The second variant named RASH_his only considers the

correlation scores from historical resolved questions in the

same way. By comparing the results of RASH against its two

variants, we can know whether combing the two correlation

scores could achieve better results. In addition, by comparing

the results between RASH_spe and RASH_his, we can acquire

whether giving the two correlation scores from API

specifications and historical resolved questions the same

weight in formula (7) is effective (see Section III.D).

Results. Fig. 7 and Table V show the results of RASH and its

two variants in terms of Hit Rate, NDCG, MAP, and MRR from

top 1 to top 15. It is obvious that RASH achieve better results

than RASH_spe and RASH_his, especially when the number of

recommended APIs is increasing. Meanwhile, RASH_spe and

RASH_his perform similarly in terms of all the evaluation

metrics. When recommending only one API (i.e., K=1), RASH

achieves similar results as RASH_spe and RASH_his. For

example, the Hit@1 of RASH is 28.69%. While, RASH_spe

and RASH_his achieve 28.61% and 28.44%, respectively. In

terms of the other evaluation metrics, RASH also achieves the

best results, but the disparity is trivial. When considering top 5

APIs, RASH still achieves better results than RASH_spe and

RASH_his. For example, RASH achieves Hit@5 of 48.95%

and improves RASH_spe and RASH_his by 2.92% and 3.81%,

respectively. When recommending 10 APIs, RASH performs

quite better than RASH_spe and RASH_his. In particular,

when the recommended length is increased to 15, RASH

achieves significantly better results than RASH_spe and

RASH_his. For instance, RASH achieves Hit@15 of 69.12%.

In contrast, RASH_spe and RASH_his only achieve 62.24%

and 62.32%, respectively. In addition, as for NDCG@15,

RASH reaches to 0.4475 and improves RASH_spe and

RASH_his by 0.0249 and 0.0292, respectively. As for

MAP@15 and MRR@15, RASH also outperforms its variants.

After demonstrating the effectiveness of combining the

correlation scores from both API specifications and historical

resolved questions, we would like to explore the underlying

reasons. Correlation scores from API specifications detect the

correct APIs for new API related questions from the lexical

perspective. API specifications explain APIs’ functionalities in

the implementation domain, and API related questions in Stack

Overflow describe the requirements in the problem domain. If

they can match lexically, the APIs are highly likely to resolve

the API related questions. In addition, we observe that the

correct APIs are overlapped for similar questions. Therefore,

we fully leverage the correct APIs that have resolved similar

questions in history to resolve new API related questions. In

such a way, the two correlation scores from API specifications

and historical resolved questions complement and cooperate

each other. Hence, RASH can achieve better results.

In addition, we can also find that RASH_spe and RASH_his

achieve similar results in terms of all the evaluation metrics. It

implies that the two correlation scores from API specifications

and historical resolved questions make similar contributions to

detect the correct APIs. Hence, it is reasonable to give the two

correlation scores the same weight in formula (7), when

calculating the final score for each API (see Section III.D).

Conclusion. By aggregating both the correlation scores from

API specifications and historical resolved questions, RASH can

better recommend correct APIs for API related questions.

0.20

0.30

0.40

0.50

0.60

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
D

C
G

H
it

 R
at

e

K
NDCG RASH_spe NDCG RASH_his NDCG RASH

Hit Rate RASH_spe Hit Rate RASH_his Hit Rate RASH

 10

Fig. 8. User score of each question in the corpus. To better present the trend, we

show the base-e logarithm of each user score.

Fig. 9. Hit Rate and NDCG for different subsets.

Table VI

MAP AND MRR FOR DIFFERENT SUBSETS

K
MAP MRR

high low high low

1 0.2800 0.2730 0.2892 0.2833

2 0.3117 0.2963 0.3199 0.3045

3 0.3321 0.3169 0.3411 0.3251

4 0.3425 0.3299 0.3509 0.3378

5 0.3515 0.3377 0.3592 0.3450

6 0.3566 0.3443 0.3645 0.3519

7 0.3615 0.3486 0.3684 0.3562

8 0.3633 0.3529 0.3705 0.3603

9 0.3658 0.3562 0.3730 0.3635

10 0.3666 0.3580 0.3737 0.3652

11 0.3683 0.3592 0.3755 0.3664

12 0.3693 0.3610 0.3765 0.3684

13 0.3703 0.3619 0.3775 0.3692

14 0.3712 0.3625 0.3783 0.3699

15 0.3720 0.3633 0.3792 0.3707

C. Investigation to RQ3

RQ3: Is RASH sensitive to the quality of the questions?

