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Abstract—The Next Release Problem (NRP) aims to optimize customer profits and requirements selection for the software releases.

The research on the NRP is restricted by the growing scale of requirements. In this paper, we propose a Backbone-based Multilevel

Algorithm (BMA) to address the large scale NRP. In contrast to direct solving approaches, the BMA employs multilevel reductions to

downgrade the problem scale and multilevel refinements to construct the final optimal set of customers. In both reductions and

refinements, the backbone is built to fix the common part of the optimal customers. Since it is intractable to extract the backbone in

practice, the approximate backbone is employed for the instance reduction while the soft backbone is proposed to augment the

backbone application. In the experiments, to cope with the lack of open large requirements databases, we propose a method to extract

instances from open bug repositories. Experimental results on 15 classic instances and 24 realistic instances demonstrate that the

BMA can achieve better solutions on the large scale NRP instances than direct solving approaches. Our work provides a reduction

approach for solving large scale problems in search-based requirements engineering.

Index Terms—The next release problem, backbone, soft backbone, multilevel algorithm, requirements instance generation, search-

based requirements engineering.

Ç

1 INTRODUCTION

FOR a large software project, determining the require-
ments assignment in the next release is an important

problem in the requirements phase [12]. The customers of
the software wish to purchase the products suitable for their
needs, while the software company wishes to select optimal
requirements to maximize commercial profits [48]. Due to
the complexity of customer requests and product require-
ments, decisions for software releases frequently conflict
with efforts to maximize the profits of the project [10]. To
maximize the profits of a software project, an ideal
approach is to implement all the requirements to satisfy
each potential customer. Limited by the software costs (e.g.,
the budget or the development time), only a subset of these
requirements can be selected in the next release [48]. From
the perspective of the software company, the goal of the
next release is to select the optimal requirements to
maximize the customer profits. However, two factors
restrict the development of requirements selection: the
problem scale and the requirements dependency.

On one hand, when facing large scale requirements
management, it is time-consuming to optimize customer
profits [49]. The growth in scale has been listed as one of the
nine research hotspots in the future of requirements
engineering [10]. Some studies have focused on the large
scale requirements analysis. For example, 1,000 requirements

are provided for the experiments on elicitation and triage in
the SugarCRM project [9], [14]; 2,400 market requirements
and 1,100 business requirements are handled for the next
release in the Baan software framework [48]. Although some
optimization technologies are introduced to balance the
customer profits and requirements costs, such as the cost-
value approaches [32], the linguistic-engineering approaches
[48], [49], and the search-based approaches [5], [57], it is still a
challenge to select an optimal decision for large scale
requirements problems [67].

On the other hand, the requirements dependencies
increase the complexity of requirements optimization. In
the modern incremental software development process,
new-coming requirements may build joint functions with
previous and associate requirements [50]. An industry
survey shows that about 80 percent requirements are
constrained by dependencies which significantly compli-
cate the decision for the software releases [8].

In this paper, we address large scale requirements
selection with the Next Release Problem (NRP), which is
proposed to model the decision for customer profits and
requirements costs [4]. The NRP seeks to maximize
customer profits from a set of dependent requirements
under the constraint of a predefined budget bound.
Assisted by the NRP, a requirements engineer can make a
decision for software requirements to balance the profits of
the company and the customers. As a combinatorial
optimization problem, the NRP has been proven to be
“NP-hard even when it is basic and customer requirements
are independent” [4], i.e., unless P ¼ NP, there exists no
exact algorithm to select the optimal set of customers to
maximize the profits in polynomial time [18]. In practice,
especially for a large scale problem, it is hard to exactly
optimize the decision of the NRP. Thus, it is straightforward
to design approximate algorithms to generate near-optimal
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decisions within polynomial time. Many search-based
approaches have been proposed to approximately solve
the NRP and its variant problems, including greedy
algorithms [4], [25], greedy randomized adaptive search
procedures [4], local searches (e.g., a hill climbing or a
Simulated Annealing (SA)) [4], [5], genetic algorithms [13],
[57], ant colony optimizations [31], [13], etc. A few of these
approaches (e.g., a simulated annealing [7] and a genetic
algorithm [52]) can work effectively on the small scale NRP.
However, these approaches for the small scale problems
cannot be directly applied to the large scale problems. For
example, Natt och Dag et al. [48] show the hardness of large
scale requirements management by analyzing the relation-
ship between customer requests and product requirements;
Svahnberg et al. discuss the growing complexity while the
problem scale improves [59]. For the large scale NRP,1 it is
necessary to design an effective algorithm to cope with the
increasing problem scale.

