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During software maintenance, bug reports are widely employed to improve the software pro-
ject's quality. A developer often refers to stowed bug reports in a repository for bug resolution.

However, this reference process often requires a developer to pursue a substantial amount of

textual information in bug reports which is lengthy and tedious. Automatic summarization of

bug reports is one way to overcome this problem. Both supervised and unsupervised methods
are e®ectively proposed for the automatic summary generation of bug reports. However, existing

methods disregard the signi¯cance of duplicate bug reports in summarizing bug reports. In this

study, we propose a PageRank-based Summarization Technique (PRST), which utilizes the

textual information contained in bug reports and additional information in associated duplicate
bug reports. PRST uses three variants of PageRank-based on Vector Space Model (VSM),

Jaccard, and WordNet similarity metrics. These variants are utilized to calculate the textual

similarity of the sentences between the master bug reports and their duplicates. PRST further

trains a regression model and predicts the probability of sentences belonging to the summary.
Finally, we combine the values of PageRank and regression model scores to rank the sentences

and produce the summary for the master bug reports. In addition, we construct two corpora of

bug reports and duplicates, i.e. MBRC and OSCAR. Empirical results suggest that PRST
outperforms the state-of-the-art method BRC in terms of Precision, Recall, F-score, and
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Pyramid Precision. Meanwhile, PRST with WordNet achieves the best results against PRST
with VSM and Jaccard.

Keywords: Duplicate bug reports; summarization; supervised learning; PageRank.

1. Introduction

Bug reports are valuable assets in software development projects. A bug report often

resembles a recorded, sequentially ordered conversation from several people where

each message is composed of multiple sentences. Usually, a bug report contains the

title of the problem, bug items that provide general information such as product and

component of the bug report, a description written by the reporter, and comments by

other users or developers. The description in a bug report narrates the production of

unusual behavior, while comments record the debate between the developers about

the bug and its resolution. Figure 1 exhibits a typical bug report from the Eclipse bug

repository.a As the bug is resolved over the period, this conversation becomes

lengthy, tedious, and di±cult to understand for developers. It is time consuming for

developers to consult and understand these lengthy bug conversations. Thus, a brief

and accurate textual representation of lengthy bug conversations eases the arduous

e®ort of understanding bug reports.

While analyzing the state-of-the-art extractive and abstractive techniques for

summarizing bug reports, it has been observed that these techniques hardly achieve

the precision of 60%, when tested on publicly available corpora. Rastkar et al. [1]

applied pre-existing supervised learning methods for generating extractive summa-

ries of bug reports. They trained a logistic regression classi¯er BRC and predicted the

probability of each sentence belonging to the summary. By selecting a set of top

ranked sentences from the original bug report, a succinct summary of bug report can

be achieved. When they test this method on an open bug report corpus, they achieve

the precision of 57%. In contrast, Mani et al. [2] applied unsupervised learning

techniques on the same BRC corpus. They introduced a noise reduction mechanism,

which classi¯ed sentences heuristically into di®erent types for generating concise

summaries. Such methods mainly focused on resolving or improving a learning model

but neglected the importance of other components or characteristics of the bug

repository such as duplicate bug reports.

Moreover, in a recent e®ort, Rastkar et al. [3] found that concise summaries of

original bug report can help developers ¯nd duplicate bug reports e®ectively. Using

the same intuition, we hypothesize if the bug report summaries can e®ectively help

detecting duplicate bug reports then the information contained in duplicate bug

reports can also be utilized for generating better summaries of bug reports. There-

fore, in order to overcome the aforementioned challenges (discussed in the last

paragraph) and test our hypothesis, we propose a novel technique to accurately

generate summaries of master bug reports by utilizing the textual information

abugs.eclipse.org/bugs, veri¯ed 25/07/15.
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contained in duplicate bug reports. As each bug report resembles a conversation, text

summarization techniques have been e®ectively applied earlier to summarize bug

report conversations. Therefore, the textual information of duplicate bug reports can

be utilized e®ectively for summarizing master bug reports as it provides additional

information.

In this study, we propose PRST which summarizes master bug reports by uti-

lizing the information contained in the associated duplicate bug reports. To simulate

Fig. 1. An example of a typical bug report. Bug # 174533 from Eclipse bug repository.
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this phenomenon, we modify the existing BRCb [1] corpus to map duplicate bug

reports and meanwhile construct a new bug report corpus, OSCAR,c that contains

master and duplicate bug reports mapped together. In total, the modi¯ed BRC

corpus i.e. MBRC contains 28 bug reports with 935 sentences, whereas OSCAR

contains 59 bug reports with 1399 sentences. Both corpora are extracted from

Eclipse, Mozilla,d KDE,e and Gnome,f open source projects. To calculate the textual

similarity between sentences in bug reports, we apply three variants of PageRank

based on similarity metrics i.e. WordNet [4], Vector Space Model (VSM) [5], and

Jaccard [6] methods. In addition, we employ supervised learning methods to train a

logistic regression model and predict the probability of each sentence belonging to a

summary. Thus, we can form a network and apply PageRank algorithm. After

merging the PageRank and regression scores, the high ranking sentences are selected

as summary sentences. By utilizing four widely used evaluation metrics, Precision,

Recall, F-Score, and Pyramid Precision, PRST improves the Precision of the state-

of-the-art method BRC by 9%. This proves that the information contained in du-

plicate bug reports can help producing better summaries of bug reports than

existing methods. Our contributions in this paper are as follows:

(1) To the best of our knowledge, it is the ¯rst work to introduce the valuable

information of duplicate bug reports to automatically summarize the master bug

reports. Our proposed technique, PRST, applied three variants of PageRank by

introducing the textual similarity of bug reports and their duplicates that could

generate better bug report summaries. The experimental results show that the

novel technique can improve the summarization accuracy.

(2) We constructed a new corpus (i.e. OSCAR), which consists of 59 bug reports

containing master and duplicate bug reports. We invited 10 graduate students

from the same laboratory, who have good programming experience for anno-

tating the corpus. OSCAR corpus is publicly available and future researchers can

bene¯t from it.