Motivation. Due to different experience and expertise of

submitters, the quality of API related questions may vary

sharply [21]. Some questions can clearly describe the real

problems without missing any important information. In

contrast, the other questions may lack some critical details,

making them hard to be resolved. To investigate how RASH

performs over different quality of questions, we set up this RQ.

Approach. We split the constructed corpus into two subsets,

i.e., high-quality subset and low-quality subset. Similar as [21],

the quality of a question is judged by its user score. Inspired

from [5, 8], we set up 2 as the threshold to split the corpus, thus

the two generated subsets can retain similar characteristics with

the corpus as much as possible. If the user score of a question is

larger than 2, it is treated as a high-quality question and put into

the high-quality subset. Otherwise, it is placed into the

low-quality subset. We rank the API related questions in the

constructed corpus based on their user scores, and find that it

shows a long-tailed distribution as plotted in Fig. 8. About

two-third questions (i.e., 826 questions) achieve user scores no

more than 2, and they are allocated to the low-quality subset.

The rest 408 questions achieving user scores larger than 2 are

put into the high-quality subset. By applying RASH over the

two subsets separately, we can obtain the comparison results. If

RASH performs similarly over the two subsets, it indicates that

RASH is insensitive and robust to the quality of the questions.

Results. Fig. 9 and Table VI show the result of RASH over

the two subsets of questions with different quality in terms of

Hit Rate, NDCG, MAP, and MRR. high and low present the

results of RASH over the high-quality subset and the

low-quality subset, respectively. We can see from the figure

and table that, RASH performs similarly over the high-quality

subset and low-quality subset. For example, RASH achieves

Hit@15 of 66.91% over the high-quality subset and 69.37%

over the low-quality subset. In terms of NDCG, RASH

achieves NDCG@15 of 0.4449 over the high-quality subset

and 0.4433 over the low-quality subset, in which the disparity is

trivial. Similarly, RASH also achieves similar results over the

two subsets in terms of MAP and MRR.

The reason why RASH is insensitive to different quality of

questions may be that, RASH utilizes two correlation scores to

rank APIs. A low-quality question may cause a correlation

score fails to find the correct APIs. However, another

correlation score can compensate for this deficiency to

precisely detect the correct APIs. As a result, questions with

different quality have little impact on the performance of

RASH.

Conclusion. RASH performs similarly over high-quality

questions and low-quality questions. RASH is insensitive and

robust to the quality of questions.

D. Investigation to RQ4

RQ4: What is the impact of the question number on the

performance of RASH?

Motivation. RASH leverages the information in historical

resolved questions with their correct APIs to recommend APIs

for new API related questions. More resolved questions with

their correct APIs exist in history, more useful information can

be leveraged by RASH. Hence, the number of questions may

influence the performance of RASH. To investigate what is the

impact of the question number on RASH’s performance, we set

up this RQ.

Approach. There are 1,234 API related questions in the

constructed corpus, and we sort them sequentially based on

their submission time. We verify RASH over the early N

submitted questions, where N ranges from 1 to 1,234. The

results of early N submitted questions are synthesized to form

the final results of RASH. In such a way, we can know how

RASH performs when the number of questions changes.

0

1

2

3

4

5

6

7
1

4
7

9
3

1
3

9

1
8

5

2
3

1

2
7

7

3
2

3

3
6

9

4
1

5

4
6

1

5
0

7

5
5

3

5
9

9

6
4

5

6
9

1

7
3

7

7
8

3

8
2

9

8
7

5

9
2

1

9
6

7

1
0

1
3

1
0

5
9

1
1

0
5

1
1

5
1

1
1

9
7

U
se

r
 S

co
re

Question id

User Score Distribution

0.20

0.30

0.40

0.50

0.60

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
D

C
G

H
it

 R
at

e

K
NDCG high NDCG low Hit Rate high Hit Rate low

 11

Fig. 10. Hit Rate for different number of questions

Fig. 11. NDCG for different number of questions

Fig. 12. MAP for different number of questions

Fig. 13. MRR for different number of questions

Results. Fig. 10, 11, 12, and 13 show the results of RASH

over different number of questions in terms of the four

evaluation metrics. To clearly distinguish and show the results

of each evaluation metric, we only present the results of top 5,

top 10, and top 15.

We can see from the figures that all the evaluation metrics

are unstable when RASH is applied over a small number of

questions, i.e., less than about 200 questions. The values of

these evaluation metrics raise in some specific number of

questions, while fall in the others. For example, when the

number of questions is only 10, RASH achieves Hit@15 of

50%. Then, it raises to 60% when the number of questions

reaches to 20. However, the value of Hit@15 falls to 56.67%

for 30 questions. The other evaluation metrics also show

similar trends.

When the number of questions exceeds a specific value, i.e.,

200, RASH behaves steadily and all the evaluation metrics

show slightly upward trends along with the increasing of the

question number. For example, along with the question number

increasing from 200 to 1,234, RASH achieves Hit@15 from

62.5% to 69.12%. The curves of the other evaluation metrics

also show similar trends along with the growth of the question

number.

This phenomenon can be explained as follows. A small

number of questions means that only limited number of

historical resolved questions exist. In this situation, marginally

less information in historical resolved questions with their

correct APIs can be leveraged by RASH, which mainly relies

on API specifications to detect correct APIs. Hence, RASH

performs unstable. When the information in historical resolved

questions is accumulated large enough, RASH learns from both

API specifications and historical resolved questions, so RASH

performs better.

Conclusion. The performance of RASH is steadily

increasing, when the number of questions exceeds 200.

E. Investigation to RQ5

RQ5: How does RASH perform compared against the

baseline approach?

Motivation. As we described, the baseline approach is the

state-of-the-art approach to resolve the Q2API task. In this RQ,

we try to investigate whether RASH is superior to the baseline

approach.

Approach. Based on the procedures described in [11], we

implement the baseline approach accordingly and verify it over

the constructed corpus to achieve the results.

Results. Fig. 14 shows the results of RASH and the baseline

approach in terms of Hit Rate and NDCG, and Table VII

presents the results of MAP and MRR accordingly. From the

figure and table we can see that, RASH achieves significantly

better results than the baseline approach.

RASH achieves Hit@5 of 48.59% and NDCG@5 of 0.3862.

However, the baseline only achieves 36.79% and 0.2679,

respectively. In terms of MAP and MRR, RASH also

outperforms the baseline approach by 0.1156 and 0.1183.

When the length of the recommendation list improves to 10,

RASH achieves Hit@10 of 62.40%. It indicates that more than

62% correct APIs can be recommended. In contrast, the

baseline approach only achieves 47.08%. As for the other

evaluation metrics, RASH also outperforms the baseline

approach by about 0.12. When recommending 15 APIs for each

API related question, RASH achieves Hit@15 of 69.12% and

the baseline approach only achieves 53.48%. It implies that

RASH recommends almost 70% correct APIs for API related

questions, and outperforms the baseline approach by 15.64%.

In addition, RASH achieves NDCG@15 of 0.4475 and the

20%

40%

60%

80%

100%

1

5
1

1
0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

1
0
0

1

1
0
5

1

1
1
0

1

1
1
5

1

1
2
0

1

N

Hit Rate

Hit@5 Hit@10 Hit@15

0.20

0.30

0.40

0.50

0.60

0.70

1

5
1

1
0

1

1
5

1

2
0

1

2
5
1

3
0

1

3
5

1

4
0

1

4
5

1

5
0

1

5
5

1

6
0

1

6
5

1

7
0

1

7
5

1

8
0

1

8
5

1

9
0

1

9
5

1

1
0

0
1

1
0

5
1

1
1

0
1

1
1

5
1

1
2

0
1

N

NDCG

NDCG@5 NDCG@10 NDCG@15

0.20

0.30

0.40

0.50

0.60

1

5
1

1
0

1

1
5

1

2
0

1

2
5

1

3
0

1

3
5

1

4
0

1

4
5

1

5
0

1

5
5

1

6
0

1

6
5

1

7
0

1

7
5

1

8
0
1

8
5
1

9
0
1

9
5

1

1
0

0
1

1
0

5
1

1
1

0
1

1
1

5
1

1
2

0
1

N

MAP

MAP@5 MAP@10 MAP@15

0.20

0.30

0.40

0.50

0.60

1

5
1

1
0
1

1
5
1

2
0
1

2
5
1

3
0
1

3
5
1

4
0
1

4
5
1

5
0
1

5
5
1

6
0
1

6
5
1

7
0
1

7
5
1

8
0
1

8
5
1

9
0
1

9
5
1

1
0
0

1

1
0
5

1

1
1
0

1

1
1
5

1

1
2
0

1

N

MRR

MRR@5 MRR@10 MRR@15

 12

baseline approach only achieves 0.3173. In terms of MAP@15

and MRR@15, RASH also outperforms the baseline approach

by 0.1206 and 0.1230, respectively.

Fig. 14. Hit Rate and NDCG for different approaches

Table VII

MAP AND MRR FOR DIFFERENT APPROACHES

K
MAP MRR

baseline RASH Improvement baseline RASH Improvement

1 0.1536 0.2769 + 0.1233 0.1580 0.2869 + 0.1288

2 0.1960 0.3020 + 0.1060 0.2010 0.3100 + 0.1090

3 0.2143 0.3244 + 0.1101 0.2188 0.3329 + 0.1141

4 0.2230 0.3376 + 0.1146 0.2277 0.3457 + 0.1180

5 0.2300 0.3456 + 0.1156 0.2347 0.3530 + 0.1183

6 0.2342 0.3521 + 0.1179 0.2391 0.3595 + 0.1203

7 0.2375 0.3559 + 0.1184 0.2424 0.3631 + 0.1207

8 0.2399 0.3596 + 0.1197 0.2449 0.3666 + 0.1217

9 0.2420 0.3621 + 0.1201 0.2470 0.3694 + 0.1224

10 0.2435 0.3639 + 0.1205 0.2484 0.3711 + 0.1227

11 0.2448 0.3657 + 0.1209 0.2495 0.3728 + 0.1232

12 0.2461 0.3670 + 0.1209 0.2507 0.3740 + 0.1233

13 0.2472 0.3679 + 0.1207 0.2518 0.3749 + 0.1232

14 0.2479 0.3688 + 0.1209 0.2525 0.3758 + 0.1233

15 0.2488 0.3694 + 0.1206 0.2534 0.3765 + 0.1230

The reasons why RASH can achieve better results may be

that, it fully leverages the information in historical resolved

questions with their correct APIs to detect correct APIs. We

have the observation that similar questions share similar or the

same correct APIs (see Section II.C), based on which we design

our novel approach RASH. In addition, RASH employs an

important component, i.e., Selecting Candidate APIs, to

accurately filter out incorrect APIs so as to further improve the

results.

Conclusion. RASH significantly outperforms the

state-of-the-art approach. RASH can better recommend correct

APIs for API related questions in Stack Overflow.

VI. THREAT TO VALIDITY

In this section, we introduce threats to validity, including

threats to internal validity and threats to external validity.

A. Threats to Internal Validity

Threats to internal validity are the potential errors or biases

in the experiments. RASH aims to recommend correct APIs for

new API related questions in Stack Overflow based on API

specifications and historical resolved questions. A threat of

RASH is the quality of API specifications. API specifications

are released accompanied with APIs to describe APIs’ usages,

and they are usually constructed in a standard process (e.g.,

Javadoc) by experienced developers [22, 23, 24]. Hence, the

quality of API specifications can be guaranteed to a great extent.

In addition, another threat of RASH is the parameter selection,

i.e., the number of candidate APIs. It is hard to choose an

optimal value for this parameter by experience, and the optimal

value may be various in different corpora. In this paper, we set

it to 500 by default and validate its effectiveness in RQ1. In the

future, we plan to automatically configure the optimal value for

this parameter in RASH.

B. Threats to External Validity

Threats to external validity are related to the generalization

of RASH to other contexts and research settings. We verify

RASH over a constructed corpus containing 1,234 Java API

related questions in Stack Overflow, and the results show that

RASH is robust and superior to the state-of-the-art approach. It

is unknown how RASH performs over questions related to

other APIs like C# and in other Q&A forums like Quora. In the

future, we plan to extend the generalization of RASH by

introducing more questions related to diverse APIs in other

Q&A forums.

VII. RELATED WORK

In this section, we briefly review and discuss two main

related works, i.e., mining Stack Overflow and issues related to

API usages.

A. Mining Stack Overflow

As a popular technical Q&A forum, Stack Overflow contains

valuable information assembling crowd knowledge from

millions of developers, and a lot of research tasks have been

proposed to mine Stack Overflow in recent years. These

research tasks can be roughly divided into two categories, i.e.,

analyzing Stack Overflow and utilizing Stack Overflow.

1) Analyzing Stack Overflow

Some empirical studies aim to analyze the information in

Stack Overflow. Barua et al. explore what developers care

about by studying all the posts in Stack Overflow, and use topic

model to analyze the topics and trends [21]. Yang et al. study

what security related questions developers ask by conducting a

large-scale study on security related questions [25]. Similarly,

Rosen and Shihab analyze mobile related questions in Stack

Overflow [26]. Beyer and Pinzger find that the most commonly

asked questions are “How” and “What” questions by analyzing

Android related posts [27]. Bajaj et al. analyze web

development related posts in Stack Overflow to uncover the

challenges for web developers [28]. Linares-Vásquez et al.

analyze how API changes trigger questions in Stack Overflow

[29].

Our work belongs to the category of analyzing Stack

Overflow. Different from these studies, we try to resolve API

related questions by recommending correct APIs for them

rather than empirically study them.

0.1

0.2

0.3

0.4

0.5

0.6

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
D

C
G

H
it

 R
at

e

K
NDCG baseline NDCG RASH
Hit Rate baseline Hit Rate RASH

 13

2) Utilizing Stack Overflow

The crowd knowledge in Stack Overflow can be leveraged to

resolve other research tasks. Gao et al. fix recurring crash bugs

by analyzing Q&A pairs in Stack Overflow [30]. Nie et al.

employ Q&A pairs in Stack Overflow to expand the queries to

improve the performance of code search [19]. Jiang et al.

leverage API related Q&A pairs as features to better detect

relevant tutorial fragments [31]. Treude and Robillard enrich

API documentation with insight sentences extracted from Stack

Overflow [32]. Wong et al. automatically generate code

comments based on code segments with their descriptions in

Stack Overflow [33].

Unlike the above-mentioned studies, we try to recommend

correct APIs for API related questions in Stack Overflow,

which could accelerate their resolution and save developers’

time.

B. Issues Related to API Usages

APIs are hard to learn, and developers will encounter various

usage issues when programming with APIs [34]. Robillard and

DeLine find that the most severe problem for developers to

learn APIs is inadequate API documentation and other learning

resources [35]. Zhou and Walker conduct a retrospective

analysis on API deprecation in open source libraries [36].

Robbes et al. study the react of developers to API deprecation

in a Smalltalk ecosystem, and they find that developers

sometimes do not consider API deprecation instructions [37].

Linares-Vásquez et al. find that change prone and bug prone

APIs are threats to the success of mobile applications, and

developers are suggested not to use change prone and bug

prone APIs [38]. In addition, McDonnell et al. study the impact

of unstable APIs to their client code, and they suggest that

developers should avoid using unstable APIs [39].

Our work is different from these studies. In this paper, we try

to resolve API related questions by recommending correct APIs

for them.

VIII. CONCLUSION AND FUTURE WORK

Developers usually encounter API related programming

problems and ask them in Q&A forums like Stack Overflow.

Hence, automatically answering API related questions is

significant to developers. In this paper, we propose a novel

approach named RASH towards resolving API related

questions by recommending correct APIs for them. RASH

combines and fully leverages the information in both API

specifications and historical resolved questions to detect correct

APIs for new API related questions. We conduct extensive

experiments over a publicly available corpus. The experimental

results show that RASH can hit nearly 70% correct APIs and

outperform the state-of-the-art approach by 15.64% when

recommending 15 APIs for each question. Hence, RASH is

capable of better resolving API related questions to further

boost developer productivity.

For the future work, we will improve RASH in the following

directions. First, we plan to automatically configure the

parameters in RASH. Second, we try to verify RASH over

questions related to other commonly used APIs, e.g., C#. Third,

a tool encapsulating RASH will be developed and distributed to

help developers resolve API related questions.

REFERENCES

[1] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of API

usability,” in Proc. ESEM, Baltimore, Maryland, US, 2013, pp. 5-14.
[2] T. Cho, H. Kim, and J. H. Yi, “Security assessment of code obfuscation

based on dynamic monitoring in android things,” IEEE Access, vol. 5, pp.

6361-6371, 2017.
[3] Y. Zhou, R. H. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,

“Analyzing APIs documentation and code to detect directive defects,” in

Proc. ICSE, Buenos Aires, Argentina, 2017, pp. 27-37.
[4] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API

documentation,” in Proc. ICSE, Hyderabad, India, 2014, pp. 643-652.

[5] C. Parnin, C. Treude, L. Grammel, and M. A. Storey, “Crowd
documentation: exploring the coverage and the dynamics of API

discussions on stack overflow,” Georgia Tech., Tech. Rep. GIT-CS-12-05,

2012.
[6] T. Mcdonnell, B. Ray, and M. Kim, “An empirical study of API stability

and adoption in the android ecosystem,” in Proc. ICSM, Eindhoven, The

Netherlands, 2013, pp. 70-79.
[7] H. W. Li, Z. C. Xing, X. Peng, and W. Y. Zhao, “What help do developers

seek, when and how?” in Proc. WCRE, 2013, Germany, pp.142-151.

[8] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of stack overflow,” in

Proc. MSR, San Francisco, California, USA, 2013, pp. 97-100.

[9] X. Wang, J. Xu, M. Liu et al., “An ontology-based approach for marine
geochemical data interoperation,” IEEE Access, vol. 5, pp. 13364-13371,

2017.
[10] S. Ercan, Q. Stokkink, and A. Bacchelli, “Predicting answering times on

stack overflow,” in Proc. MSR, Florence, Italy, 2015, pp. 442-445.

[11] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings

to document similarities for improved information retrieval in software
engineering,” in Proc. ICSE, Austin, Texas, USA, 2016, pp. 404-415.

[12] J. X. Zhang, DaLian, Liao Ning, China, 2017. [Online]. Available:

http://oscar-lab.org/people/~jxzhang/Q2API/.
[13] S. Kubler, J. Robert, A. Hefnawy et al., “Open IoT ecosystem for sporting

event management,” IEEE Access, vol. 5, pp. 7064-7079, 2017.
[14] H. Jiang, J. X. Zhang, Z. L. Ren, and T. Zhang, “An unsupervised approach

for discovering relevant tutorial fragments for APIs,” in Proc. ICSE, 2017,

pp. 38-48.
[15] USA. (2015, Mar.). Java™ Platform, Standard Edition 7 API Specification.

[Online]. Available: http://docs.oracle.com/javase/7/docs/api/.

[16] J. Zhou, H. Y. Zhang, and D. Lo, “Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug reports,”

in Proc. ICSE, Zürich, Switzerland, 2012, pp. 14-24.

[17] X. Y. Wang, L. Zhang, T. Xie, J. Anvik, and J. S. Sun, “An approach to
detecting duplicate bug reports using natural language and execution

information,” in Proc. ICSE, Leipzig, Germany, 2008, pp. 461-470.

[18] C. N. Sun, D. Lo, X. Y. Wang, J. Jiang, and S. C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Proc. ICSE,

Cape Town, South Africa, 2010, pp. 45-54.

[19] L. M. Nie, H. Jiang, Z. L. Ren, Z. Y. Sun, and X. C. Li, “Query expansion
based on crowd knowledge for code search,” IEEE TranS. on Services

Computing, to be published. Doi: 10.1109/TSC.2016.2560165.

[20] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
“Dimensions and metrics for evaluating recommendation systems,” in

Recommendation Systems in Software Engineering, New York, USA:

Springer, 2014, pp. 245-275.
[21] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking

about? An analysis of topics and trends in stack overflow,” EMSE, vol. 19,

no. 3, pp. 619-654, 2014.
[22] B. Dagenais and M. P. Robillard, “Recovering traceability links between

an API and its learning resources,” in Proc. ICSE, Zürich, Switzerland,

2012, pp. 47-57.
[23] L. Liu, C. F. Li, Y. M. Lei et al., “A new fuzzy clustering method with

neighborhood distance constraint for volcanic ash cloud,” IEEE Access,

vol. 4, pp. 7005-7013, 2016.
[24] M. A. Ashraf, H. Jamal, S. A. Khan et al, “A heterogeneous

service-oriented deep packet inspection and analysis framework for

traffic-aware network management and security systems,” IEEE Access,
vol. 4, pp. 5918-5936, 2016.

 14

[25] X. L. Yang, D. Lo, X. Xia, Z. Y. Wan, and J. L. Sun, “What security
questions do developers ask? A large-scale study of stack overflow posts,”

JCST, vol. 31, no. 5, pp. 910-924, 2016.

[26] C. Rosen and E. Shihab, “What are mobile developers asking about? A
large scale study using stack overflow,” EMSE, vol. 21, no. 3, pp.

1192-1223, 2016.

[27] S. Beyer and M. Pinzger, “A manual categorization of android app
development issues on stack overflow,” in Proc. ICSME, Victoria, British

Columbia, Canada, 2014, pp. 531-535.

[28] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by
web developers,” in Proc. MSR, Hyderabad, India, 2014, pp.112-121.

[29] M. Linares-Vásquez, G. Bavota, M. D. Penta, R. Oliveto, and D.

Poshyvanyk, “How do API changes trigger stack overflow discussions? A
study on the android SDK,” in Proc. ICPC, Hyderabad, India, 2014, pp.

83-94.

[30] Q. Gao, H. S. Zhang, J. Wang, Y. F. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing Q&A sites,” in Proc. ASE, Nebraska,

USA, 2015, pp. 307-318.

[31] H. Jiang, J. X. Zhang, X. C. Li, Z. L. Ren, and D. Lo, “A more accurate
model for finding tutorial segments explaining APIs,” in Proc. SANER,

Osaka, Japan, 2016, pp.157-167.

[32] C. Treude and M. P. Robillard, “Augmenting API documentation with

insights from Stack Overflow,” in Proc. ICSE, Austin, USA, 2016, pp.

392-403.

[33] E. Wong, J. Q. Yang, and L. Tan, “AutoComment: Mining question and
answer sites for automatic comment generation,” in Proc. ASE, Silicon

Valley, USA, 2013, pp. 562-567.
[34] M. P. Robillard, “What makes APIs hard to learn? Answers from

developers,” IEEE Software, vol. 26, no. 6, pp. 27-34, 2009, DOI.

10.1109/MS.2009.193.
[35] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”

EMSE, vol. 16, no. 6, pp. 703-732, 2012, DOI.

10.1007/s10664-010-9150-8.
[36] J. Zhou and R. J. Walker, “API deprecation: A retrospective analysis and

detection method for code examples on the web,” in Proc. FSE, Seattle,

WA, USA, 2016, pp. 266-277.
[37] R. Robbes, M. Lungu, and D. Rothlisberger, “How do developers react to

API deprecation: The case of a smalltalk ecosystem,” in Proc. FSE,

Washington DC, USA, 2012, Article No. 56.
[38] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta, R.

Oliveto, and D. Poshyvanyk, “API change and fault proneness: A threat to

the success of android apps,” in Proc. ESEC/FSE, Saint Petersburg, Russia,
2013, pp. 477-487.

[39] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability

and adoption in the android ecosystem,” in Proc. ICSE, Eindhoven, The
Netherlands, 2013, pp, 70-79.