In this paper, we propose a Backbone-based Multilevel
Algorithm (BMA) to iteratively solve the large scale NRP. In
contrast to direct solving approaches, the BMA iteratively
downgrades the scale of the problem by fixing the backbone,
which can be approximately viewed as the common part of
customers with optimal requirements. The backbone is one
of the effective tools in large scale combinatorial optimiza-
tion in recent years [58], [64], [30]. In our work, two kinds of
backbones are employed for the NRP, namely, the approx-
imate backbone (the common part of customers from a given
number of local optimal solutions) and the soft backbone (the
customers, who add zero cost to the requirements selec-
tion). Based on the backbone, we can break a large scale
problem down to small ones and refine the solution to the
original problem.

To face the lack of open large requirements databases,
we propose a method to mine the NRP instances2 from
open bug repositories. Knowledge from bug repositories is
extracted to generate the information of requirements. For
example, we map a bug report and a user in open bug
repositories to a requirement and a customer in require-
ments engineering. Based on our method, we can generate
realistic NRP instances from open bug repositories.

In our work, first, we give the definitions of the NRP model
and illustrate the NRP with an example. Then, we define the
NRP backbone and propose the instance reduction approach
for the NRP. In the implementation of the backbone, we use
the approximate backbone to replace the backbone and
present the similarity between the approximate backbone
and the backbone via the fitness landscape analysis; to
augment the application of the approximate backbone, we
propose the new concept of the soft backbone. Next, we
employ the approximate backbone and the soft backbone to
design BMA, which employs a multilevel strategy to enhance
the instance reduction. The framework of BMA includes three
phases, namely, reduction, solving, and refinement. Finally,
experiments are conducted on 15 instances generated from
the classic literature and 24 new instances extracted from

open bug repositories. Experimental results show that our
BMA can achieve better solutions than direct solving
algorithms on large scale NRP instances.

The primary contributions of this paper are as follows:

1. We present a new algorithm, BMA, to reduce the
problem scale of the NRP. In this algorithm, we show
how to incorporate the backbone into an approximate
algorithm for solving large scale problems. To our
knowledge, this is the first application of the back-
bone in requirements engineering.

2. We propose the soft backbone to augment the
existing concept of the backbone in both software
engineering and combinatorial optimization. In our
work, the soft backbone is directly obtained from the
instance after the instance reduction by fixing the
selected near-optimal customers.

3. We generate new NRP instances from bug reposi-
tories of three open source software projects. The
bug repositories are mined to cope with the lack of
open requirements repositories. This method of
mining new instances can provide realistic instances
for the empirical research.

4. We experimentally evaluate the BMA and two other
existing algorithms for large scale NRP instances.
Numerous experimental results on both solution
quality and running time are shown to present the
performance of these algorithms.

This paper is an extension of our previous work
presented in the Search-Based Software Engineering (SBSE)
Track at the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’10) [28]. In this
extension, we add the new concept of the soft backbone,
the new method for instance generation, and numerous
experimental results.

The remainder of this paper is organized as follows:
Section 2 states the definitions of the NRP. Section 3 shows
the NRP backbone and the instance reduction. In Section 4,
we propose the BMA for the NRP. Section 5 presents the
experiments and results. Section 6 gives the threats to validity
in our work. Section 7 lists the related work. Section 8 briefly
concludes this paper and presents our future work.

2 PROBLEM DEFINITIONS

In this section, we present the related definitions of the NRP
and illustrate the NRP with an example instance.

The NRP can be retrieved from the following scenario
[4]: In the requirements analysis phase of a software project,
a necessary step is to select adequate requirements in the
next release to achieve maximized commercial profits
within a limited cost. Each customer requests a fraction of
candidate requirements and provides a potential commer-
cial profit for the software company. In a real-world project,
the dependencies among candidate requirements restrict
the selection of customer profits. The NRP aims to
determine a subset of customers to achieve maximum
profits under a predefined budget bound.

According to this application scenario, we give the
formal definitions of the NRP as follows: In a software
project, let R be the set of all the candidate requirements
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1. Throughout this paper, the large scale NRP can be viewed as the NRP
in large scale requirements management, which is to balance the customer
profits and requirements costs in large scale software projects.

2. An instance is a detailed model generated by specifying particular
values for all the parameters of a problem [39].



and the cardinality of R is jRj ¼ m. Each requirement rj 2 R
(1 � j � m) is associated with a nonnegative cost cj 2 C. A

directed acyclic graph G ¼ ðR;EÞ denotes the dependencies

among these requirements, where R is the set of vertices

and E is the set of arcs. In the dependency graph G, an arc

ðr0; rÞ 2 E indicates that the requirement r depends on r0,

i.e., if r is implemented in the next release, r0 must be

implemented as well to satisfy the dependency. The

requirement r is called the child requirement of r0. Let

parentsðrÞ be the set of requirements which can reach r via

one or more arcs. More formally, parentsðrÞ ¼ fr0 2
Rjðr0; rÞ 2 E or ðr0; r00Þ 2 E; r00 2 parentsðrÞg. All the re-