(3) Extensive experiments were carried out on OSCAR and MBRC corpora to

substantiate the advantages of the proposed PRST over the existing methods.

The paper is organized as follows: We present the motivation behind our proposed

idea in Sec. 2. Section 3 describes our summarization technique and the main com-

ponents. Section 4 details the insight into the experimental design, while Sec. 5

discusses the experimental results and threats to the validity of our work in detail. In

Sec. 6, we provide a brief literature review in the bug report and source code re-

positories. Section 7 concludes our paper.

bBRC corpus, in its original form, can be accessed at http://www.cs.ubc.ca/cs-research/software-prac-
tices-lab/projects/summarizing-software-artifacts, veri¯ed 25/07/15.
cOSCAR corpus is publicly available at http://oscar-lab.org/paper/prst/corpus.htm, veri¯ed 25/07/15.
dbugzilla.mozilla.org/, veri¯ed 25/07/15.
ebugs.kde.org/, veri¯ed 25/07/15.
fbugzilla.gnome.org. veri¯ed 25/07/15.
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2. Motivation

Academic researchers have conducted studies to detect [7], automate [8], prioritize [9]

and triage [10] duplicate bug reports. However, they have not used duplicate bug

reports for summarization task yet. The motivation of our work is based on the

notion that the master bug reports can be e®ectively summarized by utilizing the

textual information between the master and the duplicate bug reports. The reason is

that the duplicate bug reports are similar to master bug reports as both bug reports

discuss the same problem in di®erent words. Moreover, duplicate bug reports can

provide additional useful information that can be further utilized for summarization

process. Here, we explain our motivation using the following example:

Let us consider a bug report # 510627 and its duplicate bug report # 506722,

extracted from the Mozilla Bug Repositoryg as an example (Fig. 2).

In the bug report # 510627, Justine Dolske described the problem in the following

words

\ . . . We've found a number of bugs where the Tegra device locks up hard

(ie, mouse pointer frozen, kernel debugger can't connect to it) after vis-

iting a SSL site. Not every SSL site does this, however . . . ".

Fig. 2. An example of Master and its corresponding duplicate bug report. (The beginning parts of Bug #

510627 and Bug # 506722 from Mozilla bug repository).

gbugzilla.mozilla.org, veri¯ed 25/07/15.
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The above description mentions that the mouse pointer and kernel debugger hang

when SSL sites are visited on a Tegra device. However, it does not happen on visiting

all SSL sites.

Similarly, its duplicate bug report # 506722, reported by Tony Chung, describes

the same issues as follows:

\ . . . STR: 1) load up Tegra device, Firefox version: Mozilla/5.0 (Win-

dows; U; WindowsCE 6.0; en-US; rv: 1.9.1.2pre) Gecko/20090717

Firefox/3.6a1pre 2) Go to URL 3) Verify system and browser hangs . . . ".

The excerpt from bug # 506722 noti¯es that the OS hangs while visiting SSL-based

websites.

Even though the textual description di®ers in both examples, the two bug reports

reported the similar problem. Furthermore, by reading the descriptions of these bug

reports, we found that these reports often use terms or words that are similar in

nature. For example, both bug reports share some common words, such as `Tegra',

`hangs', and `site' and these words can be included in a ¯nal summary. In total, bug

report # 510627 has ¯ve duplicate bug reports including # 506722, # 504970, #

508478, # 510419, and # 502230, and these ¯ve duplicate bug reports describe the

same problem di®erently.

From the aforementioned example, we can see that the textually similar infor-

mation in both bug reports as well as the supported information in duplicates can be

employed e®ectively for automatic summarization of master bug reports. We for-

malized this intuition by investigating more bug reports and proposing a novel

technique (discussed in next Section) for generating bug reports summaries.

3. Methodology

Figure 3 outlines the proposed PRST. To produce the natural language summaries of

master bug reports, we ¯rst collected master bug reports and their duplicates from

open source bug report repositories (corpus). Each bug report in a corpus contains a

Fig. 3. PRST Technique for bug report summarization.
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bug description and its related comments. After creating the bug report corpus,

annotation methods were applied to label the corresponding bug reports (training

set). The textual contents such as descriptions and comments of the master and

duplicate bug reports were broken into sentences through a Sentence Splitter. Sec-

ond, these sentences were passed to the ranking module, where PageRank algorithm

ranked these sentences by applying di®erent similarity measures. Next, the super-

vised machine learning prediction model estimated the probability score of sentences

in master bug reports, when passed with the training set. Further, a ranking merger

combined the scores attained through PageRank and supervised learning. Sentences

were further sorted on the basis of ¯nal scores achieved through the ranking merger

component. In the end, top ranked sentences were selected as the summary sentences

of the master bug report.

In the subsequent sections, we provide details of each component of PRST. These

components include Sentence Splitter, PageRank, Regression, and Predication and

Ranking Merger.

3.1. Sentence splitter

While constructing a bug report summary, we could decide at the speci¯ed granu-

larity level, whether the piece of text in the input document should be present in the

output summary or not [2]. The granularity can be at the level of a word, a sentence,

or a paragraph. A word level granularity being too small creates reading di±culty

while a paragraph-level granularity includes redundant information. Therefore, we

selected a sentence-level granularity for summary construction in this study.

We regarded the textual information contained in a title, description, and com-

ments of bug reports to form a summary. LingPipe Toolkith (Alias-i LingPipe

Tokenizer) was used to split descriptions and comments into sentences. Lingpipe is a

toolkit that utilizes computational linguistics for text processing. Although it could

perform other tasks, such as word analysis, we mainly employed it for splitting

textual data into sentences. It took descriptions and comments of bug reports as an

input and produced sentences as an output.

Pre-processing Steps: Furthermore, as a standard, we applied pre-processing

techniques i.e. tokenization, stop words removal, and stemming at this level. Toke-

nization process breaks the text into words, phrases, symbols or other meaningful

elements. The stop word removal process ¯lters out unnecessary words from the

tokens while, stemming is used to transform words into their root forms. For ex-

ample, `watch' is a root form for the words `watching' or `watched'.

3.2. PageRank module

In this module, we applied three variants of PageRank algorithm based on VSM,

Jaccard, and WordNet metrics to measure the similarity among sentences. This

hhttp://alias-i.com/lingpipe/, veri¯ed 25/07/15.
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module generated the probability scores for each variant of PageRank when sen-

tences attained through Sentence Splitter were passed as an input. In the end, sen-

tences were sorted in descending order.

The PageRank algorithm is used to calculate the importance of web pages con-

nected or linked together on the internet. It assigns a numerical weight to each node on

the web page with the purpose of measuring the relative `importance' of the set of

connected links [11, 12]. The rank value indicates an importance of a particular page. If

a page has many inbound links, it has a higher rank value. Similarly, if a page has no

inbound link, it is not important at all. Intuitively, Google is an important page,

re°ected by the fact that many pages point to it. Likewise, pages that are pointed from

Google are themselves important. Here, nodes are constructed with sentences and

edges are established using similarity score among terms i.e. words or sentences [12].

In our work, we modi¯ed the original PageRank algorithm slightly to ¯t our

scenario, since our main purpose was to measure the importance of sentences in

master and duplicate bug reports. While performing PageRank on bug reports, we

connected sentences from the master and duplicate bug reports with each other as

well as the sentences that are related to master and duplicate bug reports only.

Sentences are linked with each other in the same bug report as well as among master

and duplicate bug reports. When there were two sentences with similarity scores

greater than 0 between the master and the duplicate as well as between each other,

two directed edges were formed between the two sentences. A PageRank web graph

was established when all sentences were processed. In the end, sentences were sorted

based on the ranking score achieved through PageRank. The high ranking sentences

were important sentences and included in the summary.

As mentioned in Sec. 1, we employed three variants of PageRank algorithm for

measuring textual similarity among bug report sentences. These similarity measures

were VSM, Jaccard, andWordNet. In subsequent sections, we discuss these measures

brie°y.

3.2.1. VSM

The Vector Space Model (VSM) is a simple algebraic model based on the term-

document matrix of a corpus [13]. VSM represents documents by their column vector

in the term-document matrix: a vector containing the weights of the words present in

the document, or 0s otherwise [13]. A common way to compute the similarity of two

vectors in VSM is using the Cosine Similarity measure. Cosine Similarity is de¯ned

as the inner product of the two vectors (sum of the pairwise multiplied elements)

divided by the product of their vector lengths [5]. It is the most commonly used

metrics for calculating the similarity between textual data. Based on this informa-

tion, we selected the Cosine Similarity metrics for calculating the similarity between

sentences of bug reports.

After applying pre-processing steps, we computed the term frequency� inverse

document frequency (tf-idf) values on term vectors. The tf-idf is a popular vector

876 H. Jiang et al.
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weighting method for discovering term relevancy in a corpus. It assigns a high weight

to a term, if it occurs frequently in the document but rarely in the whole collec-

tion [5]. Tf-idf is scaled logarithmically as:

!ik ¼ 1þ logðfikÞ � log
N

ni

;

where

. fik is the term frequency of the ith term in sentence k.

. N stands for the total number of sentences.

. ni denotes the number of sentences where the ith term occurs at least once.

Using this vector space model where each vector represents a sentence, we cal-

culated the cosine similarity between the vector representations of two sentences as

follows.

cosð!q
!
; !k
!Þ ¼ !q

!�!k
!

j!q
!jj!k

!j
¼

Pn
i¼1!iq � !ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1!
2
iq

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1!

2
ik

q ;

where

. !q
!

and !k
!

are the vectors that represent two sentences q and k, respectively.

. !iq and !ik denote the weight of the ith term in sentences q and k, respectively.

. n is the size of the word set.

3.2.2. Jaccard

The Jaccard measures the similarity between ¯nite sample sets using the collection of

words called a bag of words. It is de¯ned as the size of the intersection of the sample

sets divided by the size of the union of the sample sets. If we denote the sets of terms

S from two sentences as AS and BS , the Jaccard coe±cient is calculated as:

JðAS ;BSÞ ¼
jAS

T
BS j

jAS

S
BS j

;

where

. AS and BS are sets of terms S in sentences A and B.

3.2.3. WordNet

WordNet is a semantic web covering a wide range of English language words,

where nouns, verbs, adjectives, and adverbs are grouped into sets of synonyms

known as synsets [14]. These synonyms or near synonyms are connected together to

represent the same meanings. One way to measure the sentence relevance between

the sentences of bug reports in both corpora is to apply WordNet. Using synsets,

PRST for Summarizing Bug Reports with Duplicates 877
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the similarity between two sentences can be measured e®ectively. Given two sen-

tences, each sentence is tokenized and tagged. Next, after stemming, most appro-

priate senses of words in sentences are gathered through synsets ��� called

disambiguation. Lastly, the similarity of the sentences based on the similarity of the

pairs of words is computed. The higher the score, the more similar the meaning of

the two sentences.

WordNet is a freely available software package and there are many online tools

available for WordNet computation. In our study, we employed WordNetDotNet i

framework available at GoogleCode to measure the similarity and generate synsets.

3.3. Regression module

By using the training set which contains the annotated data, we trained our clas-

si¯er. Our classi¯er is a logistic regression classi¯er and instead of generating an

output of zero or one, it generates the probability of each sentence belonging to the

summary. We extracted 24 sentence features inspired by the technique proposed by

Rastkar et al. [1]. The values of these features for each sentence were used to compute

the probability of the sentence being a part of the summary.

We used LibLinear Toolkit j to implement our logistic regression classi¯er. It takes

the features and the class label of each sentence as an input, and outputs a logistic

regression model.

3.4. Prediction module

As supervised learning method trains a statistical model and executes the model on a

remaining set of the information, this component serves as a prediction for the model

that we trained in Sec. 3.3.

The probability of each sentence of the master bug reports was generated by

infusing the features of each sentence into the trained model. In the end, sentences

were sorted based on the probabilities and higher-probability sentences were con-

sidered as important sentences.

3.5. Ranking merger

The ranking merger aims to merge PageRank and regression scores. We calculated it

using the following equation.

fj ¼ �� PRj þ ð1� �Þ � LRj;

where PRj is a PageRank value of sentence j while LRj is the Regression value for

sentence j. We normalized both PageRank (PRj) and Regression values (LRj) in the

range of 0 to 1, before adding them.

iWordNetDotNet can be accessed at http://code.google.com/p/wordnetdotnet/, veri¯ed 25/07/15.
jhttp://www.csie.ntu.edu.tw/�cjlin/liblinear/, veri¯ed 25/07/15.
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Alpha Weighting Factor: � is a weighting factor (0 � � � 1). The parameter �

adjusts weights between the Pagerank and regression values. The value of � can be

set and adjusted empirically to achieve the best results for all three variants of

PRST. We employed the Trial and Error procedure for adjusting the alpha

weighting factor. In our experiment, for every iteration, we incremented � by 0.01

until it reached 1. � as a weighting factor has been e®ectively utilized by research

community in di®erent research domains (e.g. Bug Localization [15]) and our idea of

utilizing � weighting factor is also inspired by the Zhou et al.'s [15] work.

Top Ranked Sentences: Finally, to form the summary, we sorted the sentences

into a list based on the Ranking Merger probability scores in descending order.

Starting from the beginning of this list, we chose to target the top 25% sentences as

summary sentences since this value was close to the percentage of golden summary

sentences. This idea was inspired by the earlier work done by Rastkar et al. [1]. They

chose to target 25% of the bug report word count as it was close to the word count

percentage of the gold standard summary. In our study, a cut-o® point for summary

selection was 25.7%. Therefore, we selected top 25% sentences as summary sentences

i.e. top ranked sentences.

Moreover, we generated summaries for master bug reports only; similar sentences

from duplicate bug reports were not included in the ¯nal selection of summary

sentences. Algorithm 1 provides the pseudo-code for our PRST Technique.

4. Experimental Design

In the following subsections, we discuss the data acquisition, annotation, conversa-

tional features, research questions, the BRC algorithm, evaluation methods and

measures, which we have utilized in our study.

Algorithm 1 Pseudo-code for PRST Technique
Input: Master bug report with duplicates, Training corpora
Output: Top ranked sentences which can form summary for master bug report

1: Model = TrainRegressionModel(Labeled bug reports in training corpora);
2: Msentences = SentenceSpliter(master bug report);
3: Dsentences = SentenceSpliter(duplicate bug reports);
4: PageRankScore = PageRank(Msentence, Dsentence);
5: PredictScore = Predict(Model, Msentence);
6: for all sentence in Msentence do
7: FinalScore = α× PageRankScore + (1-α)× PredictScore;
8: end for
9: TopRankedSentence = RankSentence(FinalScore);

10: return TopRankedSentences;

PRST for Summarizing Bug Reports with Duplicates 879
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4.1. Data acquisition

There existed a bug report corpus, BRC [1] consisting of 36 bug reports taken from

four di®erent projects, namely Mozilla, Eclipse, Gnome, and KDE. These 36 bug

reports were selected randomly, 9 from each open source project. This corpus was well

labeled and used by researchers in academia previously. However, it was unsuitable

for our scenario due to the fact that we needed master bug reports and their duplicate

bug reports mapped together in a single corpus. There was no connection between

master and duplicate bug reports in the existing BRC corpus. Therefore, we modi¯ed

the existing BRC corpus, which we shall refer to as MBRC onward, and built a new

corpus of bug reports called OSCAR, to map master and duplicate bug reports.

In the following sections, we describe the reconstruction of BRC corpus and the

construction of OSCAR corpus.

4.1.1. Reconstruction of BRC corpus (MBRC corpus)

To reconstruct the BRC corpus, we examined each bug report if it contained du-

plicate bug reports or not. First, we read the information in all bug reports and

searched text containing ***has been marked as a duplicate of this bug*** to obtain

the list of duplicate bug reports. If this phrase existed in the text and the duplicate

bug report existed in a corpus as well, we retained both of them. Second, if the master

bug report contained the text about duplication but the required duplicate bug was

not part of the actual BRC, we added the duplicate bug in MBRC corpus (the

modi¯ed BRC corpus). For instance, the bug report #66526 (extracted from KDE

bug repository) in original BRC has a duplicate bug 71479 but this duplicate bug

does not exist in original BRC. Therefore, we retrieved the required information from

its corresponding bug report repository. Furthermore, if a bug report has more than

one duplicate bug report, we extracted the required information about all related

duplicate bug reports to that master bug report from the web as well. This process

continued until all required information was retrieved and stored. In total, there were

28 bug reports in the modi¯ed version of BRC corpus (MBRC), containing 9 master

bug reports and 19 duplicate bug reports.

4.1.2. Construction of OSCAR corpus

We constructed a new corpus called OSCAR to obtain more generalized results.

Our corpus OSCAR is similar to MBRC corpus in the sense that both corpora

exhibit same structure. In addition, OSCAR contains the master bug reports and

associated duplicate bug reports together. As in BRC, MBRC and OSCAR as well,

we selected bug reports from four open source projects, Eclipse, Mozilla, KDE, and

Gnome. We considered the following requirements while selecting bug reports for

OSCAR corpus:

(1) It contains duplicate bug reports and there should be a mapping (relationship)

between master and their respective duplicates,
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(2) It does not contain a large number of code segments and stack traces as this

content may be used but not typically read by developers, and

(3) Bug report length should vary, covering all circumstances.

In OSCAR, there are 59 bug reports including 19 master bug reports and 40

duplicate bug reports.

Table 1 lists averages, minima, and maxima of number of comments, duplicates,

sentences in master and duplicate bug reports for both OSCAR and MBRC corpora.

4.2. Data annotation

To annotate the OSCAR corpus, we recruited 10 postgraduate students from the

School of Software at the Dalian University of Technology. On average, the anno-

tators have more than four years of experience in programming. Currently, they are

pursuing academic research in Mining Software Repositories (MSR). Therefore, it

was easy for them to read and understand the bug reports thoroughly to perform

annotation. All bug reports were divided among participants randomly and each bug

report was annotated by three di®erent participants as a whole to get more consis-

tent results. Figure 4 shows an example of a part of an annotated bug report.

Fig. 4. A screenshot of the annotation for the bug # 400019.

Table 1. Details of the subjects for OSCAR and MBRC Corpora.

OSCAR MBRC

Avg Min Max Avg Min Max

# of comments 13.40 4 28 16.37 9 23

# of duplicates 2.05 1 7 2.50 1 6
# of sentences in master 44.25 12 95 71.62 50 104

# of sentences in duplicate 13.95 2 52 15.27 6 41

PRST for Summarizing Bug Reports with Duplicates 881
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The summary is an abstractive summary written by an annotator with the marked

mapping to the sentences from the original bug report.

Our annotation method was inspired by Rastkar et al. [1], where annotators

assigned scores to each sentence if a sentence has to be included in summary set for

OSCAR. For each sentence, the score is between zero and three. Zero (`0') means

that it has not been linked by any annotator while `3' indicates that all three

annotators have linked this sentence. A sentence is considered to be a part of the

summary if it has a score of two or more. For each bug report, the set of sentences

with a score of two or more (a positive sentence) is called the Golden Summary

Sentence.k We adopted the same technique for annotating OSCAR corpus. However,

only master bug reports were annotated in the OSCAR corpus.

Table 2 lists the total number of sentences in master bug reports for both OSCAR

and MBRC corpora. It also lists the number of sentences selected by two or more

annotators as well as by three annotators. Furthermore, it provides the average GSS

values for both corpora.

4.3. Features

As done in the existing study [1], we extracted 24 conversational features from bug

reports. These features were already applied and tested on bug reports by [1] and

they re°ected the corpora's indicators better than the text only. These features

include the location of words, frequency of words, sentence position, sentence con-

version, time and the sentence similarly characteristics. Sentence Probability

represents the probability of a word appearing in one sentence while the Turn

Probability represents the probability of a word on a conversational turn basis.

Table 3 provides the short description of 24 features considered for our study. Full

details on features are provided in [1].

4.4. Research questions

We examined the following research questions to explain and demonstrate our

results.

k It is similar to Gold Summary Sentences as described by Rastkar et al. [1].

Table 2. Details of the annotated subjects for the OSCAR and the MBRC
corpora.

OSCAR MBRC

# of sentences 856 604

# of sentences selected by annotators 376 362

# of sentences selected by 2 or more annotators 171 190
# of sentences selected by 3 annotators 74 80

Average golden summary sentences 19.98% 31.46%

Mean average 25.72%
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RQ1: Does Golden Summary Sentences in PRST ranked higher than the

other sentences? To address this question, we need to rank the candidate

sentences so that the top ranked sentences can be selected as the summary of

a given bug report. More details are given in Sec. 5.1.

RQ2: How well does the PRST algorithm perform when applied to the

MBRC corpus? We apply the proposed approach on MBRC corpus to

investigate the performance of PRST algorithm. In addition, we discuss how

� parameter in°uences PRST algorithm. Section 5.2 answers RQ2 in detail.

RQ3: What is the performance of the PRST algorithm on OSCAR cor-

pus? We also apply the proposed approach on OSCAR corpus and discussed

the in°uence of � parameter on PRST. The description that concerns how to

implement this process and the evaluation results are shown in Sec. 5.3.

RQ4: What is the performance of PRST without duplicates? In our work,

we have executed the evaluation experiment to compare the performance of

PRST and PRST without duplicates. Moreover, we have discussed this ex-

periment in details in Sec. 5.4.

In order to show the superiority of PRST, we organized research questions

mentioned above. We veri¯ed if PRST truly worked for our scenario and how well it

calculated the probabilities for generating summaries. In PRST, we adjusted the

Table 3. Features key [1].

Feature ID Description

SLEN word count, globally normalized

SLEN2 word count, locally normalized

TPOS1 time from beginning of conversation to turn
TPOS2 time from turn to end of conversation

COS1 cos of conversation splits, w/Sprob

COS2 cos of conversation splits, w/Tprob

MXS max Sentence Probability score
MNS mean Sentence Probability score

SMS sum Sentence Probability score

MXT max Turn Probability score

MNT mean Turn Probability score
SMT sum Turn Probability score

CENT1 cosine of sentence & conversation, w/Sprob

CENT2 cosine of sentence & conversation, w/Tprob

TLOC position in turn
CLOC position in conversation

DOM participants dominance in word

PENT entropy of conversation up to sentence
SENT entropy of conversation after the sentence

THISENT entropy of current sentence

PPAU time between current and prior turn

SPAU time between current and next turn
BEGAUTH is ¯rst participant (0/1)

CWS rough ClueWordScore (cohesion of the conversation)

PRST for Summarizing Bug Reports with Duplicates 883
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weighting factor � to achieve the best results. Meanwhile, we constructed two cor-

pora, MBRC, and OSCAR, and calculated four statistical measures to evaluate the

acquired results for our research.

4.5. The BRC algorithm

The BRC algorithm was based on the logistic regression model. Instead of generating

an output of zero or one, it generated the probability of each sentence being part of

the summary [1]. This algorithm was evaluated on bug reports by Rastkar et al. [1]

earlier, based on the supervised learning that used 24 conversational features of a bug

report. They used a linear classi¯cation from the Liblinear Toolkit to train the BRC

algorithm on bug reports. In our research, we used the BRC algorithm as a bench-

mark for PRST.

4.6. Evaluation measures

To evaluate the e®ectiveness of both PRST and BRC algorithms, we adopted several

statistical measures that compare summaries generated by algorithms to the golden

summary sentences formed by the annotators. These measures are the four common

Information Retrieval statistical metrics, namely, Precision, Recall, F-Score and

Pyramid Precision (PP) [16]. They assessed the performance of algorithms against

each other when tested on both MBRC and OSCAR bug report corpora.

For each bug report, the set of sentences with a score two or more is called the

Golden Summary Sentence (GSS). We used GSS to measure the Precision and Re-

call. This technique is inspired by the early study proposed by Rastkar et al. [1].

Precision measures the percentage of sentences in a summary S that is also present

in GSS. It is calculated as:

Precision ¼ jS \GSSj
jSj :

Recall measures the percentage of sentences in GSS that are present in the

summary being evaluated.

Recall ¼ jS \GSSj
jGSSj :

As there is always a trade-o® between Precision and Recall, being desirable but

di®erent features, the F-score is used as an overall measure. F-score combines the

values of two other evaluation measures: Precision and Recall. F-Score can be

computed by the following formula.

F -score ¼ 2 � precision � recall
precisionþ recall

:

We also used Pyramid Precision, which is a normalized evaluation measure taking

into account the multiple annotations available for each bug report [1]. The larger

884 H. Jiang et al.
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the values are, the better the results will be.

PP ¼ # annotation times of top ranked sentences

max times a sentence is annotated
:

We use the four metrics described above to compare and evaluate the results of our

PRST algorithm on both MBRC and OSCAR corpora.

4.7. Evaluation method

In this case study, we employed leave-one-out-cross-validation procedure to deter-

mine the training and testing sets. One round of leave-one-out-cross-validation

involves partitioning a sample of data into subsets, validating the analysis on one

subset ��� called the testing set, and performing the analysis on the other subsets ���
called the training set. To reduce variability, multiple rounds of cross-validation are

performed using di®erent partitions, and the validation results are averaged over the

rounds.

5. Results

Figure 5 shows an example of a generated extractive summary from the OSCAR

corpus. In the following subsections, we discuss the results of each RQ in details.

5.1. RQ1: Top ranked sentences

We setup this RQ to check whether the summary sentences belonged to the top

ranking sentences. In our study, we distributed sentences into a threshold of 10%

sentences each and examined the distribution of GSS. As described, we divided all

sentences into 10 portions where each portion comprised of 10% of sentences. For

every portion, we calculated the percentages of sentences belonging to GSS. If it

showed a downward trend, this implied that the GSS for sentences ranked higher

that the non-GSS sentences. In such a way, we measured the performance of PRST.

Figure 6 shows the histogram depicting the ground truth values for three variants

of the PRST. Where x-axis depicts the 10% distribution increase or threshold value

for all variants of the PRST while the y-axis shows the GSS. Among ¯rst 10%

sentences, GSS of Jaccard is less than the GSS of VSM and WordNet. If the

threshold (T) is between 10% to 20%, the GSS of WordNet is still higher than the

VSM and Jaccard. The GSS of VSM has a swift decline in the 20% to 30% sentences,

which only reaches 0.06, meanwhile, the one of Jaccard is 0.08. However, with the

increase of threshold value from 30% to 40% and above, the Jaccard and the VSM

performed better than the WordNet except for T ¼ 90% and 100%.

Compared with Fig. 6(a) for MBRC corpus, the trends of ground truth values in

Fig. 6(b) for OSCAR corpus were clear. The GSS of WordNet peaks at about 0.16

among the 10% sentences and it tends to decrease gradually onwards. Among the

100% sentences, it ¯nally reduces to 0.04. The GSS of both VSM and Jaccard peak at

PRST for Summarizing Bug Reports with Duplicates 885
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Bug id : 128682
T i t l e : dragging l i nked images causes drop o f r e l a t i v e image

path , not abso lu t e l i n k t a r g e t .

Dupl i cate bug : 128416
Dupl icate bug t i t l e : dragging a image l i n k to a tab loads

the image not the l i n k .

Summary : open http ://www. moz i l l a . org in one window . drag the
logo banner at the top ( a l i n k to http ://www. moz i l l a .

org ) in to another window . the browser w i l l t ry to load
http ://www. images . com/ moz i l la−banner . g i f . i ’m s e e i ng i t
on 0301 l inux , and daa conf irmed i t on 0302 win32 . t h i s
i s a 0.9.9 − c r i t i c a l i s sue , imo . f indparentnode (
draggednode , n s l i t e r a l s t r i n g ( ‘ ‘ a ”) . get ( ) ,
g e t t e r a dd r e f s ( l inknode ) ) . don ’ t we want to do
ge tanchorur l ( l inknode , u r l s t r i n g ) . use l inknode to f i l l
u r l s t r i n g i f we ’ re dragging image−within−l i n k t h i s works
f o r me , and seems ‘ ‘ obv ious ly r i gh t ” . s o l i c i t i n g quick

rev i ews and approval f o r 0 . 9 . 9 and 1 . 0 . ∗∗∗ bug 128416
has been marked as a dup l i c a t e o f t h i s bug ∗∗∗ .

Fig. 5. Extracted summary for the bug # 128682 taken from the Mozilla Bug Repository. This bug report

is a part of OSCAR corpus.

(a) MBRC

Fig. 6. (Color online) GSS values for MBRC and OSCAR corpora.
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about 0.16 among the 20% sentences; however, from 30% to 100% sentences, the GSS

of VSM and Jaccard °uctuate slightly.

In short, for 10% sentence distribution, the downward trend is more apparent in

the OSCAR corpus than that in the MBRC. By applying di®erent � values, a

weighting factor, on the corpora we achieved di®erent results. On verifying all

resulted values we found that � ¼ 0:82 for MBRC and � ¼ 0:78 for OSCAR gave

best results for the PRST algorithm.

5.2. RQ2: Performance of PRST on MBRC corpus

By adjusting the weighting factor �, we ran the PRST algorithm on MBRC and

obtained values for four statistical measures, Precision, Recall, F-score, and Pyramid

Precision. Figure 7 shows the Precision, Recall, F-score, and Pyramid Precision

values, ranging between 0 to 1, for all three variants of the PRST, and the original

BRC algorithm when applied to the MBRC corpus.

The line graphs compared the trends of the evaluation matrices, Precision, Recall,

F-Score, and Pyramid Precision (PP) when applied on three variants of PRST and a

benchmarking algorithm the BRC on the MBRC corpus and compared values. In line

graphs `a', `b', and `c', the PRST(WordNet) outperformed other variants and the

BRC algorithm. However, in graph `d', the PRST(VSM) outperformed other var-

iants of PRST as well as the original BRC algorithm. Hence, for the MBRC corpus,

the PRST with VSM worked the best with the PP > 56%, whereas, BRC algorithm

performed the worst with PP < 48%. Except for the PP, the PRST based on

WordNet showed the best results for remaining matrices. For instance, when the

parameter � reached 0.82, Precision of the PRST (WordNet) equaled to 55.78%,

whereas the Precision for the BRC equaled 46.31%. Therefore, based on these

observations, we could clearly infer that the PRST with WordNet outperformed the

BRC by 9.47% on the basis of the Precision.

(b) OSCAR

Fig. 6. (Continued)
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Table 4 provides the best results for Precision, Recall, F-Score, Pyramid Precision

scores as well as the running time for BRC algorithm and all three variants of the

PRST algorithm. Each value of weighting factor � is examined to achieve best results.

5.3. RQ3: Performance of PRST on OSCAR corpus

Same as in RQ2, we applied all four statistical measures to evaluate the performance

of the PRST on an OSCAR corpus. Figure 8 shows the detailed results and Table 5

shows the best results of Precision, Recall, F-score and Pyramid Precision when using

all three variants of the PRST and the BRC algorithms on an OSCAR corpus.

The line graphs (in Fig. 8) compared the trends of the evaluation matrices when

applied on three variants of the PRST and the benchmarking algorithm BRC on an

OSCAR corpus. In all four graphs, PRST with WordNet performed far better than

(a) Precision (b) Recall

(c) F-Score (d) Pyramid Precision

Fig. 7. (Color online) Precision, Recall, F-Score and Pyramid Precision of the PRST and the BRC
classi¯ers on the MBRC corpus.
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other variants, as well as the existing BRC algorithm. The precision of the PRST

with WordNet reached 56.67%, when the � parameter was set to 0.78, which indi-

cated the best performance. Similar to the MBRC, the BRC algorithm performed the

worst with the precision of 51.9%. Thus, the PRST on an OSCAR outperformed the

BRC by 4.7%.

Table 4. Comparison of the BRC and the PRST algorithms on the MBRC corpus.

Algorithm � Precision (%) Recall (%) F-score (%) PP (%) Running time (s)

BRC 46.31 24.93 30.97 47.67 64

PRST (VSM) 0.26 54.83 30.28 37.18 56.84 4218

PRST (Jaccard) 0.22 54.08 29.42 36.62 54.58 4202
PRST (WordNet) 0.82 55.78 32.80 39.89 55.95 4316

(a) Precision (b) Recall

(c) F-Score (d) Pyramid Precision

Fig. 8. (Color online) Precision, Recall, F-Score and Pyramid Precision for the PRST and the BRC

classi¯ers on an OSCAR corpus.
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As seen in Table 5, the running time of the PRST algorithm is longer than the

BRC. It is due to the fact that PRST includes the training time as well. The testing

or the prediction time is almost the same for both PRST and the BRC algorithms.

5.4. RQ4: Performance analysis of PRST on BRC corpus

In RQ4, we analyze the performance of PRST algorithm by comparing it with BRC

algorithm on the original BRC corpus. Figure 9 and Table 6 illustrate that the PRST

performance declines when using the original BRC corpus (without duplicates).

Table 5. Comparison of BRC and PRST algorithms on OSCAR corpus.

Algorithm � Precision (%) Recall (%) F-score (%) PP (%) Running time (s)

BRC 51.91 36.47 40.83 62.87 66

PRST (VSM) 0.24 55.15 38.86 42.54 65.10 8691

PRST (Jaccard) 0.10 54.44 37.99 42.58 63.74 8718
PRST (WordNet) 0.78 56.67 44.29 47.34 68.93 8847

(a) Precision (b) Recall

(c) F-Score (d) Pyramid Precision

Fig. 9. (Color online) Precision, Recall, F-Score and Pyramid Precision of PRST and BRC classi¯ers on

original BRC corpus without duplicates.
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In Fig. 9, the data on X-axis indicate the values of the weighting factor � while

the data on Y -axis show the values of respective statistical measures i.e. Precision,

Recall, F-Score, and Pyramid Precision. Varying the weighting factor � generates

the di®erent evaluation results. The best results are shown in Table 6.

The performance of the PRST decreased when tested on the original BRC as it

lacked duplicate bug reports. For instance, the F-Score value for PRST (WordNet) is

47.24% when � is 0.22 on MBRC corpus. Whereas, in original BRC it is decreased to

38.48% with the same � value. Similarly, the F-Score for three variants of the PRST

declines with the change in � when compared to that of BRC in Fig. 8. Moreover,

comparing the results shown in Table 5 as well as the Figs. 6 and 7 depicts that our

PRST techniques performed far better than the existing BRC when duplicate bug

reports were involved. Therefore, our hypothesis of utilizing the textual information in

duplicate bug reports for summarizingmaster bug reports has proved to be a promising

one. Moreover, it has performed substantially better than the BRC algorithm.

5.5. Threats to validity

In this section, we identify internal and external threats to the validity of our study.

5.5.1. Internal threats

We have found two major internal threats in our study, which are sentence division

and annotation of corpora.

Sentence Division: One of the primary threats to the internal validity is slicing

paragraphs into sentences using the LingPipe Toolkit. It is a powerful tool, which can

divide sentences into words, identify sentence boundaries, and perform other tasks,

such as speech and word analysis. While writing bug reports, the reporters use a wide

variety of sentence patterns and punctuation transformations. It is possible that the

LingPipe Toolkit may not provide accurate results for some sentence patterns since

di®erent developers have di®erent writing habits. In order to minimize this risk we

used LingPipe Toolkit for cropping paragraphs into sentences only.

Annotation: Another threat is about the personal behaviors of annotators.

Annotators have a di®erent understanding of bug reports and can interpret bug

reports di®erently as each bug report has a di®erent structure. To minimize this risk,

we choose three annotators for bug reports annotation. If two participants agree on a

Table 6. Performance comparison of BRC and PRST algorithms on the original BRC corpus.

Algorithm � Precision (%) Recall (%) F-score (%) PP (%) Running time (s)

BRC 59.51 31.72 39.23 59.04 83

PRST (VSM) 0.02 59.64 32.07 39.51 59.71 2689

PRST (Jaccard) 0.06 59.62 32.31 39.70 60.39 2770
PRST (WordNet) 0.22 59.92 31.11 38.84 58.04 2886
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sentence to be a part of the summary, that sentence is included in the summary. By

considering the results of three annotators, we generate the ¯nal summary of master

bug reports.

5.5.2. External threats

Availability of Corpus: As discussed in Sec. 1, our main idea is to employ du-

plicate bug knowledge for summarizing master bug reports. While selecting an ap-

propriate corpus for experimentation, we noticed that there are very few publicly

available corpora that contain master and duplicate bug reports mapped together. In

addition, it was di±cult for us to apply appropriate methods on publicly available

corpora as they lack duplicate bug reports, to form a better summary. Therefore, we

constructed a new corpus i.e. OSCAR. We plan to construct a new larger corpus and

implement our technique to other comparatively larger publicly available corpora in

the future to generalize our results.

6. Related Work

Since 1958 [17], the automated summarization of natural language text has been

widely studied. This was followed by many papers in di®erent directions to improve

text summarization. These techniques varied from simple tf-idf based techniques to

more complex machine learning-based methods [2]. Generally, two basic approaches

have been employed to generate summaries i.e. extractive and abstractive. These

approaches are further broadly categorized into Supervised and Unsupervised ma-

chine learning methods.

6.1. Summarizing bug repositories

Murray and Carenini [18] developed a summarizer for conversations like meetings

and emails, and Rastkar et al. [1] further employed the same extractive supervised

learning approach for summarizing bug repositories. As bug reports resemble con-

versations, their approach created an extractive summary, which selected a set of

sentences from the original bug report to compose an informative and organized

summary. The approach used a logistic regression classi¯er trained on a corpus of

manually created reference bug report summaries called golden summary.

In contrast, Mani et al. [2] applied unsupervised approaches on the same corpus of

bug reports, dealing with noise in bug reports by introducing a noise reducer for

generating better summaries. Similarly, Lotufo et al. [19] proposed a PageRank-

based unsupervised approach for bug report summarization considering the impor-

tance of evaluation links, title, and description similarity.

Our Approach: Our supervised approach, though using the same logistic re-

gression classi¯cation as in [1], di®ered in the sense that we compared bug reports

with their duplicates as duplicate bug provide additional information. Furthermore,
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we developed three variants of PageRank algorithm, which we called the PRST. It

utilized VSM, Jaccard, and WordNet models for measuring the similarity between

bug report sentences. In addition, we reconstructed the original BRC corpus to

accommodate duplicate bug reports as well as constructed a new corpus, OSCAR,

to extract better summaries, thus generalizing our results. Empirical results illus-

trated that the PRST outperformed the state-of-the-art method BRC in terms of

Precision, Recall, F-score, and Pyramid Precision. Meanwhile, the PRST with

WordNet achieved best results against the PRST with VSM and Jaccard. Table 7

provides a summary of related work in bug report summarization. It also gives an

overview of our approach and compares it with existing bug report summarization

approaches.

6.2. Summarizing source code repositories

For source code repositories, Haiduc et al. [20] generated term-based summaries for

methods and classes that contained the set of most relevant terms to de¯ne code

entities. Similarly, Sridhara and colleagues [21] de¯ned a technique to generate

natural language summary comments for an arbitrary Java method by manipulating

both structural and natural language evidences in the method based on heuristics. In

another research, Rastkar et al. [22] used automated documentation generation

approach and a task-based evaluation for generating light abstractive summaries for

a crosscutting code for concern.

Ying et al. [23] ¯rst proposed a supervised learning approach for summarizing

code fragments, focusing on presentation aspect of code examples. As de¯ned

by [23] code fragments are partial programs that serve the purpose of demon-

strating the usage of an API. Any line in the summary is more important in the

context of a query and a syntax than any other line in a code fragment. As an

initial investigation, they exploited syntactic and query features of a code fragment

by applying machine learning techniques to train the classi¯er and attained the

precision of 71%. Recently, Nazar et al. [24] generated source to source summaries

of code fragments by utilizing crowd enlistment on a smaller scale with supervised

machine learning algorithms. They found that their approach produced statistically

Table 7. Summary of related work on bug report summarization.

Previous work Approach Model Features

[1] 2010 Supervised Logistic Regression Bug report conversations

[2] 2012 Unsupervised MMR þ Grasshopper þ
Centroid þ DivRank

Noise Reducer

[19] 2012 Unsupervised Markov Chain þ PageRank Bug report title & description þ
frequently discussed topics þ
sentence relevance

Our approach Supervised PageRank þ VSM þ Jaccard þ
WordNet

Textual similarity between master

and duplicate bug reports
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better summaries than the existing study [23] with 82% Precision. Other e®orts

focused on recommending code snippets [25, 26] and ¯nding tutorial segments

explaining APIs [27].

7. Conclusion

In this paper, we have proposed a PageRank-based Summarization Technique

(PRST) which e®ectively utilized the textual information of duplicate bug reports for

generating extractive summaries of master bug reports. We applied three variants of

PageRank algorithm based on VSM, Jaccard, and WordNet similarity metrics, to

measure important sentences in master and duplicate bug reports. Additionally, we

trained a regression model, using supervised learning, to predict the probability

values of every sentence belonging to the summary of the master bug report. Finally,

we combined the values of PageRank and regression model scores to rank the sen-

tences and selected top 25% sentences as summary sentences. By evaluating the

results on two bug reports corpora namely MBRC and OSCAR, we found that our

PRST algorithm outperformed the BRC algorithm in terms of Precision, Recall,

F-Score, and Pyramid Precision evaluation measures. Meanwhile, the PRST based

on WordNet can generate a better summary of the master bug reports than other

variants of the PRST.

In the future, we plan to investigate whether other attributes of bug repository

such as dependent bugs can be employed for summarizing bug reports. We shall also

consider using our approach in an unsupervised manner to further evaluate the

usefulness of duplicate bug reports in summarizing master bug reports.
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