
Test Case Purification for Improving Fault Localization

Jifeng Xuan
INRIA Lille - Nord Europe

Lille, France
jifeng.xuan@inria.fr

Martin Monperrus
University of Lille & INRIA

Lille, France
martin.monperrus@univ-lille1.fr

ABSTRACT
Finding and fixing bugs are time-consuming activities in
software development. Spectrum-based fault localization
aims to identify the faulty position in source code based
on the execution trace of test cases. Failing test cases and
their assertions form test oracles for the failing behavior of
the system under analysis. In this paper, we propose a novel
concept of spectrum driven test case purification for improv-
ing fault localization. The goal of test case purification is to
separate existing test cases into small fractions (called pu-
rified test cases) and to enhance the test oracles to further
localize faults. Combining with an original fault localization
technique (e.g., Tarantula), test case purification results in
better ranking the program statements. Our experiments
on 1800 faults in six open-source Java programs show that
test case purification can effectively improve existing fault
localization techniques.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Algorithms, Experimentation

Keywords
Test case purification, spectrum-based fault localization, test
case atomization, dynamic program slicing

1. INTRODUCTION
Finding and fixing bugs are essential and time-consuming

activities in software development. Once a bug is submitted,
developers must allocate some effort to identify the exact lo-
cation of the bug in source code [15]. The problem of local-
izing bugs in a program is known as fault localization, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

consists of automatically ranking program entities (e.g., pro-
gram methods or statements) based on an oracle of the bug,
usually a failing test case [39]. Spectrum-based fault local-
ization (also known as coverage-based fault localization) is a
family of methods that use the execution trace of test cases
(i.e., the coverage data) to measure the faultyness proba-
bilities of program entities. For example, Tarantula [15],
Jaccard [1], and Ochiai [1] are popular spectrum-based fault
localization techniques. According to the fault localization
rankings, the developers manually examine the program un-
der debugging to find out the location of the bug.

In modern test-driven software development, unit testing
plays an important role for ensuring the quality of software.
A unit test framework, such as JUnit for Java, NUnit for
.Net, and CPPUnit for C++, provides a platform for devel-
opers to manage and automatically execute test cases [21].
Each test case is formed as a test method, which employs a
test oracle to ensure the expected behavior. The test oracle
in a test case is implemented as a set of executable assertions
for verifying the correctness of the program behavior. For
instance, an open source project, Apache Commons Lang
(Version 2.6), consists of 1874 test cases with 10869 asser-
tions testing the behavior of over 55K lines of code. That
is, each test case includes 5.80 assertions on average. If an
assertion in a test case is violated, the unit test framework
aborts the execution of this test case and reports the test
result (i.e., the test case is failed).

Test cases can be employed for fault localization [31], [34],
[6]. Aborting the execution of a failing test case omits all
the unexecuted assertions that are in the same test case.
However, the effectiveness of fault localization depends on
the quantity of test oracles. Our key intuition is that re-
covering the execution of those omitted assertions can lead
to more test cases and further enhance the ability of fault
localization.

In this paper, we propose the concept of spectrum driven
test case purification (test case purification for short) for
improving fault localization. The goal of test case purifi-
cation is to generate purified versions of failing test cases,
which include only one assertion per test and excludes unre-
lated statements of this assertion. We leverage those purified
test cases to better localize software faults in Java projects.
Test case purification for fault localization consists of three
major phases: test case atomization, test case slicing, and
rank refinement. First, test case atomization generates a set
of single-assertion test cases for each failed test case; sec-
ond, test case slicing removes the unrelated statements in all
the failing single-assertion test cases; third, rank refinement

combines the spectra of purified test cases with an existing
fault localization technique (e.g., Tarantula) and sorts the
statements as the final result.

We evaluate our work on six real-world open-source Java
projects with 1800 seeded bugs. We compare our results
with six mature fault localization techniques. Our experi-
mental results show that test case purification can effectively
improve the results of existing techniques. Applying test
case purification achieves better fault localization on 18 to
43% of faults (depending on the subject program) and per-
forms worse on only 1.3 to 2.4% of faults. In terms of fault
localization, test case purification on Tarantula (Tarantula-
Purification for short) obtains the best results among all the
techniques we have considered. Tarantula-Purification per-
forms better than Tarantula on 43.28% of the faults with an
average fault-localization improvement of 36.44 statements.
With Tarantula-Purification, developers can save half of the
effort required for examining faulty statements.

This paper makes the following major contributions.
1. We propose the concept of spectrum driven test case

purification for improving spectrum-based fault localization.
In contrast to novelty in the suspiciousness metric that is
common in the fault localization literature, we explore a
novel research avenue: the manipulation of test cases to
make the best use of existing test data.

2. We empirically evaluate our approach on 1800 seeded
faults on six real-world projects. We compare the fault
localization effectiveness of six state-of-the-art techniques
(Tarantula, SBI, Ochiai, Jaccard, Ochiai2, and Kulczynski2)
with and without test case purification.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the background and motivation of our work.
Section 3 proposes the approach to test case purification for
improving fault localization. Sections 4 and 5 show the data
sets in the experiments and the experimental results. Sec-
tion 6 states the threats to validity in our work. Section 7
lists the related work and Section 8 concludes this paper.

2. BACKGROUND AND MOTIVATION

2.1 Terminology
We define the major terms used in this paper to avoid

ambiguous understanding. A test case (also called a test
method) is an executable piece of source code for verifying
the behavior of software. In JUnit, a test case is formed as a
test method, which consists of two major parts, a test input
and a test oracle. A test input is the input data to execute
the program while a test oracle determines the correctness
of the software with respect to its test input. Test oracles
are created by developers according to business and techni-
cal expectations. A test oracle is implemented as a set of
executable assertions to ensure that the software performs
as expected. A test suite is a set of test cases.

An assertion is a predicate (a binary expression) that in-
dicates the expected behavior of a program. If an assertion
is not satisfied, an exception is thrown. Then the test case
containing this assertion aborts and the testing framework
reports the failure. For example, assertEquals(a, b) in
JUnit is widely used to ensure the equality of values a and
b. In practice, a single test case can consist of many asser-
tions (see Section 4.1 for details).

A subject program (also called a proband [31] or an object
program [15]) is a program under test. Based on a unit test-

ing framework, like JUnit, a test suite can be automatically
executed to test the program.

A program entity represents an analysis granularity for
fault localization. For instance, a program entity can be a
class, a method, a statement, etc. In this paper, we focus a
widely-used program entity, i.e., a statement [15], [39], [3].

A spectrum of a test case is a set of program entities dec-
orated with execution flags. For a given test case, a flag of
a program entity indicates whether the test case executes
(a.k.a. covers) this particular program entity.

In this paper, we focus on subject programs written in
Java and tested with JUnit, a unit testing framework. Both
JUnit 3 and JUnit 4 are widely used in current Java projects.
An intuitive difference between these two versions is that a
test case in JUnit 4 starts with a specific annotation @Test

and a test case in JUnit 3 is named with a specific convention
(in a testMethod style). Our work supports test cases in
both versions of JUnit. Figure 1(b) briefly illustrates an
example of a test case in JUnit 4.

2.2 Spectrum-Based Fault Localization
Spectrum-based fault localization [15], [1], [33] (also known

as coverage-based fault localization [31]) is a family of ap-
proaches to identifying the exact location of bugs in source
code. Popular techniques include Tarantula [15] and Ochiai
[1]. The input of those approaches is the subject program
with its test suite. Spectrum-based fault localization exe-
cutes the whole test suite and collects the spectrum of each
test case. All spectra of test cases form a spectrum ma-
trix (also called a test coverage matrix) and each element in
the matrix indicates whether a test case covers a statement.
Based on the spectrum matrix, a fault localization approach
calculates the suspiciousness for all statements and ranks
them according to their suspiciousness. A detailed descrip-
tion of existing fault localization techniques can be found in
Section 4.2.

2.3 Motivation
Figure 1 shows a fraction of a subject program in Apache

Commons (AC) Lang 2.6. AC Lang is an extension library
for the Java programming language. Figure 1(a) lists sev-
eral methods for the calculation of the maximum and the
minimum for IEEE 754 floating-point numbers [40]. Note
that we have omitted the modifiers of methods and several
statements to reduce the space.