quirements in parentsðrÞ must be implemented to ensure

the implementation of r.
Let S be all the customers related to the requirements R

and jSj ¼ n. Each customer si 2 S, requests a set of

requirements Ri � R. Let wi 2W be the profit gained from

the customer si. Let parentsðRiÞ ¼ [r2RiparentsðrÞ. For a

given customer si let the set of total requirements requested

by si be R̂i ¼ Ri [ parentsðRiÞ. Under the above definitions,

a customer si can be satisfied by the software release

decision if and only if all the requirements in R̂i are

implemented in the next release. Let the cost for satisfying

the customer si be costðR̂iÞ ¼
P

rj2R̂i
cj. A subset of custo-

mers S0 � S can be viewed as a solution. To facilitate the

following discussion, we also formulate a solution as a set of

ordered pairs, i.e., the solution S0 � S is denoted as X ¼
fði; pÞjp ¼ 1; si 2 S0 or p ¼ 0; si 62 S0g. It is easy to convert

the form of X or S0 into each other. Let the cost of a solution

X be costðXÞ ¼ costð[ði;1Þ2XR̂iÞ and the objective function of

X (i.e., the profit of X) be !ðXÞ ¼
P
ði;1Þ2X wi.

Definition 1. The next release problem.
Given a directed acyclic requirements dependency graph

G ¼ ðR;EÞ, each customer si 2 S directly requests a set of
requirements Ri. The profit of si is wi 2W and the cost of
requirement rj 2 R is cj 2 C. A predefined budget bound is b.

The goal of the NRP is to find an optimal solution X�, to
maximize !ðXÞ, subject to costðXÞ � b.
For an NRP instance, the scale is n ¼ jSj. To simplify the

statements, all the values of an NRP instance are integers

except special specifications. For a real-world application, it

is easy to convert a noninteger NRP instance into an

integer-only instance by magnifying the same multiple for

all the values.

An NRP instance with seven customers and eight
requirements is illustrated as follows: The requirements
are extracted from a communication company project,
which is introduced in [50]. Table 1 shows the description
of these eight requirements and the dependencies. In Fig. 1,
we present the dependency graph and the requirements
requested by customers, where the arrows from top to
bottom indicate the dependencies and the lines indicate
customer requests. For the requirements set R ¼ fr1; r2; . . . ;
r8g, let the costs c1; c2; . . . ; c8 of these requirements be 2, 5, 4,
3, 8, 1, 5, 2, respectively; for the customer set S ¼ fs1;
s2; . . . ; s7g, let the profits w1; w2; . . . ; w7 of these customers
be 7, 2, 6, 5, 4, 3, 1. Taking s1 as an example, the total
requirements requested by s1 are R̂1 ¼ fr1; r2; r6g, the cost
for satisfying the requirements is costðR̂1Þ ¼ 8, and the
profit of s1 is w1 ¼ 7.

Given a predefined budget bound b ¼ 26, the profit and
the cost of a feasible solution X1 ¼ fð1; 1Þ; ð2; 0Þ; ð3; 1Þ;
ð4; 0Þ; ð5; 0Þ; ð6; 0Þ; ð7; 1Þg are 14 and 20, respectively. Simi-
larly, the profit and the cost of X2 ¼ fð1; 1Þ; ð2; 0Þ; ð3; 0Þ;
ð4; 0Þ; ð5; 1Þ; ð6; 1Þ; ð7; 1Þg are 15 and 25. Obviously, X2 is a
better solution than X1. However, X2 ¼ fð1; 0Þ; ð2; 1Þ; ð3; 0Þ;
ð4; 1Þ; ð5; 0Þ; ð6; 1Þ; ð7; 0Þg is unfeasible since its cost of 29
exceeds the bound b.

From the definition of the NRP, the requirements R̂i

requested by a customer si are calculated from the
dependency graph of requirements [4]. If we directly input
the requirements requests for each customer, Definition 1
can be simplified [5], [69].

Definition 2. The simplified NRP.
Given a set of requirements R and a set of customers S,

each requirement rj 2 R (1 � j � m) has a cost cj 2 C and
each customer si 2 S (1 � i � n) has a profit wi 2W . A
request qij 2 Q shows whether a customer si requests a
requirement rj in the next release, i.e., qij ¼ 1 denotes that si
requests rj or qij ¼ 0 denotes not. Given a solution X, the
requirements for X is RðXÞ ¼ [ði;1Þ2X;qij¼1frjg. A predefined
budget bound is b.

The goal of the NRP is to find an optimal solution X�, to
maximize !ðXÞ ¼

P
ði;1Þ2X wi, subject to costðXÞ ¼P

rk2RðXÞ ck � b.
Based on the definitions, each NRP instance can be directly

converted into a Simplified NRP instance. The dependencies
among requirements are included in the requirements
requestsQ. To simplify the following statements, a Simplified
NRP instance is called an NRP instance for short. We denote
an NRP instance as �.
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Fig. 1. Requirements dependencies and customer requests.

TABLE 1
Requirements and Dependencies



3 BACKBONE-BASED INSTANCE REDUCTION

In this paper, for the large scale NRP, our basic idea is to

reduce the scale of an NRP instance to get a small instance

which is easy to solve. In this section, we will present the

backbone-based instance reduction and the substitutions of

the backbone, namely, the approximate backbone and the

soft backbone.

3.1 Backbone and Instance Reduction

The backbone is a useful tool for algorithm design in

constraint solving and combinatorial optimization [33]. In

an algorithm, the backbone is viewed as an ideal structure

to model the common characteristics of the optimal

solutions [30]. On one hand, if the backbone is ideally

obtained, the optimal solutions to an instance can be partly

constructed; on the other hand, it is usually intractable to

obtain the backbone within polynomial time [58]. In

practice, the approximate backbone is usually employed

instead. Backbone-based algorithms have been shown

effective on some classic problems, such as the Maximum

SATisfiability (Max-SAT) [64], the Traveling Salesman

Problem (TSP) [33], and the Quadratic Assignment Problem

(QAP) [30]. If we consider searching for a solution as

finding a key part in a physical body, the backbone can be

informally viewed as the common part of the global optimal

solutions. A global optimal solution (called an optimal solution

for short in the rest of this paper) is defined as the best

solution in the whole search space, while a local optimal

solution is the best solution in a local part of the search space

with respect to a given algorithm [45]. We define the NRP

backbone in Definition 3.

Definition 3. The NRP backbone.
Given an NRP instance �, let �� ¼ fX�1 ; X�2 ; . . . ; X�ug be

the set of all the optimal solutions to �. The backbone of � is
defined as � ¼ \ui¼1X

�
i .

The backbone scale of � is j�j. Based on Definition 3, the

NRP backbone contains the common characteristics of the

optimal solutions. Given an NRP instance, we can reduce

the instance scale by fixing its backbone.

Definition 4. The NRP instance reduction.
Given an NRP instance � and its backbone �, an instance

reduction is a process to generate a new and small scale
instance �0, which is easy to solve. Meanwhile, the backbone
and a solution to the new instance can be used to form the
solution to the original instance.

A new instance �0 can be constructed by removing
the customers and the requirements of the backbone from the
original instance. We list the parameter values for the
variables of the new instance in Table 2. For an instance �,
the customers of its backbone � is Sð�Þ, while the require-
ments selected in � is Rð�Þ. The request set Qð�Þ indicates the
requirements requests of Sð�Þ. In the new instance �0, the
customers in Sð�Þ and the requirements selected by Sð�Þ is
not helpful yet. Thus, S0, R0, and Q0 in �0 are generated by
removing the elements in Sð�Þ, Rð�Þ, and Qð�Þ, respectively.
To build the budget bound b0 for �0, we remove the cost of �,
i.e., costð�Þ. The profits W 0 and the costs C0 are the subsets
related to S0 and R0. We can validate that each optimal
solution to � can be constructed from an optimal solution to
�0 and the backbone �. According to Table 2, each parameter
value of �0 can be obtained within polynomial time. Based on
these parameter values, the new instance �0 can be uniquely
determined, denoted as �0 ¼ Instance-Reductionð�; �Þ.

However, the NRP backbone is obtained from the
optimal solutions, which cannot be obtained within poly-
nomial time. Thus, there exists no polynomial time
algorithm to find the NRP backbone. In this paper, we use
the approximate backbone and the soft backbone to replace
the backbone.

The approximate backbone is the set of common
customers of a given number of local optimal solutions
while the soft backbone is the set of optimal customers with
no cost for the given instance. In Fig. 2, we summarize the
relationship among the backbone, the approximate back-
bone, and the soft backbone. The approximate backbone is
generated as the common part of a group of local optimal
solutions; the soft backbone is directly extracted from the
current instance. The union of the approximate backbone
and the soft backbone is called the combined backbone. We
employ the combined backbone to build the near-optimal
solutions for the NRP. In Sections 3.2 and 3.3, we will
present more details about the approximate backbone and
the soft backbone, respectively.

3.2 Approximate Backbone

Since no polynomial time algorithm exists to exactly obtain
the NRP backbone, we follow the existing work to replace the
backbone with the approximate backbone, which is gener-
ated from a set of local optimal solutions [64]. In this section,
we will present the relationship between the optimal
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TABLE 2
Parameter Values for the Instance Reduction

Fig. 2. The relationship among the backbone, the approximate
backbone, and the soft backbone.



solutions and local optimal solutions using the fitness
landscape analysis. We show that the approximate backbone
can partly reflect the characteristics of the backbone.

Compared to the concept of backbone, an approximate
backbone of an NRP instance is defined as the common part
of local optimal solutions. In real-world applications, a local
optimal solution is generated within polynomial time by a
local search algorithm, which is also called as a local search

operator when it is incorporated into another algorithm [45].
We give Definition 5 to describe the approximate backbone.

Definition 5. The NRP approximate backbone.
Given an NRP instance �, let � ¼ fX1; X2; . . . ; Xvg be a set

of local optimal solutions to �. The approximate backbone of � is
defined as �a ¼ Approximate-Backboneð�;�Þ ¼ \vi¼1Xi.

We employ the fitness landscape analysis [44] to
investigate the relationship between the backbone and the
approximate backbone. The fitness landscape analysis is an
important technology to understand the behavior of
combinatorial optimization algorithms [44]. For large scale
optimization, the fitness degree and the solution distribu-
tion in the fitness landscape are measured to guide the
design of algorithms [64]. To analyze the fitness landscape
between the backbone and the approximate backbone,
we evaluate the differences between the optimal solutions
and local optimal solutions by the distances of these two
kinds of solutions. The distance is usually measured as
Hamming distance [44], [54]. For an NRP instance with
scale n, the Hamming distance between a solution X and an
optimal solution X� is distðX;X�Þ ¼ n� jX \X�j. Thus, the
normalized Hamming distance is n-distðX;X�Þ ¼ n�jX\X�j

n .
To evaluate the difference of profits between these two
solutions, we define the normalized profit difference as

n-diffðX;X�Þ ¼ !ðX�Þ�!ðXÞ
!ðX�Þ . In practice, the optimal solu-

tions to large scale instances are hard to obtain. Therefore,
we follow the existing fitness landscape analysis ap-
proaches to replace the optimal solutions with the best
known solutions3 [44], [54]. Note that the measure criterion
of the profit difference in our work is a little different from
that in some existing work on the fitness landscape (e.g.,
[42] and [43]). In our work, we use the normalized profit
differences between solutions to evaluate the relationship
between the backbone and the approximate backbone while
the existing work uses the fitness values of solutions to
evaluate the fitness degree.

In Fig. 3, we present the fitness landscape of five classic
NRP instances. The scales of these instances are 100, 500,
500, 750, and 1,000, respectively (see Section 5.2 for the
details of these instances). In the fitness landscape analysis,
we employ four algorithms to indicate the similarity
between local optimal solutions and the optimal solutions,
including Randomized Search (RS), First Found Hill
Climbing (FFHC), Sampled Hill Climbing (SHC), and
Simulated Annealing. RS is a randomized algorithm which
randomly generates a solution. Due to the budget bound of
the NRP, a solution may be infeasible; RS repairs these
infeasible solutions by randomly removing a couple of
selected customers. FFHC and SHC are two kinds of hill
climbing algorithms proposed in [4]. As their names
suggest, FFHC updates its solution with the first improved
solution while SHC updates its solution with the best
solution among a certain number of sampled solutions. SA
(also called LMSA in [4]) is an extension of a nonlinear
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Fig. 3. Landscape of five classic NRP instances with four algorithms. For each instance in a subfigure, the x-axis is the normalized Hamming
distance from a local optimal solution to the optimal solution and the y-axis is the normalized profit difference of these two solutions. In each
subfigure, the point (0,0) denotes the optimal solution. A solution in the bottom-left corner is more similar to the optimal solution than that in the top-
right corner.

3. To obtain a best-known solution of an NRP instance, RS (in Section 3.2)
and BMA (in Section 4.2) have been performed repeatedly (105 times for RS
and 200 times for BMA, respectively) and the best solution is selected.



simulated annealing algorithm which combines the hill
climbing with an acceptance temperature [4], [5]. Among
these four algorithms, SA usually obtains the best solutions
for the NRP [4]. In the experiments, each of these four
algorithms is independently run 100 times and each fitness
landscape of an algorithm consists of 100 local optimal
solutions.

As shown in Fig. 3, an algorithm with small distances
between solutions can provide small profit differences. For
FFHC, SHC, or SA, the distances between solutions are
from 0.2 to 0.6 of the instance scale, while the profit
differences between solutions are from 0.2 to 0.7 of the
profits of the best known solutions. In general, when
measuring the distances for these five instances, SA is better
than SHC and SHC is better than FFHC. On most of the five
instances, SA is the best algorithm, which leads to both
small distances and small profit differences. An exception
instance is nrp-1-0.5, the one with the smallest scale. On
nrp-1-0.5, the landscape of SHC covers the landscape of SA.
This fact is primarily due to the small scale of nrp-1-0.5, i.e.,
both SA and SHC can generate good solutions. Moreover,
for all the instances, the distances by SA are less than 0.45 of
scales. Compared with FFHC and SHC, both the solution
distances and profit differences by SA are stable. The other
algorithm, RS, only provides large distances around 0.6 of
instance scales.

The fitness landscape analysis indicates that there is an
overlap between local optimal solutions and the optimal
solutions. Thus, local optimal solutions can partly represent
the characteristics of the optimal solutions. Meanwhile,
among these four algorithms, an algorithm with high
performance leads to small solution distances. Thus, a local
optimal solution by a high-performance algorithm can do
well in showing the characteristics of the optimal solutions.
In summary of the fitness landscape analysis, the NRP
backbone can be replaced by the approximate backbone,
which is the intersection of local optimal solutions obtained
by a good local search algorithm.

The instance reduction in Definition 4 can be applied to
the approximate backbone. Since local optimal solutions are
obtained in polynomial time, the approximate backbone-
based instance reduction can be conducted within poly-
nomial time.

3.3 Soft Backbone

In this section, apart from the approximate backbone, we
propose the soft backbone to augment the application of the
backbone.

Given an approximate backbone, we can generate a new
and small instance after the instance reduction. The new
instance can also be viewed as an NRP instance, which can be
solved by an existing algorithm. However, there is one key
difference between the new instance and the original one.
Given an original NRP instance �, for each customer si 2 S,P

rj2R qij � 1, i.e., si requests one or more requirements to be
implemented in the next release. Thus, the cost of require-
ments requested by each customer is more than zero.
However, for the new NRP instance �0 after an instance
reduction, it is possible to find a customer si such thatP

rj2R0 qij ¼ 0. In other words, there may exist a customer,
whose requirements have been wholly reduced in the

instance reduction. For the goal of the NRP, we add this
kind of customer to the solution to maximize the profits. From
the perspective of the problem solving, the customers who
provide profits with zero cost can also be approximately
considered as the common part of the optimal solutions.

We define the soft backbone as such customers who
provide profits and request no requirements. In contrast to
obtaining the approximate backbone from solutions, the
soft backbone is a new kind of backbone obtained from
instances.

Definition 6. The NRP soft backbone.
Given an NRP instance �0 after the instance reduction, the

soft backbone is defined as �s ¼ Soft-Backboneð�0; �Þ ¼
fði; 1Þj

P
rj2R0 qij ¼ 0g (� denotes an empty set and R0 denotes

the requirements set of �0).

The instance reduction in Definition 4 can be directly
applied to the soft backbone. Thus, for an NRP instance,
two instance reductions are employed to reduce the scale of
the NRP instance, based on the approximate backbone and
the soft backbone, respectively.

In Fig. 4, we take the instance in Fig. 1 as an example to
illustrate the instance reductions. Given the approximate
backbone �a ¼ fð1; 1Þg, the three requirements, r1, r2, and r6,
requested by the customer s1 are selected by �a. Then, the
approximate backbone-based instance reduction is built and
the three requirements and the customer s1 are removed. For
the new instance, no requirement is requested by the
customer s2. Since s2 provides a profit without any cost of
requirements, the soft backbone of the new instance is
�s ¼ fð2; 1Þg. Based on �s, a soft backbone-based instance
reduction is built and the customer s2 can be removed after
this instance reduction. In summary, two customers and
three requirements are removed based on these two instance
reductions.

We present four differences between the approximate
backbone and the soft backbone in Table 3. First, from the
definition, the approximate backbone is the intersection of a
given number of local optimal solutions, while the soft
backbone is directly extracted from the instance. No local
search algorithm is needed for obtaining the soft backbone.
Second, based on the first difference, the soft backbone only
exists in the instance generated after an instance reduction.
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Fig. 4. An example of the approximate backbone and the soft backbone-
based instance reductions.



Since an original NRP instance does not include the
customers who request no requirements, the original
instance cannot provide any soft backbone. The soft backbone
is a byproduct of the instance reduction. In other words, the
instance reduction provides an application scenario for
the soft backbone. However, the approximate backbone can
be generated for all the instances which have feasible
solutions. Third, given a new instance after the instance
reduction, the approximate backbone is a kind of approxima-
tion of the backbone, while the soft backbone is a part of the
backbone of this new instance. Based on the definition, the
soft backbone can be added to any feasible solution to
improve the profit of this solution. Since the optimal solutions
have the maximum profit, each optimal solution of the given
instance must include the soft backbone. Fourth, only when a
customer is selected may this customer appear in the soft
backbone, while both selected customers and unselected
customers may appear in the approximate backbone.

4 BACKBONE-BASED MULTILEVEL ALGORITHM

To address the large scale NRP, we tend to reduce the scale
of the NRP instances by fixing the backbone in order to
solve the problem with the existing search-based algo-
rithms. First, we will show that the multilevel strategy can
be employed to iteratively reduce the instance scale. Then,
we will propose the framework of the BMA and illustrate
the process of the BMA with an example.

4.1 Multilevel Strategy

From Section 3.3, we can reduce the scale of an NRP
instance using two instance reductions, based on the
approximate backbone and the soft backbone, respectively.
However, for a large scale instance, the instance after two
instance reductions may be still hard to solve with the
existing algorithms. Thus, we consider using the multilevel
strategy to perform the instance reductions step by step.

A multilevel strategy is to convert the original problem
into multiple levels of subproblems, each of which is an
independent problem [60]. In combinatorial optimization, a
multilevel strategy includes two kernel phases, namely,
reduction (reducing the hardness of the problem) and
refinement (constructing the solution to the original pro-
blem) [60]. In our work, since a new generated instance after

one instance reduction can be viewed as a new NRP instance,
we use the multilevel strategy to iteratively reduce the scale
of an instance, i.e., the original NPR instance is handled with
multiple instance reductions and the final solution to the
instance is then constructed from the approximate backbones
and the soft backbones. In this paper, the approximate
backbone and the soft backbone-based instance reductions
are alternatively used. More specifically, given an instance,
we always conduct a soft backbone-based instance reduction
after an approximate backbone-based instance reduction.
We call these two instance reductions (based on the
approximate backbone and the soft backbone) a pair of
instance reductions for simplicity.

In Fig. 5, we present the experimental result of the
relationship between the pairs of instance reductions and
the scales of instances. The instances in Fig. 5 are the same
as those in Fig. 3, except for the instance nrp-1-0.5 (nrp-1-0.5
is omitted due to its small scale, 100). In this experiment,
each approximate backbone is calculated from five local
optimal solutions which are obtained by the classic
algorithm, SA (see Section 3.2 for details). For each instance,
12 pairs of instances reductions are sequentially used to
obtain new and small instances.

As shown in Fig. 5, although a single pair of instance
reductions can reduce the scales of instances, it is feasible to
employ further reductions when utilizing the multilevel
strategy. For example, in the instance nrp-3-0.5 with the
scale 500, the scales of two new instances after one pair of
instance reductions are 439 and 432, respectively. For all
four instances, less than 25 percent of the instance scales are
removed after one pair of instance reductions; the scales of
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TABLE 3
Differences between

the Approximate Backbone and the Soft Backbone

Fig. 5. The instance scales with 12 instance reductions for the
approximate backbone and the soft backbone. The scales of the four
instances are 500, 500, 750, and 1,000. The x-axis shows the pair of
instance reductions based on two kinds of backbones and the y-axis
shows the change of instance scales. There are two kinds of points in
each curve. A solid point denotes an instance reduction based on the
soft backbone while the other kind of point denotes an instance
reduction based on the approximate backbone.



new instances are still too large for the solving algorithm.

Rather than a single pair of instance reductions, multiple

pairs can sufficiently reduce the instance scale. The instance

scale gradually decreases while the number of instance

reductions increases. The curves in Fig. 5 indicate that

nearly all the instance reductions can reduce the scales of

instances. After 12 pairs of instance reductions, only less

than 15 percent of the scale for each instance is left, e.g., in

nrp-3-0.5, only 19 customers are left after these multiple

instance reductions. Moreover, Fig. 5 shows that 10 to

12 pairs of instance reductions can provide reasonable

shrinkage for the scale of each instance.

To show the ability of the multilevel strategy for the

instance reduction, we summarize the values of reduced

scales in Table 4. For each instance, apart from the original

instance scale, we show the scales reduced by all the

approximate backbones, the scales reduced by all the soft

backbones, and the sum of all the scales reduced by

instances reductions. For example, with 12 pairs of instance

reductions for nrp-3-0.5, 88.6 percent of the scale is reduced

by the approximate backbone, while 7.6 percent of the scale

is reduced by the soft backbone. For the four instances in

Table 4, the scale reduced by fixing the approximate

backbone is larger than that by fixing the soft backbone.

The scale reduced by fixing the soft backbone is between 7

and 33 percent, while the one by fixing the approximate

backbone is between 60 and 89 percent. Especially, in nrp-2-

0.5, the left scale is 0.4 percent , i.e., two customers. Nearly

the whole instance scale of nrp-2-0.5 is reduced in the

multiple instance reductions.

Based on the analysis above, we conclude that multiple

instance reductions can effectively reduce instance scales.

Both of the two kinds of backbones work well in the

instance reductions. The approximate backbone-based

instance reduction can reduce a large part of the instance

scale, while the soft backbone-based instance reduction

can enhance the reduction by the approximate backbone.

Thus, we employ this multilevel strategy to design our

algorithm, BMA.

4.2 Framework of BMA

In Algorithm 1, we present the details of our algorithm,

BMA. The framework of BMA contains three phases:

reduction, solving, and refinement.

Algorithm 1. Backbone-based Multilevel Algorithm
Input: instance �1, local search operator �,

maximum number � of levels,

minimum scale � of instances,

number � of local optimal solutions

Output: solution X1

Phase I. Reduction

1 for k ¼ 1 to � do

2 if j�kj > � then

3 obtain a set �k of � local optimal solutions by � to �k;

4 calculate �ak ¼ Approximate-Backboneð�k;�kÞ;
5 reduce instance, �0k ¼ Instance-Reductionð�k; �

a
kÞ;

6 calculate �sk ¼ Soft-Backboneð�0k; �Þ;
7 reduce instance, �kþ1 ¼ Instance-Reductionð�0k; �skÞ;
8 endif

9 endfor

10 count the actual number � of levels in Phase I;

Phase II. Solving

11 obtain a local optimal solution X�þ1 to ��þ1 by �;

Phase III. Refinement

12 for k ¼ � to 1 do

13 refine solution Xk ¼ Xkþ1 [ �ak [ �sk;
14 endfor

In the reduction phase, the algorithm reduces the scale of
an NRP instance by fixing the approximate backbone and the
soft backbone. The approximate backbone is generated as the
intersection of a certain number of local optimal solutions,
which are obtained by a specified local search operator; the
soft backbone is generated from an NRP instance after the
instance reduction. In the solving phase, the local search
operator in the reduction phase is employed to approxi-
mately solve the final small instance. In the refinement
phase, the algorithm combines the approximate backbone,
the soft backbone, and the current solution to the reduced
instance together to construct a solution to the original
instance. Either the reduction phase or the refinement phase
is an iterative procedure which reduces the instances or
extends the solutions using a multilevel strategy. The actual
number of levels in BMA depends on two input parameters,
namely, the maximum number of levels and the minimum
scale of instances. Moreover, the other input parameter of
BMA is the number of local optimal solutions in each level of
the reduction phase. This parameter constrains the scale and
the quality of the backbone. In Section 5.4.1, we will present
an experiment on this parameter, i.e., the number of local
optimal solutions.

In Fig. 6, we illustrate the process of BMA with the
instance presented in Fig. 3. For this instance, the algorithm
employs two-level reductions and refinements. In the first
level reduction (Fig. 6a), the local search operator obtains a
set �1 ¼ fX1

1 ; X
2
1 ; X

3
1g of three local optimal solutions to the

instance �1. Thus, the first-level approximate backbone is
�a1 ¼ fð1; 1Þ; ð4; 0Þg, i.e., the customer s1 is selected while the
customer s4 is not. Since the requirements for the customer
s1 are all satisfied in the release, all these requirements for
s1 can be reduced. By fixing the approximate backbone �a1 , a
new instance �01 with five customers and five requirements
is generated after the instance reduction. Then no require-
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ment is left for the customer s2. Thus, the soft backbone is

generated as �s1 ¼ fð2; 1Þg and the instance is further

reduced. Similarly, in the second-level reduction (Fig. 6b),

a set �2 ¼ fX1
2 ; X

2
2 ; X

3
2g of three local optimal solutions is

obtained for the instance �2 with four customers and five

requirements. Thus, the second-level approximate back-

bone is �a2 ¼ fð6; 1Þg. By fixing �a2 , a new instance �02 with

three customers and two requirements is generated. Then

no requirement is left for the customer s7. Thus, the soft

backbone is generated as �s2 ¼ fð7; 1Þg and a new instance

�3 is generated as well. For the local search operator, the

instance with two customers and two requirements is easy

to solve (Fig. 6c). The solution is X3 ¼ fð3; 1Þ; ð5; 0Þg. At last,

under the inverted sequence of reductions, the algorithm

combines the current solution, the approximate backbones,

and the soft backbones together to construct the solution

for each level (Fig. 6d). The final solution X1 to the original

instance �1 is formed within two-level reductions and

refinements.

5 EXPERIMENTS AND RESULTS

For approximate algorithms, experimentation is a common
way to evaluate the performance of algorithms. In this
section, we evaluate our algorithm on 39 NRP instances. We
first give the research questions in our experiments; then, we
describe the instance generation rules of the classic NRP
instances; next, we present the new instance generation
method by mining open bug repositories; finally, we answer
the research questions based on the experimental results.

5.1 Research Questions in the Experiments

We experimentally evaluate the performance of BMA for
the NRP. For all the experiments in this paper, the
algorithms are implemented with C++ and run on a PC
with Intel Core 2.53 GHz processor and uBuntu OS (Linux
kernel 2.6). We design the experiments to answer the
following Research Questions (RQs):

RQ1: Parameter configuration for BMA. In the frame-
work of BMA, each approximate backbone is generated
based on a given number of local optimal solutions. The
scale and the quality of the backbone (the combination of
the approximate backbone and the soft backbone) may
depend on the number of local optimal solutions, which is
set manually for BMA. How does the number of local
optimal solutions in BMA affect the backbone?

RQ2: Performance evaluation. In requirements engi-
neering, some existing algorithms have been proposed to
solve the NRP. We want to compare the solution quality of
BMA with other algorithms. