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 

Abstract—API related questions are increasingly posted 

and discussed by developers in popular Question and 

Answer (Q&A) forums like Stack Overflow. However, their 

extremely long resolution time seriously delays the working 

schedules of developers. Despite researchers have 

investigated how to automatically resolve API related 

questions by recommending correct APIs for them, there is 

still much room for additional improvement. In this paper, 

we propose a novel approach named RASH towards 

recommending correct APIs for API related questions in 

Stack Overflow by leveraging both API specifications and 

historical resolved questions. Given a new API related 

question, RASH recommends APIs for it guided by two 

central observations. First, the more lexically similar the 

functional description in an API’s specification is to the 

new question, the more likely that the API can resolve the 

new question. Second, the APIs that have resolved more 

historical similar questions can also help to resolve the new 

question. To verify the effectiveness of RASH, we construct 

and publish a corpus containing 1,234 API related 

questions with their correct APIs from Stack Overflow, and 

conduct extensive experiments over it. The experimental 

results show that RASH is relatively stable and robust to 

different quality of questions. In addition, RASH hits 

nearly 70% correct APIs and outperforms the 

state-of-the-art approach by 15.64% when recommending 

15 APIs for each question. 

 
Index Terms—Application Programming Interfaces, 

Information Retrieval, Recommendation System, Stack Overflow 

 

I. INTRODUCTION 

oftware developers tend to reuse Application Programming 

Interfaces (APIs) in existing frameworks and libraries to 

facilitate their development process [1, 2, 3]. When they have 

no idea about what exact APIs to use or how to use specific 

APIs properly, they usually submit questions illustrating the 

API usage problems to seek professional help in Stack 

Overflow, a popular technical Question and Answer (Q&A) 

forum attracting over 50 million visitors each month [4, 5, 6, 7]. 
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However, resolving these API related questions may take a 

very long time, since it is difficult to propose an accepted 

answer, which needs to be discussed continuously by 

developers [8]. For example, the average resolution time of API 

related questions in the constructed corpus is nearly 17 days, 

which is 3 days longer than that of other questions (see Section 

II.B). Such a long resolution time may heavily decrease the 

working efficiency and seriously delay the working schedules 

of developers [9, 10]. Furthermore, API related questions 

usually receive wide attentions from developers who may 

encounter the same or similar API usage problems. For instance, 

an API related question is viewed more than 4,600 times on 

average, which is twice as many as that of other questions (see 

Section II.B). Hence, automatically resolving API related 

questions could bring tremendous benefits for developers. 

Recently, a new task named Question-to-API 

recommendation (Q2API) is issued [11]. When a new API 

related question is submitted to Stack Overflow, this task aims 

to automatically resolve it by recommending correct APIs, 

whose API specifications have non-trivial semantic overlap 

with the accepted answer. Therefore, by checking the 

recommended APIs and reading through their API 

specifications, the submitter can efficiently program with the 

correct APIs or easily think out the solution on his/her own, 

even before the accepted answer is posted [11]. In such a way, 

addressing this task could accelerate the resolution of API 

related questions and boost submitters’ productivity. 

In the literature, Ye et al. propose a seminal approach 

towards addressing the Q2API task based on the word 

embedding technique [11]. Given a new API related question, 

this approach aims to rank all the APIs in the same 

programming language (e.g., Java) as the new question and 

recommend the top ranked APIs for it. More specifically, this 

approach first achieves three features for each API by 

calculating similarities between this new question and the 

functional description in API specifications, including the 

cosine similarity and two word embedding based similarities. 

Then, a weighting scheme is employed to calculate the final 

score for each API by combining the three features, and the 

weight of each feature is achieved by a leaning-to-rank system. 

At last, all the APIs are ranked in a descending order based on 

their final scores, and the top ranked APIs are recommended. 

Evaluated over a non-publicly available corpus, this approach 

is superior to the simple method, which only uses the cosine 

similarity to rank APIs. However, the existing approach does 

not leverage the domain specific knowledge to address the 
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Q2API task. Hence, there is still much room for improvement. 

In this paper, we propose a novel approach of 

Recommending APIs for API related questions based on API 

Specifications and Historical resolved questions (RASH). In 

contrast to the existing approach, RASH fully leverages the 

domain specific knowledge in Stack Overflow to better address 

the Q2API task. By observing plentiful API related questions 

with their correct APIs in Stack Overflow, we find that if more 

overlapping words are contained in both the new API related 

question and the functional description in an API’s 

specification, the API is highly likely to resolve the new 

question (see Section II.C). In addition, similar questions can 

be resolved by similar or the same correct APIs. Hence, we can 

leverage the correct APIs that have resolved historical similar 

questions to resolve the new API related question (see Section 

II.C). These important observations motivate us to consider and 

better leverage the valuable information in API specifications 

and historical resolved questions. 

More specifically, RASH works as follows. Given a new API 

related question targeted towards a specific programming 

language (e.g., Java), RASH first achieves two correlation 

scores for each API in the same programming language by 

leveraging both API specifications and historical resolved 

questions. RASH obtains the first correlation score by 

calculating the cosine similarity between the new question and 

the functional description in each API’s specification. Next, 

RASH ranks all the APIs based on their correlation scores and 

selects the top 500 APIs as candidate APIs, which are likely to 

be correct APIs. Meanwhile, RASH also achieves the second 

correlation score for each API by analyzing similar questions 

that have been resolved in history with their correct APIs. Then, 

after normalizing the two correlation scores, RASH calculates 

their arithmetic mean and treats it as the final score for each 

API. Finally, RASH employs an API ranking scheme based on 

candidate APIs with their final scores, and recommends the top 

ranked APIs to the submitter of the new API related question. 

We collect and construct a corpus containing 1,234 API 

related questions with their correct APIs from Stack Overflow, 

and open it to the public [12]. We conduct extensive 

experiments over the corpus to evaluate the performance of 

RASH. From the experimental results we can see that, in terms 

of parameter selection, RASH achieves the best results when 

the number of candidate APIs is equal to 500. From the 

perspective of robustness, RASH performs similarly over 

high-quality questions and low-quality questions, which 

indicates that RASH is insensitive to different quality of API 

related questions. In terms of stability, the performance of 

RASH is steadily increasing when the number of API related 

questions is accumulated large enough, i.e., 200. In terms of 

effectiveness, RASH achieves the Hit@15 (Hit Rate when 

recommending 15 APIs) of 69.12% and outperforms the 

state-of-the-art approach by 15.64%. 

In summary, this paper makes the following contributions: 

 We propose a novel approach named RASH, which 

leverages the information in both API specifications and 

historical resolved questions, to better recommend correct 

APIs for API related questions. 

 
Fig. 1.  A Q&A pair example 

 

 Experiments over the constructed corpus show that RASH 

outperforms the state-of-the-art approach by 15.64% in 

terms of Hit@15.  

 We construct a corpus containing 1,234 API related 

questions with their correct APIs from Stack Overflow and 

open it to the public [11]. Other researchers can benefit 

from it for further research. 

The remainder of the paper is organized as follows. In 

Section II, we first show the motivation of this study. We 

illustrate the framework of RASH with its main components in 

Section III. Then, we elaborate the experimental setup and 

experimental results in Section IV and Section V, respectively. 

Next, in Section VI and Section VII, we introduce the threat to 

validity and related work. At last, we make a conclusion and 

mention future work in Section VIII. 

II. MOTIVATION 

In this section, we first present some preliminaries about how 

submitters post API related questions in Stack Overflow. Next, 

we demonstrate the importance of API related questions in 

Stack Overflow, which motivates us to propose an approach to 

address the Q2API task. Finally, we show our observations on 

API related questions, which motivate us to better leverage the 

information in API specifications and historical resolved 

questions. 

A. Preliminaries 

Fig. 1 shows a Q&A pair example1 with several essential 

items, such as question title, question body, and tags. Generally, 

when a developer (submitter) encounters an API usage problem 

and wants to seek professional help from experienced 

developers, he/she needs to follow a series of guidelines to 

 
1 https://stackoverflow.com/questions/2228462/are-there-any-good-cachedrowse

t-implementations-other-than-the-proprietary-sun-o. 
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submit a new question in Stack Overflow. First, the submitter 

should summarize and refine the key point of the problem using 

one sentence, which is called question title. Then, the submitter 

should specify the details of the problem, which is called 

question body, in natural language with some code samples (if 

necessary). In addition, the submitter is required to mark this 

new question with some keywords, which are called tags, to 

categorize this new question. Other developers can answer the 

new question (answer), vote for the question or the answer 

based on its quality (user score of the question or the answer), 

and mark it as favorite (favorite count). Stack Overflow also 

automatically records the view times of the new question (view 

count). After verifying the posted answers, the submitter can 

select one of them as the solution and mark it as accepted 

(accepted answer). However, the submitter may have to wait an 

extremely long time until the accepted answer is posted, thus 

decreasing the working efficiency of the submitter [8]. 

As shown in Fig. 1, BenM asks a question on Feb. 9, 2010 to 

find a good API, which can implement CachedRowSet other 

than the proprietary Sun one. After an extremely long time until 

Apr. 14, 2014, PaoloC posts an answer which is accepted. We 

can see that it takes more than 4 years to resolve this question. 

In addition, there is a hyperlink to Java API specifications in the 

accepted answer. By parsing the hyperlink, we can find that the 

javax.sql.rowset.RowSetProvider API is the correct API to 

resolve this question. In addition, this Q&A pair has been 

viewed 5,531 times, which implies that abundant developers 

may encounter the same or similar API usage problems. 

B. The Importance of API Related Questions 

 
Table I 

COMPARISON BETWEEN API RELATED QUESTIONS AND OTHER QUESTIONS 

Question 

Avg. 

Question 

Score 

Avg. 

Answer 

Score 

Avg.  

View 

Count 

Avg. 

Favorite 

Count 

Avg.  

Resolution Time 

(days) 

API 

Related 
4.26 5.26 4,609 0.83 16.97 

Others 1.96 3.13 2,225 0.62 13.69 

 

Developers tend to reuse APIs in existing libraries to help 

them program [13, 14]. Hence, they may encounter various API 

usage problems when programming with APIs. It is difficult for 

developers to learn APIs by themselves, and seeking help from 

experienced developers by asking or searching questions in 

Stack Overflow is a common practice [4, 5, 6]. In such a way, 

API related questions usually receive wide attentions from 

developers, thus making API related questions more important 

than other questions. 

To demonstrate the importance of API related questions, we 

compare Java API related questions in the constructed corpus 

(see Section IV.B) against other Java tagged questions with 

several characteristics shown in Table I. Obviously, both API 

related questions and their answers achieve higher average user 

scores than other Java tagged questions and their answers. For 

example, the average user score of API related questions is 

4.26. In contrast, it is only 1.96 for other Java tagged questions. 

The average view count for API related questions is more than 

4.6 thousand, which is more than twice as many as that of other 

Java tagged questions. The average resolution time of API 

related questions is nearly 17 days and 3 days longer than that 

of other Java tagged questions. 

In summary, API related questions achieve higher quality, 

attract more developers, and take longer time to be resolved. 

Hence, automatically resolving API related questions is 

significant to abundant developers. 

C. Observations on API Related Questions 

After observing plentiful API related questions, we have the 

following two observations, based on which we design our 

novel approach RASH. 

(1) The more lexically similar the functional description in an 

API’s specification is to the new API related question, the 

more likely that the API can resolve this new question. 

(2) The APIs that have resolved similar questions in history can 

also be used to resolve the new API related question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. An API related question and the functional description of its correct API 

 

We present an example to illustrate the first observation. Fig. 

2 shows a simplified API related question2 in Stack Overflow. 

Once the question is submitted, other developers try to resolve 

it by providing a correct API among thousands of possible APIs. 

After a series of discussions, the correct API is recommended, 

i.e., java.text.SimpleDateFormat, whose functional description 

in API specification3  is also shown in Fig. 2. We can see that 

many overlapping words (in bold fonts) appear in both the 

question and the functional description of its correct API, such 

as date, time, format, and calendar, hence there is a good 

lexical match between them. 

To better present the second observation, we list all the 

correct APIs in the constructed corpus (see Section IV.B) and 

count their frequencies to resolve API related questions. We 

 
2https://stackoverflow.com/questions/11933137/how-to-get-iso-format-from-tim

e-in-milliseconds-in-java. 
3 http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html. 

A new API related question in Stack Overflow 
 

Question Title: How to get ISO format from time in milliseconds in 
Java? 

Question Body: Is it simple way to get yyyy-MM-dd HH:mm:ss,SSS 

from time in millisecond? I've found some information how to do this 
from new Date() or Calendar.getInstance(), but couldn't find if it can 

be done from long (e.g. 1344855183166) 

Tags: <Java> <date> 
 

 

Functional description in SimpleDateFormat 
 
SimpleDateFormat is a concrete class for formatting and parsing dates 

in a locale-sensitive manner. It allows for formatting (date -> text), 

parsing (text -> date), and normalization…Date and time formats are 
specified by date and time pattern strings… 

If the formatter's Calendar is the Gregorian calendar… 

Date or Time Component: Millisecond… 
The following examples show how date and time patterns are 

interpreted in the U.S. locale: 

yyyy-MM-dd'T'HH:mm:ss.SSSZ"… 
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rank the correct APIs by their frequencies and show the results 

in Fig. 3. The x-axis shows the correct API id and the y-axis 

shows the frequency to resolve questions. We can see that, 

there are totally 419 correct APIs for 1,234 API related 

questions in the corpus. On average, one correct API can 

resolve nearly 3 API related questions. The most frequent 

correct API is java.lang.String, which can resolve as many as 

51 API related questions. In addition, 212 correct APIs (more 

than half correct APIs) can resolve no less than 2 API related 

questions. 

 

 
Fig. 3.  The correct API frequency in the corpus 

 

In conclusion, if there exists a good lexical match between 

the new API related question and the functional description in 

an API’s specification, the API is highly likely to resolve this 

new question. In addition, correct APIs are overlapped for API 

related questions in Stack Overflow. Hence, the correct APIs of 

historical resolved questions can also be used to resolve this 

new API related question. These observations motivate us to 

consider both API specifications and historical resolved 

questions to better resolve the Q2API task. 

III. FRAMEWORK 
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Fig. 4.  The framework of RASH 

 

In this section, we illustrate the framework of RASH shown 

in Fig. 4. The goal of RASH is to resolve API related questions 

in Stack Overflow by recommending correct APIs for them. 

RASH takes in the new API related question, API 

specifications, and historical resolved questions as input, and 

outputs top ranked APIs for the new question. Hence, the 

submitter of the new question can check the recommended 

APIs one by one until the correct APIs are found. In such a way, 

the correct APIs can be quickly located. Obviously, it could be 

ideal if the correct APIs are ranked as high as possible. RASH 

consists of five components, including Scoring based on API 

Specifications, Selecting Candidate APIs, Scoring based on 

Historical Resolved Questions, Combining Scores, and 

Ranking APIs. In the following part of this section, we take the 

API related question in Fig. 2 as an example to clearly illustrate 

how each component works. 

A. Scoring based on API Specifications 

This component aims to achieve a correlation score for each 

API in the same programming language (e.g., Java) as the new 

API related question based on API specifications. This 

component is designed by the rationality that, the more 

lexically similar the functional description in an API’s 

specification is to the new API related question, the more likely 

that they describe the same or similar API usages, thus the more 

likely that the API can resolve this new question [11]. 

API specifications play an important role in explaining API 

usages, including functionalities, behaviors, concepts, and 

directives, etc., and developers highly expect to find their 

desired information in API specifications [15]. In this paper, we 

take Java API (version 7) as a case study and construct a corpus 

containing 1,234 Java API related questions with their correct 

Java APIs. Java API specifications are generated through 

Javadoc following a set of conventions with a uniform style and 

structure. They are organized as a series of HTML webpages, 

each of which introduces a specific Java API package or API 

type [15]. The same as [11], we introduce all the Java interface 

APIs, class APIs, exception APIs, and error APIs as the 

possible APIs to rank and recommend, and eventually achieve 

3,871 Java APIs in total. As a result, it is challenging to 

recommend correct APIs within so many APIs for API related 

questions. 

For each API, we achieve a correlation score by calculating 

the widely used cosine similarity between the new API related 

question and its functional description in API specification [16]. 

Before calculating the cosine similarity, both the new question 

and the functional description are transformed into vectors 

(known as Vector Space Model), where each dimension stands 

for a term and its corresponding value presents the term’s 

weight. This process consists of a series of natural language 

processing steps, i.e., tokenization (including camel case 

splitting), stemming, and stop word removal [16]. Then, each 

term is given a weight measuring its importance. In this study, 

we employ the widely used Term Frequency (TF) × Inverse 

Document Frequency (IDF) to measure the weight for each 

term. Given a document (the new question or the functional 

description in this study), TF and IDF of a term in this 

document can be calculated as follows. 

TFt = 
Tt

∑ Tn
i=1 i

                               (1) 

where t stands for a term, n stands for the number of distinct 

terms, and Tt corresponds to the frequency (occurrence number) 

of term t in the document. 
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𝐼𝐷𝐹𝑡 = 𝑙𝑜𝑔
|𝐷|

|{𝑗:𝑡∈𝑑𝑗}|
                         (2) 

where |D| is the number of documents in total and |{𝑗: 𝑡 ∈ 𝑑𝑗}| 

means the number of documents containing term t. 

Based on TF and IDF, the weight of a term t can be 

calculated by the following formula. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑡 = 𝑇𝐹𝑡 × 𝐼𝐷𝐹𝑡                    (3) 

In such a way, we can measure the importance of each term 

and transform both the new API related question and the 

functional description in each API’s specification into vectors. 

As shown in Fig. 1, a new API related question contains both 

question title and question body. We first transform question 

title and question body into two vectors separately using the 

above-mentioned method. Then, we combine the two vectors to 

form a final vector as the representation of the new question. 

Inspired from existing related studies [17, 18], we double the 

weights of terms in question title to strength their impact, since 

question title is a concise summary of the problem. Therefore, 

the final weights of the terms in the final vector of the new API 

related question can be calculated as follows. 

𝑊𝑡 = 2 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑡∈𝑡𝑖𝑡𝑙𝑒  + 1 × 𝑊𝑒𝑖𝑔ℎ𝑡𝑡∈𝑏𝑜𝑑𝑦         (4) 

After transforming the new API related question and the 

functional description in each API’s specification into vectors, 

their cosine similarity is calculated by the following formula. 

𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄, 𝐴) = 𝑐𝑜𝑠(𝑄, 𝐴) =
∑ (𝑄𝑖×𝐴𝑖)𝑛

𝑖=1

√∑ (𝑄𝑖)2 𝑛
𝑖=1 √∑ (𝐴𝑖)2𝑛

𝑖=1

        (5) 

where Q is the new question and A is an API. Qi and Ai are the 

final weights of term i in Q and A’s functional description. 

Running Example. Given the API related question in Fig. 2, 

RASH achieves a correlation score for each API, ranging from 

0.3708 to 0. The correlation scores of more than 1,600 APIs are 

0, so there is no overlapping word in the new question and their 

functional description in API specifications. The correlation 

score of the correct API java.text.SimpleDateFormat is 0.3506, 

which is the second highest correction score in all the APIs. 

B. Selecting Candidate APIs 

This component aims to achieve candidate APIs after 

obtaining a correlation score for each API. Intuitively, the 

higher the correlation score of an API, the more likely the API 

can resolve the new API related question. Hence, we rank APIs 

based on their correlation scores and select top 500 APIs as 

candidate APIs (i.e., #candidate=500), which are highly likely 

to be the correct APIs to resolve the new API related question. 

Empirically, the bottom ranked APIs may introduce noises and 

impose a negative impact on the recommendation results. 

Hence, they are less likely to be the correct APIs and filtered 

out. In the Experimental Results section, we will validate 

whether selecting top 500 APIs as candidates is effective (see 

Section V.A). 

A New Question

A historical 

resolved question

A historical 

resolved question

A historical 

resolved question...

...

A li nk  den o tes t he  s im ilar it y 

between the  new question and a 

historical question is larger than 0

A l i nk  de n ot es  a 

q u e s t i o n  c an  b e 

resolved by a API   

Fig. 5.  The new question and APIs linking graph 

 

Running Example. Taking the API related question in Fig. 

2 as an example, RASH obtains candidate APIs (i.e., top 500 

APIs) based on their correlation scores in this component. The 

correct API java.text.SimpleDateFormat ranks the second 

highest, so it is also regarded as a candidate API. Those APIs 

whose functional description has no overlapping word with this 

question (i.e., achieving correlation scores equaling to 0) are 

filtered out. It implies that RASH can retain correct APIs and 

remove incorrect APIs as many as possible. 

C. Scoring based on Historical Resolved Questions 

This component aims to achieve another correlation score for 

each API based on historical resolved questions with their 

correct APIs. When a new API related question is submitted to 

Stack Overflow, we can examine and analyze historical similar 

questions with their correct APIs, since similar questions tend 

to be resolved by similar or the same APIs (see Section II.C). 

The correct APIs that have resolved similar questions in history 

can also help to resolve the new API related question. To the 

best of our knowledge, the information in historical resolved 

questions has not been used to address the Q2API task, and we 

first consider and fully leverage it in this paper. 

We order all the questions based on their submission time. 

For the new API related question, we consider the linking 

information in the historical resolved API related questions, 

which have been submitted and resolved before the new 

question, with their correct APIs. As shown in Fig. 5, the first 

layer and the second layer present the new API related question 

and historical resolved questions, respectively, and the third 

layer shows all the APIs. We first calculate the cosine similarity 

between the new question and historical resolved questions 

using formula (5). If their cosine similarity is greater than 0, we 

link them together. Furthermore, for the historical resolved 

questions in the second layer, we link them to their correct APIs. 

In such a way, all the APIs can be indirectly linked to the new 

API related question through the historical resolved questions 

as middle agents. Hence, the correlation score for each API can 

be obtained by the following formula. 

𝑠𝑖𝑚_ℎ𝑖𝑠(𝑄, 𝐴) = ∑ (𝑐𝑜𝑠 (𝑄, ℎ𝑖𝑠𝑞)/𝑚𝑞)ℎ𝑖𝑠𝑞∈ℎ𝑖𝑠_𝑠𝑜𝑙(𝐴)       (6) 

where Q is the new question and A is an API. ℎ𝑖𝑠_𝑠𝑜𝑙(𝐴) is the 

set of historical questions that can be resolved by A, and mq 

means the number of correct APIs hisq has [16]. 
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Table II 
THE API RANKING SCHEME 

Input: candidate APIs and the final scores of all APIs 

1 

2 

3 
4 

5 

6 
7 

 

 
8 

9 

obtain the final scores for all the candidate APIs 

PriorSet = Φ 

foreach (API A in candidate APIs) 
      if (A appears in the question title and tags) 

             add A to PriorSet 

if (PriorSet is not null) 
rank APIs in PriorSet based on their frequencies in the question 

title and tags. If two APIs have the same frequency, rank them 

based on their first emerging locations 
if (the number of ranked APIs is less than 15) 

rank the rest candidate APIs based their final scores 

Output: a ranked API recommendation list containing 15 APIs 

 

Running Example. The API related question in Fig. 2 is 

submitted on Aug. 13, 2012. Before the submission of this 

question, 302 API related questions have been resolved in the 

constructed corpus (see Section IV.B). The correct API 

java.text.SimpleDateFormat have resolved 9 API related 

questions in history. After analyzing these historical resolved 

questions, RASH achieves the second correlation score for the 

correct API of 2.2012, which is the highest in all the APIs. 

D. Combining Scores 

This component aims to achieve a final score for each API. 

After obtaining the two correlation scores for each API, we first 

normalize them into the range from 0 to 1 by divided by their 

maximal values. Then, we combine the two correlation scores 

into a final score by calculating their arithmetic mean as 

follows. 

𝐹𝑖𝑛𝑎𝑙𝑆𝑜𝑐𝑟𝑒(𝑄, 𝐴) =
𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄,𝐴)+𝑠𝑖𝑚_ℎ𝑖𝑠(𝑄,𝐴)

2
           (7) 

where 𝑋 means the normalized value of X, e.g., 𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄, 𝐴) 

is the normalized 𝑠𝑖𝑚_𝑠𝑝𝑒(𝑄, 𝐴). 
In this study, the two correlation scores for each API are 

given the same weight due to two major reasons. First, treating 

the two correlation scores equally is a simple but efficient 

method [17]. Second, we find that the weights of the correlation 

scores have little effect on the final results of RASH in some 

preliminary experiments. In the Experimental Results section, 

we will validate the effectiveness of treating them equally (see 

Section V.B). 

Running Example. For the API related question in Fig. 2, 

RASH achieves the final score for each API in this component. 

The two normalized correlation scores of the correct API 

java.text.SimpleDateFormat are 0.9455 and 1, respectively. 

Hence, the final score of the correct API is 0.9728, which is the 

highest in all the APIs. 

E. Ranking APIs 

This component aims to rank candidate APIs and 

recommend top 15 APIs by an API ranking scheme. 

Recommending top 15 results is a common practice in the 

recommendation systems within the software engineering 

domain, and many similar works also employ the same 

mechanism [11, 16]. The API ranking scheme is designed by 

the following observations. If a candidate API appears in the 

question title or tags of the new API related question, it is 

highly likely that the question is discussing the usage of the 

candidate API, since the submitter sometimes puts the APIs, 

which he/she does not know the proper usages, in the question 

title or tags to make the question easy to be found and resolved. 

Hence, such candidate APIs should be ranked the highest. In 

contrast, if there is no candidate API in the question title or tags 

of the new question, the candidate APIs achieving the larger 

final scores should be ranked higher. 

Table II shows the API ranking scheme, which takes in 

candidate APIs as well as the final scores of all APIs, and 

outputs the top 15 ranked APIs. First, we obtain the final scores 

for all the candidate APIs, since we only consider candidate 

APIs and filter out the rests (line 1). Next, we define an API set 

named PriorSet, which is initialized as empty (line 2). The 

APIs in PriorSet are first-rank APIs, so they are ranked the 

highest in the recommendation list. Then, for each candidate 

API (line 3), we check whether it appears in the question title 

and tags of the new API related question (line 4). If true, this 

candidate API is added into the PriorSet (line 5). In such a way, 

after checking all the candidate APIs, we can obtain an API 

PriorSet. For the APIs in PriorSet (line 6), we rank them based 

on their frequencies in the question title and tags of the new 

API related question. If any two APIs have the same frequency, 

we rank them based on their first emerging locations, i.e., the 

APIs emerging in the front are ranked higher. In such a way, we 

can rank candidate APIs in PriorSet (line 7). Finally, if the 

number of ranked APIs is less than 15 (line 8), we rank the rest 

candidate APIs based on their final scores (line 9). In this 

manner, we can obtain a ranked API recommendation list 

containing 15 APIs and recommend them to the submitter of 

the new API related question. 

Running Example. Still taking the API related question in 

Fig. 2 as an example, there is no API contained in the question 

title and tags of the question. As a result, the PriorSet is empty. 

Then, all the candidate APIs are ranked based on their final 

scores. The correct API java.text.SimpleDateFormat achieves 

the largest final score, so it is ranked the highest. Obviously, the 

correct API can be easily found by the submitter of the question, 

thus accelerating the resolution of this question. 

IV. EXPERIMENTAL SETUP 

In this section, we first describe the experiment settings. 

Next, we present how we collect and construct the corpus used 

in the experiments. Then, we illustrate the details of the 

baseline approach. Finally, we show the evaluation metrics 

used in this paper. 

A. Experiment Settings 

In this study, we conduct all the experiments on a Core i7 

CPU computer with 8 GB memory running Windows 7. RASH 

is implemented in the Java Programming language compiled by 

JDK 7. In addition, we are to open all source code of RASH 

after this paper is published. 

B. Data Collection 

In the previous study [11], Ye et al. propose a seminal 
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approach towards addressing the Q2API task, and evaluate 

their approach over a corpus of 604 API related questions with 

their correct APIs. However, this corpus is not publicly 

available. Hence, we construct a new corpus and open it to the 

public [12]. Similarly, we follow four steps described in [11] to 

construct the corpus. 

(1) We download the Stack Overflow dump files published in 

September 20164, and combine the questions tagged with 

Java with their accepted answers to generate a series of 

Q&A pairs. Eventually, we obtain 990,923 Java tagged 

Q&A pairs in this step. 

(2) For the Java tagged Q&A pairs, we only retain those Q&A 

pairs whose accepted answers have hyperlinks to the Java 

API specifications. In such a way, we can ensure that these 

questions are API related questions. After this step, we 

achieve 3,926 Q&A pairs. 

(3) For the retained Q&A pairs, we further filter out those Q&A 

pairs whose user score of either the question or the accepted 

answer is lower than 0. This step can reduce low-quality 

Q&A pairs and false positive correct APIs as many as 

possible. After this step, 1,234 high-quality Q&A pairs can 

be obtained. 

(4) For each question in the retained Q&A pair, we obtain the 

correct APIs by parsing the hyperlinks to the Java API 

specifications in the accepted answer. In such a way, the 

API specifications of the correct APIs have semantic 

overlap with the accepted answers, thus the correct APIs 

can resolve the API related questions. In this step, we 

eventually achieve 1,234 Java API related questions with 

their correct APIs. 

It should be noted that Stack Overflow contains more API 

related questions in reality. To make it easy to obtain the correct 

APIs, conform to the definition of Q2API, and follow the same 

procedures as [11], we construct the corpus containing 1,234 

API related questions, which is more than twice as large as the 

corpus in [11]. In the future, we plan to introduce more API 

related questions to verify RASH. 
 

Table III 

 CHARACTERISTICS OF THE CORPUS 

# Avg. distinct words in question title 4.60 

# Avg. distinct words in question body 46.12 

# Avg. tags each question has 3.07 

# Avg. sentences in question body 5.12 

Submission time of the first question Sep. 9, 2008 

Submission time of the last question Aug. 31, 2016 

 

The characteristics of the corpus are shown in Table III. On 

average, a question title includes 4.60 distinct words, while a 

question body contains 46.12 distinct words within 5.12 

sentences. In addition, each question involves nearly 3 tags. 

The first question is submitted on Sep. 9, 2008 and the last 

question is submitted on Aug. 31, 2016. 

C. The Baseline Approach 

Ye et al. first issue the task of Q2API and present their 

 
4 https://archive.org/details/stackexchange 

attempts toward resolving this task using an IR technique. It is 

the state-of-the-art approach, so we employ it as the baseline 

approach for comparison [11]. This baseline approach uses the 

word embedding technique to calculate similarities and 

recommend APIs for API related questions. Word embedding 

is a technique to map words into vectors of real numbers. Based 

on word embedding, the similarity between two words can be 

calculated. Furthermore, the asymmetric document similarity 

can also be calculated. 

More specifically, for each new API related question, the 

baseline approach calculates three features for each API based 

on API specifications, including the cosine similarity, the word 

embedding based similarity from the new question to API, and 

the word embedding based similarity from API to the new 

question. The cosine similarity is calculated between the new 

question and the functional description in each API’s 

specification. In the word embedding based similarity, an 

asymmetric similarity is calculated between them after words 

are represented into vectors. Then, a weighted sum of the three 

features is calculated, and the weight of each feature is trained 

from a training set using a learning-to-rank system, which aims 

to optimize the rank so that the correct APIs are ranked in the 

top of the training set. Finally, all the APIs are ranked based on 

their weighted sums, and the top ranked APIs are recommended. 

They validate their approach over a non-publicly available 

corpus containing 604 Java API related questions with their 

correct APIs. The results show that the baseline approach is 

superior to the straightforward method, which only uses the 

simple cosine similarity to rank APIs. 

D. Evaluation Metrics 

To measure the effectiveness of different approaches from 

various aspects, inspired from [11, 16, 19], we employ four 

evaluation metrics in this study, including Hit Rate, 

Normalized Discounted Cumulative Gain (NDCG), Mean 

Average Precision (MAP), and Mean Reciprocal Rank (MRR). 

Among them, Hit Rate and NDCG are often used to evaluate 

recommendation systems [20], and MAP as well as MRR are 

widely used in IR [11, 16]. Since we recommend top 15 APIs 

for each API related question, we calculate the four evaluation 

metrics from top 1 to top 15 to clearly and incrementally 

present the performance, which are denoted as Hit@K, 

NDCG@K, MAP@K, and MRR@K (K is the recommended 

number ranging from 1 to 15), respectively. 

Hit Rate measures the percentage of questions that can be 

resolved by the recommended APIs [20]. Hit Rate is calculated 

by the number of questions whose correct APIs are exactly 

recommended divided by the number of all the questions, of 

which the formula is shown as follows. 

𝐻𝑖𝑡@𝐾 =
# 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑜𝑝 𝐾 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐴𝑃𝐼𝑠

# 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑜𝑡𝑎𝑙
   (8) 

NDCG measures the quality of the rank by calculating the 

gain of each result according to its position [20]. As a 

normalized DCG, NDCG is calculated by divided by a special 

ideal DCG, which ranks all 1s higher than 0s. Therefore, 

NDCG can be calculated as follows. 
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𝑁𝐷𝐶𝐺@𝐾 =
𝐷𝐶𝐺@𝐾

𝑖𝑑𝑒𝑎𝑙 𝐷𝐶𝐺@𝐾
       𝐷𝐶𝐺@𝐾 = ∑

2𝑟𝑒𝑙(𝑖)−1

𝑙𝑜𝑔2(𝑖+1)

𝐾
𝑖=1     (9) 

where i is the rank. 𝑟𝑒𝑙(𝑖) is a binary function to check whether 

the API in rank i is correct or not. For example, if the API in 

rank i is a correct API, 𝑟𝑒𝑙(𝑖) = 1. Otherwise, 𝑟𝑒𝑙(𝑖) = 0. 

MAP measures the quality of the rank when a query (a new 

API related question in this paper) may have multiple correct 

answers (correct APIs in this paper) [11, 16]. MAP is the mean 

of all the average precisions of queries, and it can be calculated 

as follows. 

𝑀𝐴𝑃@𝐾 =
1

|𝑄|
∑

∑ (𝑃(𝑖)×𝑟𝑒𝑙(𝑖))𝐾
𝑖=1

# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

𝑄
𝑗=1       𝑃(𝑖) =

# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑖

𝑖
  (10) 

where j is a query, |Q| is the number of queries, and P(i) is the 

precision at a given cut-off rank i. 

MRR is another widely used evaluation metric to measure 

the quality of the rank in IR [11, 16]. MRR is the average of the 

reciprocal ranks for all the queries. The reciprocal rank of a 

single query is the multiplicative inverse of the first correct 

answer. Hence, MRR can be calculated as follows. 

𝑀𝑅𝑅@𝐾 =
1

|𝑄|
∑

1

𝐾_𝑅𝑎𝑛𝑘𝑖

𝑄
𝑗=1                     (11) 

where K_Ranki means the rank position of the first correct 

answer in the top K recommended list for the i-th query. 

V. EXPERIMENTAL RESULTS 

In this section, we investigate five Research Questions (RQs) 

to investigate the effectiveness of RASH. 

A. Investigation to RQ1 

RQ1: How does the number of candidate APIs influence the 

performance of RASH? 

Motivation. In the Selecting Candidate APIs component of 

RASH, the number of candidate APIs (#candidate) is set to 500 

by default, i.e., #candidate=500. To verify whether setting 

#candidate=500 is effective and close to the optimal value, we 

set up this RQ. 

Approach. We adjust #candidate by setting it to several 

different values, including 100, 500, 1,000, and the number of 

all the APIs (i.e., 3,871). By comparing the results among {100, 

500, and 1,000}, we can know which value is the best and close 

to the optimal value. In addition, regarding all the APIs as 

candidate APIs is equal to removing the component of 

Selecting Candidate APIs. By comparing the results between 

500 and the number of all the APIs, we can know whether the 

component of Selecting Candidate APIs is effective. 

Result. Fig. 6 shows the results of RASH when setting 

#candidate to different values in terms of Hit Rate and NDCG 

from top 1 to top 15, and Table IV presents the results of RASH 

in terms of MAP and MRR accordingly. A specific number in 

the figure and table means setting #candidate equaling to it, e.g., 

100 means #candidate=100, and all means #candidate=the 

number of all the APIs. 

 

 
Fig. 6.  Hit Rate and NDCG for different number of candidate APIs 

 
Table IV 

MAP AND MRR FOR DIFFERENT NUMBER OF CANDIDATE APIS 

K 
MAP MRR 

100 500 1,000 all 100 500 1,000 all 

1 0.2753 0.2769 0.2725 0.2583 0.2853 0.2869 0.2820 0.2674 

2 0.3014 0.3020 0.2976 0.2763 0.3096 0.3100 0.3055 0.2836 

3 0.3239 0.3244 0.3182 0.2961 0.3325 0.3329 0.3266 0.3039 

4 0.3363 0.3376 0.3309 0.3065 0.3445 0.3457 0.3387 0.3140 

5 0.3448 0.3456 0.3395 0.3167 0.3521 0.3530 0.3467 0.3241 

6 0.3507 0.3521 0.3455 0.3227 0.3580 0.3595 0.3526 0.3299 

7 0.3550 0.3559 0.3495 0.3271 0.3622 0.3631 0.3564 0.3339 

8 0.3580 0.3596 0.3525 0.3314 0.3651 0.3666 0.3592 0.3380 

9 0.3605 0.3621 0.3552 0.3341 0.3678 0.3694 0.3620 0.3406 

10 0.3624 0.3639 0.3576 0.3362 0.3696 0.3711 0.3642 0.3428 

11 0.3642 0.3657 0.3595 0.3383 0.3713 0.3728 0.3662 0.3448 

12 0.3657 0.3670 0.3611 0.3401 0.3727 0.3740 0.3678 0.3465 

13 0.3666 0.3679 0.3618 0.3412 0.3737 0.3749 0.3685 0.3478 

14 0.3673 0.3688 0.3629 0.3421 0.3744 0.3758 0.3696 0.3486 

15 0.3680 0.3694 0.3635 0.3430 0.3751 0.3765 0.3702 0.3495 

 

First, we try to compare the results when setting #candidate 

to {100, 500, and 1,000}. We can see from Fig. 6 and Table IV 

that, RASH achieves the best results on the whole when setting 

#candidate=500, especially when recommending 15 APIs. For 

example, RASH achieves Hit@15 and NDCG@15 of 69.12% 

and 0.4475. In contrast, when setting #candidate=100 and 

#candidate=1,000, RASH achieves 64.34% and 68.64% in 

terms of Hit@15 and 0.4427 and 0.4409 in terms of 

NDCG@15, respectively. As for MAP and MRR, RASH also 

achieves the best results when setting #candidate=500. 

Therefore, setting #candidate=500 is close to the optimal value. 

Comparing the results between 500 and the number of all the 

APIs can show the effectiveness of the Selecting Candidate 

APIs component. As shown in Fig. 6 and Table IV, RASH 

achieves better results when setting #candidate=500 than that 

when setting #candidate=all. For example, when setting 

#candidate=500, RASH achieves Hit@15 and NDCG@15 of 

69.12% and 0.4475, respectively. In contrast, when setting 

#candidate=all, RASH achieves Hit@15 of 67.67% and 

NDCG@15 of 0.4222, respectively. Additionally, in terms of 

MAP and MRR, RASH also achieves better results when 

setting #candidate=500. Therefore, the component of Selecting 

Candidate APIs is effective. 

 

0.20

0.30

0.40

0.50

0.60

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
D

C
G

H
it

 R
at

e

K
NDCG 100 NDCG 500 NDCG 1,000 NDCG all

Hit Rate 100 Hit Rate 500 Hit Rate 1,000 Hit Rate all



 9 

 
Fig. 7. Hit Rate and NDCG for RASH and its variants 

 
Table V 

MAP AND MRR FOR RASH AND ITS VARIANTS 

K 
MAP MRR 

RASH_spe RASH_his RASH RASH_spe RASH_his RASH 

1 0.2761  0.2749  0.2769  0.2861  0.2844  0.2869  

2 0.3041  0.2986  0.3020  0.3120  0.3063  0.3100  

3 0.3204  0.3140  0.3244  0.3290  0.3220  0.3329  

4 0.3306  0.3252  0.3376  0.3391  0.3329  0.3457  

5 0.3376  0.3324  0.3456  0.3453  0.3394  0.3530  

6 0.3434  0.3377  0.3521  0.3512  0.3447  0.3595  

7 0.3468  0.3410  0.3559  0.3544  0.3478  0.3631  

8 0.3492  0.3436  0.3596  0.3568  0.3505  0.3666  

9 0.3509  0.3456  0.3621  0.3584  0.3525  0.3694  

10 0.3522  0.3470  0.3639  0.3598  0.3539  0.3711  

11 0.3540  0.3491  0.3657  0.3616  0.3560  0.3728  

12 0.3551  0.3502  0.3670  0.3626  0.3570  0.3740  

13 0.3561  0.3510  0.3679  0.3635  0.3579  0.3749  

14 0.3566  0.3515  0.3688  0.3640  0.3584  0.3758  

15 0.3570  0.3523  0.3694  0.3644  0.3591  0.3765  

 

The reason may be that, using a small parameter value (e.g., 

#candidate=100) will filter out some correct APIs. In contrast, 

using a large one (e.g., #candidate=1,000 or #candidate=all) 

will retain too many irrelevant APIs. Hence, choosing a suitable 

moderate value (e.g., #candidate=500) can retain correct APIs 

and filter out irrelevant APIs as many as possible. 

Conclusion. RASH achieves the best results, when setting 

#candidate=500. The component of Selecting Candidate APIs 

is effective to retain correct APIs and reduce irrelevant APIs. 

B. Investigation to RQ2 

RQ2: Whether the combination of both the two correlation 

scores can achieve better results than any of them alone? 

Motivation. RASH combines both the correlation scores 

from API specifications and historical resolved questions to 

rank APIs for new API related questions. To validate whether 

combining them can achieve better results than any of them 

alone, we set up this RQ. 

Approach. We define two variants of RASH. The first 

variant named RASH_spe, which uses the correlation scores 

from API specifications to select candidate APIs, regards these 

correlation scores as the final scores for APIs, and applies the 

same API ranking scheme to rank and recommend candidate 

APIs. The second variant named RASH_his only considers the 

correlation scores from historical resolved questions in the 

same way. By comparing the results of RASH against its two 

variants, we can know whether combing the two correlation 

scores could achieve better results. In addition, by comparing 

the results between RASH_spe and RASH_his, we can acquire 

whether giving the two correlation scores from API 

specifications and historical resolved questions the same 

weight in formula (7) is effective (see Section III.D). 

Results. Fig. 7 and Table V show the results of RASH and its 

two variants in terms of Hit Rate, NDCG, MAP, and MRR from 

top 1 to top 15. It is obvious that RASH achieve better results 

than RASH_spe and RASH_his, especially when the number of 

recommended APIs is increasing. Meanwhile, RASH_spe and 

RASH_his perform similarly in terms of all the evaluation 

metrics. When recommending only one API (i.e., K=1), RASH 

achieves similar results as RASH_spe and RASH_his. For 

example, the Hit@1 of RASH is 28.69%. While, RASH_spe 

and RASH_his achieve 28.61% and 28.44%, respectively. In 

terms of the other evaluation metrics, RASH also achieves the 

best results, but the disparity is trivial. When considering top 5 

APIs, RASH still achieves better results than RASH_spe and 

RASH_his. For example, RASH achieves Hit@5 of 48.95% 

and improves RASH_spe and RASH_his by 2.92% and 3.81%, 

respectively. When recommending 10 APIs, RASH performs 

quite better than RASH_spe and RASH_his. In particular, 

when the recommended length is increased to 15, RASH 

achieves significantly better results than RASH_spe and 

RASH_his. For instance, RASH achieves Hit@15 of 69.12%. 

In contrast, RASH_spe and RASH_his only achieve 62.24% 

and 62.32%, respectively. In addition, as for NDCG@15, 

RASH reaches to 0.4475 and improves RASH_spe and 

RASH_his by 0.0249 and 0.0292, respectively. As for 

MAP@15 and MRR@15, RASH also outperforms its variants. 

After demonstrating the effectiveness of combining the 

correlation scores from both API specifications and historical 

resolved questions, we would like to explore the underlying 

reasons. Correlation scores from API specifications detect the 

correct APIs for new API related questions from the lexical 

perspective. API specifications explain APIs’ functionalities in 

the implementation domain, and API related questions in Stack 

Overflow describe the requirements in the problem domain. If 

they can match lexically, the APIs are highly likely to resolve 

the API related questions. In addition, we observe that the 

correct APIs are overlapped for similar questions. Therefore, 

we fully leverage the correct APIs that have resolved similar 

questions in history to resolve new API related questions. In 

such a way, the two correlation scores from API specifications 

and historical resolved questions complement and cooperate 

each other. Hence, RASH can achieve better results. 

In addition, we can also find that RASH_spe and RASH_his 

achieve similar results in terms of all the evaluation metrics. It 

implies that the two correlation scores from API specifications 

and historical resolved questions make similar contributions to 

detect the correct APIs. Hence, it is reasonable to give the two 

correlation scores the same weight in formula (7), when 

calculating the final score for each API (see Section III.D). 

Conclusion. By aggregating both the correlation scores from 

API specifications and historical resolved questions, RASH can 

better recommend correct APIs for API related questions. 
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Fig. 8.  User score of each question in the corpus. To better present the trend, we 

show the base-e logarithm of each user score. 

 

 
Fig. 9.  Hit Rate and NDCG for different subsets. 

 
Table VI 

MAP AND MRR FOR DIFFERENT SUBSETS 

K 
MAP MRR 

high low high low 

1 0.2800  0.2730  0.2892  0.2833  

2 0.3117  0.2963  0.3199  0.3045  

3 0.3321  0.3169  0.3411  0.3251  

4 0.3425  0.3299  0.3509  0.3378  

5 0.3515  0.3377  0.3592  0.3450  

6 0.3566  0.3443  0.3645  0.3519  

7 0.3615  0.3486  0.3684  0.3562  

8 0.3633  0.3529  0.3705  0.3603  

9 0.3658  0.3562  0.3730  0.3635  

10 0.3666  0.3580  0.3737  0.3652  

11 0.3683  0.3592  0.3755  0.3664  

12 0.3693  0.3610  0.3765  0.3684  

13 0.3703  0.3619  0.3775  0.3692  

14 0.3712  0.3625  0.3783  0.3699  

15 0.3720  0.3633  0.3792  0.3707  

C. Investigation to RQ3 

RQ3: Is RASH sensitive to the quality of the questions? 

Motivation. Due to different experience and expertise of 

submitters, the quality of API related questions may vary 

sharply [21]. Some questions can clearly describe the real 

problems without missing any important information. In 

contrast, the other questions may lack some critical details, 

making them hard to be resolved. To investigate how RASH 

performs over different quality of questions, we set up this RQ. 

Approach. We split the constructed corpus into two subsets, 

i.e., high-quality subset and low-quality subset. Similar as [21], 

the quality of a question is judged by its user score. Inspired 

from [5, 8], we set up 2 as the threshold to split the corpus, thus 

the two generated subsets can retain similar characteristics with 

the corpus as much as possible. If the user score of a question is 

larger than 2, it is treated as a high-quality question and put into 

the high-quality subset. Otherwise, it is placed into the 

low-quality subset. We rank the API related questions in the 

constructed corpus based on their user scores, and find that it 

shows a long-tailed distribution as plotted in Fig. 8. About 

two-third questions (i.e., 826 questions) achieve user scores no 

more than 2, and they are allocated to the low-quality subset. 

The rest 408 questions achieving user scores larger than 2 are 

put into the high-quality subset. By applying RASH over the 

two subsets separately, we can obtain the comparison results. If 

RASH performs similarly over the two subsets, it indicates that 

RASH is insensitive and robust to the quality of the questions. 

Results. Fig. 9 and Table VI show the result of RASH over 

the two subsets of questions with different quality in terms of 

Hit Rate, NDCG, MAP, and MRR. high and low present the 

results of RASH over the high-quality subset and the 

low-quality subset, respectively. We can see from the figure 

and table that, RASH performs similarly over the high-quality 

subset and low-quality subset. For example, RASH achieves 

Hit@15 of 66.91% over the high-quality subset and 69.37% 

over the low-quality subset. In terms of NDCG, RASH 

achieves NDCG@15 of 0.4449 over the high-quality subset 

and 0.4433 over the low-quality subset, in which the disparity is 

trivial. Similarly, RASH also achieves similar results over the 

two subsets in terms of MAP and MRR. 

The reason why RASH is insensitive to different quality of 

questions may be that, RASH utilizes two correlation scores to 

rank APIs. A low-quality question may cause a correlation 

score fails to find the correct APIs. However, another 

correlation score can compensate for this deficiency to 

precisely detect the correct APIs. As a result, questions with 

different quality have little impact on the performance of 

RASH. 

Conclusion. RASH performs similarly over high-quality 

questions and low-quality questions. RASH is insensitive and 

robust to the quality of questions. 

D. Investigation to RQ4 

RQ4: What is the impact of the question number on the 

performance of RASH? 

Motivation. RASH leverages the information in historical 

resolved questions with their correct APIs to recommend APIs 

for new API related questions. More resolved questions with 

their correct APIs exist in history, more useful information can 

be leveraged by RASH. Hence, the number of questions may 

influence the performance of RASH. To investigate what is the 

impact of the question number on RASH’s performance, we set 

up this RQ. 

Approach. There are 1,234 API related questions in the 

constructed corpus, and we sort them sequentially based on 

their submission time. We verify RASH over the early N 

submitted questions, where N ranges from 1 to 1,234. The 

results of early N submitted questions are synthesized to form 

the final results of RASH. In such a way, we can know how 

RASH performs when the number of questions changes. 
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Fig. 10.  Hit Rate for different number of questions 

 

 
Fig. 11.  NDCG for different number of questions 

 

 
Fig. 12.  MAP for different number of questions 

 

 
Fig. 13.  MRR for different number of questions 

 

Results. Fig. 10, 11, 12, and 13 show the results of RASH 

over different number of questions in terms of the four 

evaluation metrics. To clearly distinguish and show the results 

of each evaluation metric, we only present the results of top 5, 

top 10, and top 15. 

We can see from the figures that all the evaluation metrics 

are unstable when RASH is applied over a small number of 

questions, i.e., less than about 200 questions. The values of 

these evaluation metrics raise in some specific number of 

questions, while fall in the others. For example, when the 

number of questions is only 10, RASH achieves Hit@15 of 

50%. Then, it raises to 60% when the number of questions 

reaches to 20. However, the value of Hit@15 falls to 56.67% 

for 30 questions. The other evaluation metrics also show 

similar trends. 

When the number of questions exceeds a specific value, i.e., 

200, RASH behaves steadily and all the evaluation metrics 

show slightly upward trends along with the increasing of the 

question number. For example, along with the question number 

increasing from 200 to 1,234, RASH achieves Hit@15 from 

62.5% to 69.12%. The curves of the other evaluation metrics 

also show similar trends along with the growth of the question 

number. 

This phenomenon can be explained as follows. A small 

number of questions means that only limited number of 

historical resolved questions exist. In this situation, marginally 

less information in historical resolved questions with their 

correct APIs can be leveraged by RASH, which mainly relies 

on API specifications to detect correct APIs. Hence, RASH 

performs unstable. When the information in historical resolved 

questions is accumulated large enough, RASH learns from both 

API specifications and historical resolved questions, so RASH 

performs better. 

Conclusion. The performance of RASH is steadily 

increasing, when the number of questions exceeds 200. 

E. Investigation to RQ5 

RQ5: How does RASH perform compared against the 

baseline approach? 

Motivation. As we described, the baseline approach is the 

state-of-the-art approach to resolve the Q2API task. In this RQ, 

we try to investigate whether RASH is superior to the baseline 

approach. 

Approach. Based on the procedures described in [11], we 

implement the baseline approach accordingly and verify it over 

the constructed corpus to achieve the results. 

Results. Fig. 14 shows the results of RASH and the baseline 

approach in terms of Hit Rate and NDCG, and Table VII 

presents the results of MAP and MRR accordingly. From the 

figure and table we can see that, RASH achieves significantly 

better results than the baseline approach. 

RASH achieves Hit@5 of 48.59% and NDCG@5 of 0.3862. 

However, the baseline only achieves 36.79% and 0.2679, 

respectively. In terms of MAP and MRR, RASH also 

outperforms the baseline approach by 0.1156 and 0.1183. 

When the length of the recommendation list improves to 10, 

RASH achieves Hit@10 of 62.40%. It indicates that more than 

62% correct APIs can be recommended. In contrast, the 

baseline approach only achieves 47.08%. As for the other 

evaluation metrics, RASH also outperforms the baseline 

approach by about 0.12. When recommending 15 APIs for each 

API related question, RASH achieves Hit@15 of 69.12% and 

the baseline approach only achieves 53.48%. It implies that 

RASH recommends almost 70% correct APIs for API related 

questions, and outperforms the baseline approach by 15.64%. 

In addition, RASH achieves NDCG@15 of 0.4475 and the 
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baseline approach only achieves 0.3173. In terms of MAP@15 

and MRR@15, RASH also outperforms the baseline approach 

by 0.1206 and 0.1230, respectively. 

 

 
Fig. 14.  Hit Rate and NDCG for different approaches 

 
Table VII 

MAP AND MRR FOR DIFFERENT APPROACHES 

K 
MAP MRR 

baseline RASH Improvement baseline RASH Improvement 

1 0.1536 0.2769 + 0.1233 0.1580 0.2869 + 0.1288 

2 0.1960 0.3020 + 0.1060 0.2010 0.3100 + 0.1090 

3 0.2143 0.3244 + 0.1101 0.2188 0.3329 + 0.1141 

4 0.2230 0.3376 + 0.1146 0.2277 0.3457 + 0.1180 

5 0.2300 0.3456 + 0.1156 0.2347 0.3530 + 0.1183 

6 0.2342 0.3521 + 0.1179 0.2391 0.3595 + 0.1203 

7 0.2375 0.3559 + 0.1184 0.2424 0.3631 + 0.1207 

8 0.2399 0.3596 + 0.1197 0.2449 0.3666 + 0.1217 

9 0.2420 0.3621 + 0.1201 0.2470 0.3694 + 0.1224 

10 0.2435 0.3639 + 0.1205 0.2484 0.3711 + 0.1227 

11 0.2448 0.3657 + 0.1209 0.2495 0.3728 + 0.1232 

12 0.2461 0.3670 + 0.1209 0.2507 0.3740 + 0.1233 

13 0.2472 0.3679 + 0.1207 0.2518 0.3749 + 0.1232 

14 0.2479 0.3688 + 0.1209 0.2525 0.3758 + 0.1233 

15 0.2488 0.3694 + 0.1206 0.2534 0.3765 + 0.1230 

 

The reasons why RASH can achieve better results may be 

that, it fully leverages the information in historical resolved 

questions with their correct APIs to detect correct APIs. We 

have the observation that similar questions share similar or the 

same correct APIs (see Section II.C), based on which we design 

our novel approach RASH. In addition, RASH employs an 

important component, i.e., Selecting Candidate APIs, to 

accurately filter out incorrect APIs so as to further improve the 

results. 

Conclusion. RASH significantly outperforms the 

state-of-the-art approach. RASH can better recommend correct 

APIs for API related questions in Stack Overflow. 

VI. THREAT TO VALIDITY 

In this section, we introduce threats to validity, including 

threats to internal validity and threats to external validity. 

A. Threats to Internal Validity 

Threats to internal validity are the potential errors or biases 

in the experiments. RASH aims to recommend correct APIs for 

new API related questions in Stack Overflow based on API 

specifications and historical resolved questions. A threat of 

RASH is the quality of API specifications. API specifications 

are released accompanied with APIs to describe APIs’ usages, 

and they are usually constructed in a standard process (e.g., 

Javadoc) by experienced developers [22, 23, 24]. Hence, the 

quality of API specifications can be guaranteed to a great extent. 

In addition, another threat of RASH is the parameter selection, 

i.e., the number of candidate APIs. It is hard to choose an 

optimal value for this parameter by experience, and the optimal 

value may be various in different corpora. In this paper, we set 

it to 500 by default and validate its effectiveness in RQ1. In the 

future, we plan to automatically configure the optimal value for 

this parameter in RASH. 

B. Threats to External Validity 

Threats to external validity are related to the generalization 

of RASH to other contexts and research settings. We verify 

RASH over a constructed corpus containing 1,234 Java API 

related questions in Stack Overflow, and the results show that 

RASH is robust and superior to the state-of-the-art approach. It 

is unknown how RASH performs over questions related to 

other APIs like C# and in other Q&A forums like Quora. In the 

future, we plan to extend the generalization of RASH by 

introducing more questions related to diverse APIs in other 

Q&A forums. 

VII. RELATED WORK 

In this section, we briefly review and discuss two main 

related works, i.e., mining Stack Overflow and issues related to 

API usages. 

A. Mining Stack Overflow 

As a popular technical Q&A forum, Stack Overflow contains 

valuable information assembling crowd knowledge from 

millions of developers, and a lot of research tasks have been 

proposed to mine Stack Overflow in recent years. These 

research tasks can be roughly divided into two categories, i.e., 

analyzing Stack Overflow and utilizing Stack Overflow. 

1) Analyzing Stack Overflow 

Some empirical studies aim to analyze the information in 

Stack Overflow. Barua et al. explore what developers care 

about by studying all the posts in Stack Overflow, and use topic 

model to analyze the topics and trends [21]. Yang et al. study 

what security related questions developers ask by conducting a 

large-scale study on security related questions [25]. Similarly, 

Rosen and Shihab analyze mobile related questions in Stack 

Overflow [26]. Beyer and Pinzger find that the most commonly 

asked questions are “How” and “What” questions by analyzing 

Android related posts [27]. Bajaj et al. analyze web 

development related posts in Stack Overflow to uncover the 

challenges for web developers [28]. Linares-Vásquez et al. 

analyze how API changes trigger questions in Stack Overflow 

[29]. 

Our work belongs to the category of analyzing Stack 

Overflow. Different from these studies, we try to resolve API 

related questions by recommending correct APIs for them 

rather than empirically study them. 
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2) Utilizing Stack Overflow 

The crowd knowledge in Stack Overflow can be leveraged to 

resolve other research tasks. Gao et al. fix recurring crash bugs 

by analyzing Q&A pairs in Stack Overflow [30]. Nie et al. 

employ Q&A pairs in Stack Overflow to expand the queries to 

improve the performance of code search [19]. Jiang et al. 

leverage API related Q&A pairs as features to better detect 

relevant tutorial fragments [31]. Treude and Robillard enrich 

API documentation with insight sentences extracted from Stack 

Overflow [32]. Wong et al. automatically generate code 

comments based on code segments with their descriptions in 

Stack Overflow [33]. 

Unlike the above-mentioned studies, we try to recommend 

correct APIs for API related questions in Stack Overflow, 

which could accelerate their resolution and save developers’ 

time. 

B. Issues Related to API Usages 

APIs are hard to learn, and developers will encounter various 

usage issues when programming with APIs [34]. Robillard and 

DeLine find that the most severe problem for developers to 

learn APIs is inadequate API documentation and other learning 

resources [35]. Zhou and Walker conduct a retrospective 

analysis on API deprecation in open source libraries [36]. 

Robbes et al. study the react of developers to API deprecation 

in a Smalltalk ecosystem, and they find that developers 

sometimes do not consider API deprecation instructions [37]. 

Linares-Vásquez et al. find that change prone and bug prone 

APIs are threats to the success of mobile applications, and 

developers are suggested not to use change prone and bug 

prone APIs [38]. In addition, McDonnell et al. study the impact 

of unstable APIs to their client code, and they suggest that 

developers should avoid using unstable APIs [39]. 

Our work is different from these studies. In this paper, we try 

to resolve API related questions by recommending correct APIs 

for them. 

VIII. CONCLUSION AND FUTURE WORK 

Developers usually encounter API related programming 

problems and ask them in Q&A forums like Stack Overflow. 

Hence, automatically answering API related questions is 

significant to developers. In this paper, we propose a novel 

approach named RASH towards resolving API related 

questions by recommending correct APIs for them. RASH 

combines and fully leverages the information in both API 

specifications and historical resolved questions to detect correct 

APIs for new API related questions. We conduct extensive 

experiments over a publicly available corpus. The experimental 

results show that RASH can hit nearly 70% correct APIs and 

outperform the state-of-the-art approach by 15.64% when 

recommending 15 APIs for each question. Hence, RASH is 

capable of better resolving API related questions to further 

boost developer productivity. 

For the future work, we will improve RASH in the following 

directions. First, we plan to automatically configure the 

parameters in RASH. Second, we try to verify RASH over 

questions related to other commonly used APIs, e.g., C#. Third, 

a tool encapsulating RASH will be developed and distributed to 

help developers resolve API related questions. 
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