We inject a fault at Line 20, i.e., if(! Float.isNaN(a)),
by negating the original conditional expression. Then we
execute all the test cases of AC Lang and the only failing
test case during execution can be found in Figure 1(b). We
call this failing test case t1. The test case t1 aborts since
the assertion at Line 6 is unsatisfied. In all the test cases
of AC Lang, only t1 fails and 11 statements from Line 3
to Line 21 are executed by t1 (as shown in Figure 1(a).
We use Tarantula [15] as an example of fault localization
technique. Based on the actual execution of Tarantula, all
the 11 statements executed by t1 are ranked with the same
suspiciousness. Thus, it is hard to identify the fault at Line
20 from these statements.

However, t1 is aborted at Line 6 and the last assertion at
Line 9 has not been executed. Thus, we consider making use
of the unexecuted assertion to improve fault localization. As
shown in Figure 1(c), we create three copies (a1, a2, and a3)
of t1; for each copy, we force two assertions to not throw an

2.4% of faults. In terms of pure fault-localization, test case
purification on Tarantula (Tarantula-Purification for short)
obtains the best results among all the techniques we have
considered. Tarantula-Purification performs better than Tarantula
on 43.28% of the faults with an average fault-localization
improvement of 36.44 statements. With Tarantula-Purification,
developers spend half of their time to localize the faulty
statements.

This paper makes the following major contributions.

1. We propose the concept of spectrum driven test case
purification for improving spectrum-based fault localization. In
contrast to novelty in the suspiciousness metric that is common in
the fault localization literature, we explore a novel research
avenue: the manipulation of test cases to make the best use of
existing test data.

2. We empirically evaluate our approach on 1800 seeded faults
on 6 subject programs. We compare the fault localization
effectiveness of six state-of-the-art techniques (Tarantula, SBI,
Ochiai, Jaccard, Ochiai2, and Kulczynski2) with and without test
case purification.

The remainder of this paper is organized as follows. Section 2
presents the background and motivation of our work. Section 3
proposes the approach to test case purification for improving fault
localization. Sections 4 and 5 show the data sets in the
experiments and the experimental results. Section 6 states the
threats to validity in our work. Section 7 lists the related work and
Section 8 concludes this paper.

2. BACKGROUND AND MOTIVATION
2.1 Terminology

We introduce the major terms in this paper to avoid ambiguous
understanding.

A test case (also called a test method) is an executable piece of
source code for verifying the behavior of software. In JUnit, a test
case is formed as a test method, which consists of two major parts,
a test input and a test oracle. A test input is the input data to
execute the program while a test oracle determines the
correctness of the software with respect to its test input. In
practice, test oracles are mainly created by developers. A test
oracle is implemented as a set of executable assertions to ensure
that the software performs as what is expected by developers. A
test suite is a set of test cases.

An assertion is a predicate (a true–false statement) to indicate
the expected behavior of program. If an assertion is not satisfied,
an exception is thrown. Then the test case containing this
assertion aborts and reports the failure. For example,
assertEquals(a, b) in JUnit is widely used to ensure the
equality for the values of a and b. In practice, a test case can
consist of many assertions (see Section 4.1 for details).

A subject program (also called a proband [29] or an object
program [16]) is a program under test. Based on a unit testing
framework, like JUnit, a test suite can be automatically executed
to test the program.

 Subject program Test case
1 public class IEEE754rUtils { t1 a1 a2 a3 p2 p3 s1
2 float min(float a, float b, float c) {
3 ... • • • •
4 return min(min(a, b), c); • • • •
5 }
6 float min(float a, float b) {
7 if(Float.isNaN(a)) • • • •
8 return b;
9 else if(Float.isNaN(b)) • • • •
10 return a; • • • •
11 else • • • •
12 return Math.min(a, b); • • • •
13 }
14 float max(float a, float b, float c) {
15 ... • • • • • •
16 return max(max(a, b), c); • • • • • •
17 }
18 float max(float a, float b) {
19 //Fault, fix as if(Float.isNaN(a))
20 if(! Float.isNaN(a)) • • • • • • •
21 return b; • • • • • • •
22 else if(Float.isNaN(b)) • • •
23 return a; • • •
24 else
25 return Math.max(a, b);
26 }
27 float max(float[] array) {
28 ...
29 float max = array[0]; • • •
30 for (int j = 1; j < array.length; j++) • • •
31 max = max(array[j], max); • • •
32 return max; • • •
33 }
34 }
 Pass or Fail F P F F F F F

 Original test case, t1
1 public class IEEE754rUtilsTest {
2 @Test
3 void test_t1() {
4 ...
5 assertEquals(1.2f,

 IEEE754rUtils.min(1.2f, 2.5f, Float.NaN));
6 assertEquals(2.5f,

 IEEE754rUtils.max(1.2f, 2.5f, Float.NaN));
7 ...
8 float[] aF = new float[] {1.2f, Float.NaN,

 3.7f, 27.0f, 42.0f, Float.NaN};
9 assertEquals(42.0f, IEEE754rUtils.max(aF));
10 ...
11 }
12 }

(b) Original test case

(a) Subject program with spectra (c) Test case purification

Figure 1. Example of test case purification. The subject program and test cases are extracted from Apache Commons
Lang 2.6. The subject program and test cases are extracted from Apache Commons Lang 2.6. Test cases t1 is the
original test cases. Test cases a1, a2, a3, p2, and p3 are generated during test case purification. Test case s1 is an
extra example for the explanation.

Figure 1: Example of test case purification. The subject program and test cases are extracted from Apache
Commons Lang 2.6. Test cases t1 is the original test cases. Test cases a1, a2, a3, p2, and p3 are generated
during test case purification. Test case s1 is an extra example for the explanation.

exception even if the assertion is unsatisfied. That is, each
of test cases a1, a2, and a3, has only one valid assertion.
Then we execute test cases a1, a2, and a3; we find that a2

and a3 fail at Line 6 and Line 9, respectively (actually, a2
in this execution expresses the same behavior as t1). For
each of a2 and a3, we remove the irrelevant statements to
Line 6 and Line 9, respectively; then we get two smaller test
cases p2 and p3. We execute p2 and p3 and the spectra are
represented as columns in Figure 1(a) in gray. Based on the
spectra of p2 and p3, statements at Line 20 and Line 21 are
executed twice and six other statements are executed only
once. Thus, we can rank the two statements at Line 20 and
Line 21 as faulty statement, prior to the other statements.

The reason for ranking the last two statements is that
these statements are the frequently executed ones by failing
test cases. In other words, the fault in source code causes
the failure of p2 and p3 and the spectra of p2 and p3 are
different. Thus, the two statements are the most suspicious
based on the evidence from the two test cases p2 and p3.
Moreover, if we directly remove irrelevant statements for
the original test case t1, all the dependent statements like
Lines 15 and 16 will be kept, as shown in s1 in Figure 1(a).
For a large subject program, a large number of dependent
statements often interrupt the identification of the fault.

This example motivates our work, test case purification
for fault localization. We use test case purification to gen-
erate small fractions of test cases to improve the existing
techniques in fault localization.

3. TEST CASE PURIFICATION
In this section, we propose the concept of spectrum driven

test case purification (test case purification for short) for
fault localization. We first present the framework in Section
3.1. Then we show the details of the three main phases in
Sections 3.2, 3.3, and 3.4, respectively. Finally, we discuss
the extensibility of test case purification in Section 3.5.

3.1 Framework
The main goal of test case purification is to generate puri-

fied test cases from each failing test case. A purified test case
is a short test case with only one assertion and is generated
by removing several statements from the original failing test
case. We employ such purified test cases to improve existing
techniques on fault localization.

Figure 2 illustrates the framework of test case purification
for fault localization. This framework consists of three ma-
jor phases: test case atomization, test case slicing, and rank
refinement. Given a specific technique on fault localization,
the input of test case purification is a subject program with
its test suite and the final output is a ranking of statements.
Both the input and the output are the same as those in typi-
cal fault localization techniques, e.g., Tarantula and Ochiai.

In test case atomization, each original failing test case
with k assertions is replaced by k single-assertion test cases.
A single-assertion test case is a copy of the original test
case, but only one out of k original assertions is kept. In
test case slicing, each single-assertion test case is treated

Localizing faults

with the given technique

Test suite
S

u
b

je
ct

 p
ro

g
ra

m
Fault localization technique (e.g., Tarantula)

Failed test cases

Statement suspiciousness

Atomizing

test cases
Single-assertion test cases

Running

test cases

Failed single-assertion test cases

Broken statements Slicing criteria

Slicing test

cases
Purified test cases

Running

test cases
Spectra

Ranking

statements
Final statement ranking

Original Fault Localization

Test Case Atomization

Test Case Slicing

Rank Refinement

Figure 2: Framework of test case purification for fault localization. This framework consists of three phases:
test case atomization, test case slicing, and rank refinement.

as a program. We use dynamic slicing technique to remove
irrelevant statements in each single-assertion test case. Then
short test cases are generated as purified test cases. In rank
refinement, we re-rank the statements in an existing fault
localization technique based on the spectra of all the purified
test cases.

In our work, test case purification for fault localization is
run automatically. We describe the implementation details
in Section 4.3.

3.2 Test Case Atomization
The goal of test case atomization is to generate a set of

test cases for each failing test case. As the term atomization
suggests, we consider each assertion has an atomic part in
a test case. Given a failing test case with k assertions, we
create k copies for this test case and we transform k − 1
assertions into regular test case statements for each copy (no
exception from the assertion reaches the testing framework if
the assertion fails). To transform an assertion into a regular
test case statement, we surround this assertion with a try-

catch structure shown in Figure 3.
In Java, the class java.lang.Throwable is a superclass of

all the exceptions. As mentioned in Section 2.1, an exception
will be thrown to the test case if an assertion is not satisfied.
Based on the above structure, the exception will be caught as
throwable and the test case will not be interrupted1. Based
on the surrounding structure in Figure 3, a set of k single-
assertion test cases are created to replace each originally

1Sometimes an assertion is originally surrounded by a try-
catch statement, e.g., writing files may throw an IOExcep-
tion in Java. Directly adding the surrounding structure to
this assertion will cause the compiling error. In this case, we
collect the candidate exceptions and add a fraction of dead
code to make the compiling pass, like if (false) throw
new IOException().

try {

/* assertion */

}

catch (java.lang.Throwable throwable) {

/* do nothing */

}

Figure 3: A surrounding structure for transform-
ing an assertion into a regular test case statement
(no exception from the assertion reaches the testing
framework if the assertion fails).

failing test case. A failing test case with only one assertion
will be kept without handling.

Note that in JUnit, two kinds of interruptions will stop
the execution of a test case, namely a failure and an error.
A failure is caused by an unsatisfied assertion, which is de-
signed by developers; an error is caused by a fault, which
is not considered by developers [10]. Thus, an error may
appear in any statement of a test case. In test case atomiza-
tion, we only deal with the failures (in assertions) in JUnit.
If an error appears, the execution of a single-assertion test
case will be aborted because an error usually causes severe
problems, which are beyond the expected test cases by de-
velopers.

After generating single-assertion test cases, we compile
and execute all the single-assertion test cases. Meanwhile,
we collect the failing ones among these test cases; for each
failing single-assertion test case, we record its position that
aborts the execution. This position is referred as a broken
statement. For example, a broken statement in a single-
assertion test case could be an assertion (i.e., the exact as-
sertion left in the test case) or a statement that throws an

unexpected error. Finally, each failing single-assertion test
case as well as its broken position is collected.

3.3 Test Case Slicing
The goal of test case slicing is to generate purified test

cases before collecting their spectra. Given a failing single-
assertion test case resulting from test case atomization, we
slice this test case by removing irrelevant statements.

Program slicing can be mainly divided into two categories:
static slicing [5] and dynamic slicing [38]. Informally, static
slicing keeps all the possible statements based on static data
and control dependencies while dynamic slicing keeps the ac-
tually executed statements in the dynamic execution (with
dynamic data and control dependencies). In test case slicing,
we use a dynamic slicing technique to remove statements in
test cases since dynamic slicing may lead to more removal
of statements [38]. In dynamic slicing, a slicing criterion
should be specified before execution the program. A slicing
criterion is defined as a pair < b, V >, where b is a state-
ment in the object program and V is a set of variables to be
observed at b.

We perform dynamic slicing and slice single-assertion test
cases during its execution by the Junit framework. Our
slicing criterion for a test case is its broken assertion with
all the variables at this statement. Then we execute the
dynamic slicing technique to collect the statements that will
be removed. After the slicing, each failing single-assertion
test case in test case atomization is updated with a purified
test case. Then we execute these purified test cases on the
project program and record the spectra for next phase.

3.4 Rank Refinement
The goal of rank refinement is to re-rank the statements

by an existing fault localization technique with the spectra
in the phase of test case slicing.

In all the purified test cases, we keep only one test case
if two or more than test cases have the same spectrum. As
mentioned in Section 3.3, all the purified test cases are failing
test cases. Let S be a set of candidate statements. We
define the ratio of a statement s ∈ S. First, for a statement
s ∈ S that is covered during the execution of all the purified

test cases, ratio(s) =
βef (s)

βef (s)+βnf (s)
, where βef (s) and βnf (s)

are the numbers of test cases covering and non-covering s.
Second, for a statement s that is not covered by any purified
test case, we directly set ratio(s) = 0.

The output of an existing fault localization technique,
such Tarantula or Ochiai, is the suspiciousness values for all
the candidate statements. Let susp(s) be the suspiciousness
value of a statement s ∈ S in a fault localization technique.
Then we normalize the susp(s) as 0 to 1 for all the state-
ments in S. The normalized suspiciousness value is defined

as norm(s) = susp(s)−min(S)
max(S)−min(S) , where min(S) and max(S)

denote the minimum score and the maximum score for all
the statements in S, respectively.

For each statement s ∈ S, both ratio(s) and norm(s) is
between 0 and 1 (both inclusive). Then we refine the ranking
of each statement s by combining ratio(s) and norm(s). The

final score of s is defined as score(s) = norm(s)× 1+ratio(s)
2

.
Then for all the statements s ∈ S, the final score score(s) is
between 0 and 1 (both inclusive). Based on the final scores
of all the statements, we re-rank the statements as the result
of fault localization by test case purification.

3.5 Discussion
Basic fault localization technique. Test case purifi-

cation modifies the existing test cases. Consequently, the
spectra are changed and the suspicious statements accord-
ing to a fault localization technique (e.g., Tarantula) are
re-ranked. Many other fault localization techniques can be
used instead, such as Ochiai, Jaccard, and SBI. We examine
the results for six fault localization techniques in Section 5.

Method of rank refinement. We define the new score
of each statement s as score(s). This definition can be re-
placed by other formulae, for example, the average of norm(s)

and ratio(s), i.e., norm(s)+ratio(s)
2

, or the geometric mean,

i.e., 2×norm(s)×ratio(s)
norm(s)+ratio(s)

. Results of such refinement methods

can be further explored.

4. EXPERIMENTAL SETUP

4.1 Subject Programs
We select six open-source subject programs for our exper-

iments. Table 1 gives the key descriptive statistics of those
subject programs. All six programs are Java libraries, which
are widely used in fault localization research [6], [14], [30],
[31]. We compute the size metric (Source Line of Code -
SLoC) with CLOC2. The subject programs in our selection
are provided with large test suites written in JUnit. For
each subject program, we execute the original program with
its dependent libraries. We confirm that the whole test suite
passes, i.e., our experimental configuration is correct.

We follow existing work in [14], [31] and use mutation
testing tools to create faulty versions. A mutant of a pro-
gram is a copy of the original program with a single change.
For instance, a mutant may contain one change of negat-
ing a conditional statement. Mutants are meant to simulate
likely faults made by developers. Some of mutants (known
as equivalent mutants) provide the same observable output
as the original program. We employ six mutant operators to
generate all the mutants for a given subject program. Table
2 presents the six mutant operators for generating faulty ver-
sions. In our work, we use the PIT tool3 to generate mutants
which has implemented all these six operators. We discard
equivalent mutants and keep the faulty versions. Finally, we
randomly select 300 mutants from all the seeded faulty ver-
sions for each subject program as the final dataset of faulty
programs. A thorough study by Steimann et al. [31] has
shown that a sample size of 300 mutants gives stable fault
localization results.

4.2 Techniques in Comparison
As explained in Section 3, the goal of test case purifica-

tion is to improve existing fault localization by maximizing
the usage of all the assertions. In our experiments, we eval-
uate the effectiveness of test case purification on six well-
studied fault localization techniques: Tarantula, Statistical
Bug Isolation (SBI), Ochiai, Jaccard, Ochiai2, and Kulczyn-
ski2 ([1], [20], [24], [34], [37]).

Jones et al. [16], [15] propose Tarantula for fault local-
ization. Tarantula ranks statements by differentiating the
execution of failing and passing test cases. SBI is proposed
by Liblit et al. [19] and calculates the suspiciousness value.

2CLOC, http://cloc.sourceforge.net/.
3PIT 0.27, http://pitest.org/.

http://cloc.sourceforge.net/
http://pitest.org/

Table 1: Subject programs with source code, test suites, and faulty versions

Subject program
Program source Test suite Faulty version

#Classes SLoC #Classes SLoC
JUnit

version
#Test
cases

#Assertions
#Assertions
per test case

#Mutants #Faults

JExel 1.0.0 beta13 45 2638 43 9271 4 343 335 0.98 † 347 313
JParsec 2.0.1 100 9869 38 5678 4 536 869 1.62 1698 1564
Jaxen 1.1.5 197 31993 100 16330 3 520 585 1.13 3930 1878

Apache Commons (AC) Codec 1.9 56 13948 53 14472 4 547 1446 2.64 2525 2251
Apache Commons (AC) Lang 2.6 83 55516 127 43643 3 1874 10869 5.80 8830 7582

Joda Time 2.3 157 68861 156 69736 3 4042 16548 4.09 9197 7452
† In some programs, assertions are abstracted into a specific class, which are not the same assertions in JUnit. In our work, we only handle the
assertions in JUnit. Thus, the # assertions per test case can be less than 1.

Table 2: Mutant operators for generating faulty ver-
sions

Mutant operator Description

Invert negatives Invert an integer or a floating-point number as
its negative

Return values Change a returned object to null, or increase
(or decrease) a returned number

Math Replace a binary math operator with another
math operator

Negate conditionals Negate a condition as its opposite
Conditional boundary Add or remove the boundary to a conditional

statements
Increments Convert between an increment (++, +=) and

a decrement (–, -=)

Their work shows that the predicted suspicious statements
correlate with the root cause. Ochiai is proposed by Abreu
et al. [1], which counts both failing test cases and execut-
ing test cases. Jaccard is also proposed by Abreu et al. [1].
Those four techniques are the most widely-used ones for the
evaluation of fault localization. Ochiai2 by Naish et al. [24] is
an extension version of Ochiai; the difference is that Ochiai2
considers the impact of non-executed or passing test cases.
Kulczynski2 by Naish et al. [24] is another widely-used met-
ric. Evaluations of Ochiai2 and Kulczynski2 can be found
in [20], [24], [34].

Generally, a spectrum-based fault localization technique
can be formalized as a formula of calculating the suspicious-
ness values,

susp(s) = f
(
αef (s), αnf (s), αep(s), αnp(s)

)
where αef (s) and αnf (s) are the numbers of failing test cases
that execute and do not execute the statement s while αep(s)
and αnp(s) are the numbers of passing test cases that exe-
cute and do not execute the statement s, respectively. Table
3 summarizes the six techniques that we consider for evalu-
ating test case purification.

For a given fault localization technique, the wasted effort
of localizing the faulty statement is defined as the rank of the
faulty statement in the ranking according to the suspicious-
ness values. For statements with the same suspiciousness
values, the wasted effort is the average rank between all of
them. Formally, the wasted effort of fault localization is
defined as

StmtEffort = |s ∈ S|susp(s) > susp(s
∗
)| +

1

2
|s ∈ S|susp(s) = susp(s

∗
)| +

1

2

where S is a set of candidate statements, s∗ ∈ S is the faulty
statement, and | · | indicates the size of a set.

Table 3: Six spectrum-based fault localization tech-
niques in comparison

Technique Definition

Tarantula

αef (s)

αef (s)+αnf (s)

αef (s)

αef (s)+αnf (s)
+

αep(s)

αep(s)+αnp(s)

SBI
αef (s)

αef (s)+αnf (s)

Ochiai
αef (s)√

(αef (s)+αnf (s))(αef (s)+αep(s))

Jaccard
αef (s)

αef (s)+αnf (s)+αep(s)

Ochiai2
αef (s)αnp(s)√

(αef (s)+αep(s))(αnp(s)+αnf (s))(αef (s)+αnf (s))(αep(s)+αnp(s))

Kulczynski2 1
2

(
αef (s)

αef (s)+αnf (s)
+

αef (s)

αef (s)+αep(s)

)

4.3 Implementation
We now discuss the implementation details of our exper-

iment. Our test case purification approach is implemented
in Java 1.6. Our experiments run on a machine with an In-
tel Xeon 2.67 CPU and an Ubuntu 12.04 operating system.
Our implementation automatically runs the three phases in
Figure 2.

In our work, test suites are automatically executed with
Ant 1.8.44 and JUnit 4.11. We set the timeout of running
a faulty program as five times of that of the originally cor-
rect version to avoid performance bugs [25], which may be
potentially generated during the program mutation. We ex-
ecute an existing fault localization technique to compute the
original suspiciousness values. We implement the six exist-
ing fault localization techniques on top of GZoltar 0.0.35.
GZoltar [7] is a library for facilitating and visualizing fault
localization. We use GZoltar to collect the program spectra.

In the phases of test case atomization and test case slicing,
we directly manipulate test cases with Spoon 1.56. Spoon
[27] is a library for Java source code transformation and
analysis. With the support by Spoon, a Java test class is
considered as an abstract syntax tree; and we modify source
code via programming abstractions. Spoon also handles an-
notations in Java hence our implementation fully supports
both JUnit 3 and JUnit 4.

In the phase of test case slicing, we slice test cases with
JavaSlicer7. JavaSlicer [12] efficiently collects runtime trace

4Ant 1.8.4, http://ant.apache.org/.
5GZoltar 0.0.3, http://www.gzoltar.com/.
6Spoon 1.5, http://spoon.gforge.inria.fr/.
7JavaSlicer, https://www.st.cs.uni-saarland.de/
javaslicer/.

http://ant.apache.org/
http://www.gzoltar.com/
http://spoon.gforge.inria.fr/
https://www.st.cs.uni-saarland.de/javaslicer/
https://www.st.cs.uni-saarland.de/javaslicer/

Table 4: Number of faults where test case purifica-
tion improves existing fault localization techniques
(column Positive), worsens (column Negative) and
has no impact (column Neutral). Each number is
computed over 1800 seeded faults in six subject pro-
grams.

Technique
in comparison

Positive Negative Neutral
Faults Percent # Faults Percent # Faults Percent

Tarantula 779 43.28 44 2.44 977 54.28
SBI 722 40.11 24 1.33 1054 58.56

Ochiai 373 20.72 28 1.56 1399 77.72
Jaccard 360 20.00 28 1.56 1412 78.44
Ochiai2 330 18.33 28 1.56 1442 80.11

Kulczynski2 666 37.00 24 1.33 1110 61.67

for a subject program and removes traces offline with dy-
namic backward slicing. JavaSlicer requires specifying the
point of a thread. Thus, we develop a driver program to
facilitate the test case slicing. Since program slicing tech-
niques may cost time and resources, it is necessary to decide
how many test cases should be sliced. Based on our expe-
rience, it seems that slicing failing test classes one by one
is the most efficient, compared to handling failing test cases
one by one or all the failing test cases together.

5. EXPERIMENTAL RESULTS
In this section, we present our experimental results on

test case purification. Section 5.1 presents the overall com-
parison based on all seeded faults in six subject programs;
Section 5.2 discusses the detailed results for each subject
program; Section 5.3 evaluates the time cost of test case
purification.

5.1 Overall Comparison
We compare the capability of our test case purification

technique to improve six existing fault localization tech-
niques on six subject programs.

Table 4 presents the average fault localization results on
1800 seeded faults with mutation. The columns Positive
gives the absolute and relative numbers of faults, which are
improved after applying test case purification, compared to
basic techniques in fault localization. Column Negative indi-
cates the number of faults when the basic fault localization
gives better results. Column Neutral shows the number of
faults, which are not changed after applying test case purifi-
cation.

As shown in Table 4, test case purification improves fault
localization for basic fault-localization techniques. For in-
stance, by applying test case purification, 779/1800 (43%) of
faults for Tarantula achieve lower wasted efforts (i.e. faults
are easier to be localized and the results are better). The
number of faults where purification worsen the ranking is
small (worse in 2.44% of faults for Tarantula), and much
smaller than the number of faults that are improved. Except
Tarantula, test case purification decreases the effectiveness
of fault localization in no more than 28/1800 faults.

We note that for all the six techniques in our compari-
son, we obtain neural results on over 50% of faults. The
main reason is that some of the considered faults are easy
to localize. For example, for Jaccard, root-cause statements
for 389/1800 faults are directly ranked as the first; in those
cases, our approach cannot improve the localization since

the results are already optimal. Meanwhile, for Jaccard
again, 1009/1800 root-cause statements are ranked between
the 2nd to the 10th position; and consequently the local-
ization of these faults is hard to improve. In Section 5.2,
we will show that our test case purification works well for
the difficult faults, which are originally localized beyond the
top-10 statements.

Table 5 presents the wasted effort with or without apply-
ing test case purification on 1800 faults. The wasted effort
is measured with the absolute number of statements to be
examined before finding the faulty one (see Section 4.2). It
is the main cost of fault localization. In total, there are
12 competing techniques (six fault localization techniques
with or without purification). Tarantula with test case pu-
rification (called arantula-Purification for short) gives the
best results among 12 techniques for three of six subject
programs. Ochiai-Purification gives the best results for the
remaining three subject programs. The last row in Table 5
gives the average results over all six subject programs. Ac-
cording to this aggregate measure, purification test case im-
proves the wasted effort from 72.06 statements (Tarantula)
to 35.62 statements (Tarantula-purification). By applying
test case purification with Tarantula, developers save 36.44
statements to examine. In the worst case, they still save 8
statements.

Summary. Applying test case purification to the state-
of-the-art fault localization techniques results in up to 43%
positive results with the price of 2.4% worsened faults. Among
12 techniques in comparison, Tarantula-Purification obtains
the best results, which are 18.22% better than the best origi-
nal technique according to our experimental setup (without
purification, Ochiai is the best technique with an average
wasted effort of 43.56 statements).

5.2 Detailed Comparison per Fault Category
To better understand the effectiveness of test case purifi-

cation, we analyze all faults in our six subject programs in
details. Let soriginal denotes the original fault localization
result, i.e., the wasted effort of localizing the faulty state-
ments as described in Section 4.2. We divide the faults in
subject programs into three categories according to soriginal,
namely faults with soriginal = 1, 1 < soriginal ≤ 10, and
soriginal > 10. For example, the faults with soriginal = 1
can be viewed as the easy category where there is no space
for improving the fault localization since the results are opti-
mal. Similarly, faults with 1 < soriginal ≤ 10 can be viewed
as the medium category. It is a reasonable task for a de-
veloper to examine the top-10 suspicious statements in a
program; Le & Lo [17] also suggest that localizing a fault in
top-10 statements is a proof of effectiveness. Results of such
faults can be improved a bit. Faults with soriginal > 10 can
be viewed as representing the hard category. More wasted
efforts may need to be checked to localize the faults.

Table 6 shows the detailed evaluation on faults in those
three categories according to soriginal. Each line is the com-
parison between an original fault localization technique and
test case purification. For each category, we list the positive,
negative, neutral (as in Table 4), and total faults, respec-
tively. We evaluate test case purification with both # Faults
(the number of faults) and StmtSave (the average saved ef-
fort obtained by applying test case purification). Note that
StmtSave may be below zero because applying test case pu-
rification may lead to worse results.

Table 5: Wasted effort (measured with the absolute number of statements to be examined before finding the
fault). The wasted effort for our dataset is given on all six considered fault-localization techniques with and
without test case purification. The last row averages over all subject programs.

Subject
program

Original technique Test case purification
Tarantula SBI† Ochiai Jaccard Ochiai2† Kulczynski2 Tarantula SBI Ochiai Jaccard Ochiai2 Kulczynski2

JExel 45.89 45.89 25.15 30.74 30.14 34.83 21.56 35.52 21.22 26.90 26.98 26.96
JParsec 47.76 47.76 20.67 22.46 22.46 27.02 15.96 18.32 20.37 21.52 21.67 17.64
Jaxen 105.88 105.88 39.02 56.38 56.38 83.46 38.92 52.01 34.99 45.39 46.12 70.44

AC Codec 57.04 57.04 48.27 48.53 48.53 56.25 44.68 49.06 46.37 47.13 47.47 48.98
AC Lang 25.66 25.66 21.92 21.99 21.99 25.61 21.24 22.12 20.95 20.99 21.21 22.07

Joda Time 150.13 150.13 106.35 129.03 129.03 136.53 71.34 104.58 101.71 124.67 124.93 100.37
Average 72.06 72.06 43.56 51.52 51.42 60.62 35.62 46.93 40.93 47.77 48.06 47.74

† For some cases, the group of Tarantula and SBI (as well as the group of Ochiai and Ochiai2) produce very similar results. Studies in [19], [24]
show evidences on their similarity. The spectra are usually different, which are shown in Table 6.

For faults with soriginal > 10, applying test case purifica-
tion can obtain positive and neutral results with few negative
results. Taking Tarantula as an example, the effectiveness
of fault localization on 524/687 faults (76.27%) is improved
by applying test case purification and worsened for 30 faults
(4.37% in column Negative). For Ochiai, localization on 178
out of 394 faults (45.18%) is improved. Test case purifica-
tion can save over 65 statements on average for Tarantula or
SBI, 36 statements for Kulczynski2, and over 10 statements
for Ochiai, Jaccard, or Ochiai2. In JExel, applying test case
purification never leads to negative results. That is, fault
localization on all the faults with soriginal > 10 can be im-
proved or unchanged. In both Jaxen and AC Lang, test case
purification can lead to non-negative results on five original
techniques except Tarantula (one negative result). In Joda
Time, between 11 and 15 cases are worsened. Test case pu-
rification in Joda Time performs the worst among our six
subject programs. A potential reason is that Joda Time con-
sists of over 68 thousand SLoC; this scale probably hinders
fault localization.

For faults with 1 < soriginal ≤ 10, test case purification
can also work well. Five out of the six fault localization
techniques obtain no more than four negative results; an ex-
ception is Tarantula, which obtains 13 negative results. On
most of subject programs, applying test case purification
can improve the original fault localization, but Tarantula
in JParsec as well as Tarantula and Ochiai in Joda Time
achieve a little decrease. Note that the result of a fault with
1 < soriginal ≤ 10 may not have enough space to improve
since the faulty statement has been ranked in top-10 state-
ments.

For faults with soriginal = 1, the results are already opti-
mal. A good approach cannot decrease the results for such
faults. In our work, only one fault with soriginal = 1 out of
4092 cases in all the subject programs gets a negative result
by applying test case purification. In other words, 99.66%
of faults keep an optimal rank under test case purification.

For all the techniques in our experiments, five out of six
subject programs have less than 10 negative results among
300 faults. Joda Time contributes the most negative results,
e.g., 20 negatives for Tarantula. On the other side, applying
test case purification to Tarantula improves the most among
the six original fault localization techniques.

One major reason for the negative results is that there
exists dependency between test cases. For example, if two
test cases share a static object and one test case creates the
object with a fault (the source code of creating the object

contains a faulty statement), then the other test case may
fail due to the propagation of the fault. Such propagation
makes the second test case fail but the spectrum of the test
case does not contain the fault statement. Based on our
manual checking, the dependency of test cases is the ma-
jor reason of negative results. We will further discuss the
reasons for negative results in Section 6.2.

Summary. Based on the comparison with six techniques
on six subject programs, test case purification can improve
original techniques in fault localization. For the hard-localized
faults (with initial rankings beyond 10 statements), test case
purification saves the effort of examining more than 10 state-
ments in average.

5.3 Computation Time
As shown in Table 6, Tarantula-Purification obtains the

best results among all the techniques in comparison. In this
section, we present the computation time of our work. Ta-
ble 7 lists the computation time of Tarantula-Purification
on six subject programs. For each subject program, we list
the computation time (in seconds) of the original fault lo-
calization and the three phases in test case purification.

The whole process of test case purification costs 275.59
seconds on average. The most time-consuming part is the
phase of test case slicing. A major reason for the large com-
putation time is that dynamic program slicing is a complex
task and requires monitoring the runtime traces [12], [38].
Comparing with the time of original fault localization tech-
niques, i.e., 59.79 seconds, the time of test case purification
is still acceptable. We plan to explore further techniques to
improve the phase of test case slicing.

Summary. The computation time of test case purifica-
tion (275 seconds per fault) is acceptable since the whole
process can be executed automatically.

6. THREATS TO VALIDITY
We discuss threats to the validity of our results with re-

spect to experiment construction and method construction.

6.1 Experiment Construction
In our work, we evaluate test case purification based on six

existing fault localization techniques. Experiments are con-
ducted in six typical open-source subject programs in Java.
However, comparing with the large number of existing fault
localization techniques, the generality of our work should be
further studied.

Table 6: Detailed evaluations on three categories of faults (optimally-localized, easy-localized, hard-localized).
Columns StmtSave measure the saved effort obtained with test case purification.

Subject
program

Technique in
comparison

soriginal = 1 1 < soriginal ≤ 10 soriginal > 10 Sum
Neutral Positive Negative Neutral Total Positive Negative Neutral Total Positive Negative Neutral Total
#Faults #Faults #Faults #Faults #Faults StmtSave #Faults StmtSave #Faults StmtSave #Faults #Faults StmtSave #Faults StmtSave #Faults StmtSave #Faults #Faults StmtSave

Jexel

Tarantula 50 35 0 104 139 0.95 90 79.60 0 0.00 21 111 64.54 125 58.37 0 0.00 175 300 24.32
SBI 50 30 0 109 139 0.55 81 37.46 0 0.00 30 111 27.33 111 28.02 0 0.00 189 300 10.37

Ochiai 66 13 0 151 164 0.11 38 30.59 0 0.00 32 70 16.61 51 23.15 0 0.00 249 300 3.94
Jaccard 66 13 0 151 164 0.08 38 29.96 0 0.00 32 70 16.26 51 22.58 0 0.00 249 300 3.84
Ochiai2 66 10 0 155 165 0.06 36 26.13 0 0.00 33 69 13.63 46 20.66 0 0.00 254 300 3.17

Kulczynski2 51 32 0 117 149 0.65 73 31.01 0 0.00 27 100 22.64 105 22.48 0 0.00 195 300 7.87

Jparsec

Tarantula 65 36 3 107 146 -0.09 73 137.60 4 -123.25 12 89 107.33 109 92.90 7 -83.93 184 300 31.80
SBI 65 29 2 115 146 0.22 70 126.21 2 -18.00 17 89 98.87 99 89.67 4 -11.63 197 300 29.44

Ochiai 89 34 0 140 174 0.37 11 21.55 5 -42.20 21 37 0.70 45 6.69 5 -42.20 250 300 0.30
Jaccard 89 28 0 140 168 0.26 15 20.63 5 -13.90 23 43 5.58 43 8.20 5 -13.90 252 300 0.94
Ochiai2 89 26 0 142 168 0.22 14 18.96 5 -13.30 24 43 4.63 40 7.56 5 -13.30 255 300 0.79

Kulczynski2 73 29 2 120 151 0.21 56 50.34 2 -18.00 18 76 36.62 85 33.66 4 -11.63 211 300 9.38

Jaxen

Tarantula 34 21 0 75 96 0.86 148 135.29 1 -19.00 21 170 117.67 169 118.97 1 -19.00 130 300 66.96
SBI 34 19 0 77 96 0.67 149 108.03 0 0.00 21 170 94.68 168 96.19 0 0.00 132 300 53.87

Ochiai 63 18 2 138 158 0.18 56 21.12 0 0.00 23 79 14.97 74 16.53 2 -6.25 224 300 4.04
Jaccard 63 13 2 141 156 0.19 59 55.38 0 0.00 22 81 40.34 72 45.85 2 -2.25 226 300 10.99
Ochiai2 63 8 2 146 156 0.10 57 53.69 0 0.00 24 81 37.78 65 47.38 2 -2.25 233 300 10.25

Kulczynski2 43 31 0 92 123 0.86 109 34.86 0 0.00 25 134 28.36 140 27.90 0 0.00 160 300 13.02

AC
Codec

Tarantula 34 36 0 73 109 1.23 99 40.64 8 -56.44 50 157 22.75 135 30.80 8 -56.44 157 300 12.35
SBI 34 26 0 83 109 0.83 86 30.77 8 -43.06 63 157 14.66 112 24.44 8 -43.06 180 300 7.98

Ochiai 42 14 0 136 150 0.13 29 19.53 8 -1.69 71 108 5.12 43 13.62 8 -1.69 249 300 1.91
Jaccard 42 11 0 139 150 0.11 21 20.02 8 -1.81 79 108 3.76 32 13.64 8 -1.81 260 300 1.41
Ochiai2 42 11 0 139 150 0.09 18 17.81 8 -1.81 82 108 2.83 29 11.50 8 -1.81 263 300 1.06

Kulczynski2 34 27 0 86 113 0.81 82 29.77 8 -43.94 63 153 13.66 109 23.23 8 -43.94 183 300 7.27

AC
Lang

Tarantula 43 98 6 104 208 0.31 33 38.59 2 -6.50 14 49 25.72 131 10.83 8 -11.63 161 300 4.42
SBI 43 96 0 112 208 0.66 29 31.88 0 0.00 20 49 18.87 125 8.50 0 0.00 175 300 3.54

Ochiai 50 92 0 127 219 0.55 10 17.35 0 0.00 21 31 5.60 102 2.87 0 0.00 198 300 0.98
Jaccard 48 94 0 127 221 0.59 10 16.95 0 0.00 21 31 5.47 104 2.88 0 0.00 196 300 1.00
Ochiai2 48 89 0 132 221 0.52 10 11.85 0 0.00 21 31 3.82 99 2.35 0 0.00 201 300 0.78

Kulczynski2 43 96 0 112 208 0.64 29 32.09 0 0.00 20 49 18.99 125 8.50 0 0.00 175 300 3.54

Joda
Time

Tarantula 67 † 29 4 88 121 -0.14 81 307.67 15 -92.37 15 111 212.04 110 227.13 20 -75.30 170 300 78.79
SBI 68 27 1 93 121 0.33 80 172.97 11 -27.59 20 111 121.93 107 129.71 12 -25.42 181 300 45.55

Ochiai 81 24 2 124 150 -0.19 34 50.96 11 -29.14 24 69 20.46 58 30.40 13 -29.23 229 300 4.64
Jaccard 81 25 1 124 150 0.21 33 52.05 12 -37.63 24 69 18.35 58 30.17 13 -34.85 229 300 4.35
Ochiai2 81 22 1 127 150 0.14 29 56.95 12 -37.54 28 69 17.41 51 32.82 13 -34.77 236 300 4.10

Kulczynski2 70 27 1 95 123 0.33 75 149.30 11 -41.86 21 107 100.35 102 110.19 12 -38.50 186 300 36.16

All

Tarantula 293 255 13 551 819 0.47 524 128.72 30 -78.73 133 687 94.74 779 87.41 44 -60.39 977 1800 36.44
SBI 294 227 3 589 819 0.54 495 91.66 21 -32.57 171 687 65.05 722 63.47 24 -29.00 1054 1800 25.12

Ochiai 391 195 4 816 1015 0.22 178 28.40 24 -22.71 192 394 11.45 373 14.33 28 -22.04 1399 1800 2.63
Jaccard 389 184 3 822 1009 0.26 176 39.90 25 -21.42 201 402 16.14 360 20.25 28 -19.34 1412 1800 3.75
Ochiai2 389 166 3 841 1010 0.21 164 38.76 25 -21.26 212 401 14.53 330 19.92 28 -19.20 1442 1800 3.36

Kulczynski2 314 242 3 622 867 0.57 424 55.31 21 -40.38 174 619 36.52 666 35.98 24 -35.83 1110 1800 12.87

† Only one fault with soriginal has a negative result. That is test case purification makes the original result worse on one fault in Joda Time
when comparing with Tarantula.

To conduct large-scale experiments, we employ mutation
testing techniques to inject faults in subject programs. We
use six widely-used mutant operators to generate all faulty
versions of the subject programs under consideration. Then
we randomly select 300 faulty versions as the final faults. A
potential threat is that the type of mutant operators may
impact the effectiveness of fault localization. For example,
a fault localization technique may be good at handling a
specific type of faults. We have not checked the results for
this issue. We leave it as one of our future work.

Table 7: Time of Tarantula with test case purifica-
tion (in seconds)

Subject
program

Original fault
localization

Test case
atomization

Test case
slicing

Rank
refinement

Total

JExel 5.70 6.54 369.89 4.45 386.58
JParsec 8.11 4.21 137.03 5.91 155.27
Jaxen 14.08 6.38 204.71 6.49 231.67

AC Codec 128.88 41.38 105.60 4.20 280.06
AC Lang 33.31 18.59 79.27 9.69 140.86

Joda Time 168.63 18.06 254.60 17.82 459.11
Average 59.78 15.86 191.85 8.09 275.59

6.2 Method Construction
In Section 3.4, we propose a rank refinement method to

leverage the spectra of purified test cases to improve an orig-
inal fault localization technique. Our method is a simple

formula to combine spectra of test case purification and the
original fault localization. Other formulae can be used for
the combination, e.g., the average and the weighted average.
We plan to design new methods to make better use of the
spectra of test case purification in the future.

In our work, we generate purified test cases to improve
fault localization. Based on the spectra of purified test cases,
we rank frequent statements in such spectra prior to other
statements. Our experiments show that test case purifica-
tion can obtain non-negative results on most faults. A po-
tential assumption is that test cases are executed indepen-
dently. That is, the results of a test case should not impact
the results of other test cases. This assumption can be satis-
fied since most of test cases are well-designed. As mentioned
in Section 5.2, sometimes test cases suffer from dependen-
cies. This is a challenge topic in fault localization since there
is no explicit relationship between the failing test case and
the faulty statement.

We use JavaSlicer [12] as the implementation tool in test
case slicing. As mentioned by the authors of JavaSlicer, this
tool has some known limitations. For example, traces of
native methods and Java standard library classes may be
missed. To our knowledge, JavaSlicer is the most easy-to-
use slicing tool for Java 1.6. In our implementation of test
case slicing, we write a program to check potential missing
statements by JavaSlicer, but the implementation may still
miss some statements.

7. RELATED WORK
To our knowledge, this paper is the first work to directly

manipulate test cases to improve fault localization. We list
the related work as follows.

7.1 Fault Localization Techniques
Fault localization aims to localize the faulty position in

programs. Tarantula by Jones et al. [16] is an integrated
framework to localize and visualize faults. Empirical evalu-
ations of Tarantula on fault localization can be found in [15].
Abreu et al. [1] propose Ochiai and Jaccard for fault localiza-
tion. All of Tarantula, Ochiai, and Jaccard can be viewed as
the state-of-art in spectrum-based fault localization. Naish
et al. [24] propose a family of fault localization methods and
empirically evaluate their results. Recent work by Zhang et
al. [39] addresses the problem of how to identify faults with
only failed runs. Xie et al. [32] propose a theoretical analysis
on multiple ranking metrics of fault localization and divide
these metrics into categories according to their effectiveness.

Santelices et al. [29] combine multiple types of code cov-
erage to find out the faulty positions in program. Baah
et al. [3] employ potential outcome model to find out the
dynamic program dependencies for fault localization. Xu
et al. [34] develop a noise-reduction framework for localiz-
ing Java faults. This work is a general framework that can
be used to improve multiple existing fault localization tech-
niques. DiGiuseppe & Jones [9] recently propose a semantic
fault diagnosis approach, which employs natural language
processing to detect the fault locations. Xuan & Monper-
rus [35] develop a learning-based approach to combining
multiple ranking metrics for fault localizing. Steimann et
al. [31] discuss the threats to validity in the empirical as-
sessments of fault localization. Their work also presents the
theoretical bounds of the accuracy in fault localization.

Hao et al. [13] propose a test-input reduction approach to
reduce the cost of inspecting the test results. Gong et al. [11]
design a diversity-maximization-speedup approach to reduce
the manual labeling of test cases and improve the accuracy
of fault localization. Yoo et al. [36] address the problem of
fault localization prioritization. Their work investigates how
to rank remaining test cases to maximize fault localization
once a previous fault is found.

Baudry et al. [4] leverage the concept of dynamic basic
blocks to maximize the ability of diagnosing faults with a
test suite. Artzi et al. [2] directly generate test cases for
localizing faults in invalid Html programs in dynamic web
applications. This work does not require the test oracles
since a web browser can report the crashes once invalid Html
programs are found. Fault localization is also used as a phase
of predicting a candidate position of the patch in software
repair, such as GenProg [18] and Nopol [8].

In our work, we address the same problem statement of
fault localization. In contrast to existing work, test case
purification is a framework to make better use of existing
test cases. Our approach directly operates on test cases and
can be generally applied to most of existing fault localization
techniques.

7.2 Mutation and Slicing Based Fault Local-
ization

Mutation-based fault localization has been recently pro-
posed. The kernel idea of mutation-based fault localization
is to localize faults by injecting faults. Zhang et al. [37]

propose FIFL, a fault injecting approach to localizing faulty
edits in evolving Java programs. Candidate edits are ranked
based on the suspiciousness of mutants. Papadakis & Le
Traon [26] develop Metallaxis-FL, a mutation-based tech-
nique for fault localization on C programs. Their work shows
that test cases that are able to kill mutants can enable ac-
curate fault localization. Moon et al. [23] recently propose
MUSE, an approach based on both mutants of faulty state-
ments and mutants of correct statements.

Slicing-based fault localization leverages program slicing
to remove the statements in programs to find out the final
faulty statements. Zhang et al. [38] employ dynamic slicing
to reduce the size of C programs to avoid the distribution by
irrelevant statements. Mao et al. [20] combine both statistic
slicing and dynamic slicing to identify the faulty statements
in programs. They empirically evaluate the slicing-based
techniques on multiple fault localization techniques. Xie et
al. [33] propose a new concept of metamorphic slice, based on
the integration of metamorphic testing and program slicing.
Metamorphic slices localize faults without the requirement
of test oracles.

Existing work on mutation-based and slicing-based fault
localization aims to change the subject program to identify
the faulty parts in the program. In our work, test case pu-
rification changes test cases for fault localization rather than
subject programs. We make better use of existing test cases
(test oracles) to improve the effectiveness of fault localiza-
tion.

8. CONCLUSION
In this paper, we propose a test case purification approach

for improving fault localization. Our work directly manip-
ulates test cases to make better use of existing test ora-
cles. We generate small fractions of test cases, that we call
purified test cases, to collect discriminating spectra for all
assertions in the test suite under consideration. Our experi-
mental results show that test case purification can effectively
improve original fault localization techniques. Only a small
fraction of faults (1.3 to 2.4%) suffer from worsened results.
The results show that the benefits of test case purification
exist on six fault localization techniques.

As future work, we plan to conduct experiments on other
Java projects to further investigate the performance of our
work. We plan to design new ranking methods to combine
with the spectra of test case purification. Moreover, we want
to explore how to reduce the time cost of test case slicing
to facilitate test case purification. We plan to check the
applicability of the idea of test case purification for other
software problems, e.g., regression testing [28] or automatic
software repair [22].

9. ACKNOWLEDGMENTS
Our work is built on the top of open-source libraries.

We thank Renaud Pawlak, Carlos Noguera, and Nicolas
Petitprez (for Spoon), Alexandre Perez, José Carlos Cam-
pos, and Rui Abreu (for GZoltar), Clemens Hammacher,
Martin Burger, Valentin Dallmeier, and Andreas Zeller (for
JavaSlicer) for their contributions.

This research is done with support from EU Project Diver-
sify FP7-ICT-2011-9 #600654 and an INRIA Postdoctoral
Research Fellowship.

10. REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On

the accuracy of spectrum-based fault localization. In
Testing: Academic and Industrial Conference Practice
and Research Techniques-MUTATION, 2007, pages
89–98. IEEE, 2007.

[2] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed
test generation for effective fault localization. In
Proceedings of the 19th international symposium on
Software testing and analysis, pages 49–60. ACM,
2010.

[3] G. K. Baah, A. Podgurski, and M. J. Harrold.
Mitigating the confounding effects of program
dependences for effective fault localization. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, pages 146–156. ACM, 2011.

[4] B. Baudry, F. Fleurey, and Y. Le Traon. Improving
test suites for efficient fault localization. In
Proceedings of the 28th international conference on
Software engineering, pages 82–91. ACM, 2006.

[5] D. Binkley, N. Gold, and M. Harman. An empirical
study of static program slice size. ACM Transactions
on Software Engineering and Methodology (TOSEM),
16(2):8, 2007.

[6] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim.
Entropy-based test generation for improved fault
localization. In Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International
Conference on, pages 257–267. IEEE, 2013.

[7] J. Campos, A. Riboira, A. Perez, and R. Abreu.
Gzoltar: an eclipse plug-in for testing and debugging.
In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages
378–381. ACM, 2012.

[8] F. DeMarco, J. Xuan, D. L. Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with smt. In Proceedings of the 6th
International Workshop on Constraints in Software
Testing, Verification, and Analysis, pages 30–39.
ACM, 2014.

[9] N. DiGiuseppe and J. A. Jones. Semantic fault
diagnosis: automatic natural-language fault
descriptions. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, page 23. ACM, 2012.

[10] E. Gamma and K. Beck. Junit. org. URL:
http://www. junit. org, 2005.

[11] L. Gong, D. Lo, L. Jiang, and H. Zhang. Diversity
maximization speedup for fault localization. In
Automated Software Engineering (ASE), 2012
Proceedings of the 27th IEEE/ACM International
Conference on, pages 30–39. IEEE, 2012.

[12] C. Hammacher, K. Streit, S. Hack, and A. Zeller.
Profiling java programs for parallelism. In Proceedings
of the 2009 ICSE Workshop on Multicore Software
Engineering, pages 49–55. IEEE Computer Society,
2009.

[13] D. Hao, T. Xie, L. Zhang, X. Wang, J. Sun, and
H. Mei. Test input reduction for result inspection to
facilitate fault localization. Automated software
engineering, 17(1):5–31, 2010.

[14] L. Inozemtseva and R. Holmes. Coverage is not
strongly correlated with test suite effectiveness. In
Proceedings of the 36th International Conference on
Software Engineering, pages 435–445. ACM, 2014.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages
273–282. ACM, 2005.

[16] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault
localization. In Proceedings of the 24th international
conference on Software engineering, pages 467–477.
ACM, 2002.

[17] T.-D. B. Le and D. Lo. Will fault localization work for
these failures? an automated approach to predict
effectiveness of fault localization tools. In Software
Maintenance (ICSM), 2013 29th IEEE International
Conference on, pages 310–319. IEEE, 2013.

[18] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. Software Engineering, IEEE Transactions on,
38(1):54–72, 2012.

[19] B. Liblit, A. Aiken, M. Naik, and A. X. Zheng.
Scalable statistical bug isolation. In In Proceedings of
the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation, 2005.

[20] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang.
Slice-based statistical fault localization. Journal of
Systems and Software, 89:51–62, 2014.

[21] G. Meszaros. xUnit test patterns: Refactoring test
code. Pearson Education, 2007.

[22] M. Monperrus. A Critical Review of “Automatic Patch
Generation Learned from Human-Written Patches”:
Essay on the Problem Statement and the Evaluation
of Automatic Software Repair. In Proceedings of the
International Conference on Software Engineering,
pages 234–242, 2014.

[23] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the
mutants: Mutating faulty programs for fault
localization. In Software Testing, Verification and
Validation (ICST), 2014 IEEE Seventh International
Conference on, pages 153–162. IEEE, 2014.

[24] L. Naish, H. J. Lee, and K. Ramamohanarao. A model
for spectra-based software diagnosis. ACM
Transactions on software engineering and methodology
(TOSEM), 20(3):11, 2011.

[25] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler:
Detecting performance problems via similar
memory-access patterns. In Software Engineering
(ICSE), 2013 35th International Conference on, pages
562–571. IEEE, 2013.

[26] M. Papadakis and Y. Le Traon. Metallaxis-fl:
mutation-based fault localization. Software Testing,
Verification and Reliability, 2013.

[27] R. Pawlak, C. Noguera, and N. . Petitprez. Spoon:
Program Analysis and Transformation in Java.
Rapport de recherche RR-5901, INRIA, 2006.

[28] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
Software Engineering, IEEE Transactions on,
27(10):929–948, 2001.

[29] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold.
Lightweight fault-localization using multiple coverage
types. In IEEE 31st International Conference on
Software Engineering, 2009, pages 56–66. IEEE, 2009.

[30] F. Steimann and M. Frenkel. Improving
coverage-based localization of multiple faults using
algorithms from integer linear programming. In
Software Reliability Engineering (ISSRE), 2012 IEEE
23rd International Symposium on, pages 121–130.
IEEE, 2012.

[31] F. Steimann, M. Frenkel, and R. Abreu. Threats to
the validity and value of empirical assessments of the
accuracy of coverage-based fault locators. In
Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pages 314–324. ACM,
2013.

[32] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A
theoretical analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Transactions
on Software Engineering and Methodology (TOSEM),
22(4):31, 2013.

[33] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu.
Metamorphic slice: An application in spectrum-based
fault localization. Information and Software
Technology, 55(5):866–879, 2013.

[34] J. Xu, Z. Zhang, W. Chan, T. Tse, and S. Li. A
general noise-reduction framework for fault
localization of java programs. Information and

Software Technology, 55(5):880–896, 2013.

[35] J. Xuan, M. Monperrus, et al. Learning to combine
multiple ranking metrics for fault localization. In
Proceedings of the 30th International Conference on
Software Maintenance and Evolution. IEEE, 2014.

[36] S. Yoo, M. Harman, and D. Clark. Fault localization
prioritization: Comparing information-theoretic and
coverage-based approaches. ACM Transactions on
Software Engineering and Methodology (TOSEM),
22(3):19, 2013.

[37] L. Zhang, L. Zhang, and S. Khurshid. Injecting
mechanical faults to localize developer faults for
evolving software. In Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented
programming systems languages & applications, pages
765–784. ACM, 2013.

[38] X. Zhang, N. Gupta, and R. Gupta. A study of
effectiveness of dynamic slicing in locating real faults.
Empirical Software Engineering, 12(2):143–160, 2007.

[39] Z. Zhang, W. K. Chan, and T. Tse. Fault localization
based only on failed runs. IEEE Computer,
45(6):64–71, 2012.

[40] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate,
D. Bailey, S. Bass, D. Bhandarkar, M. Bhat,
D. Bindel, S. Boldo, et al. Ieee standard for
floating-point arithmetic. IEEE Std 754-2008, pages
1–70, 2008.

	Introduction
	Background and Motivation
	Terminology
	Spectrum-Based Fault Localization
	Motivation

	Test Case Purification
	Framework
	Test Case Atomization
	Test Case Slicing
	Rank Refinement
	Discussion

	Experimental Setup
	Subject Programs
	Techniques in Comparison
	Implementation

	Experimental Results
	Overall Comparison
	Detailed Comparison per Fault Category
	Computation Time

	Threats to Validity
	Experiment Construction
	Method Construction

	Related Work
	Fault Localization Techniques
	Mutation and Slicing Based Fault Localization

	Conclusion
	Acknowledgments
	References

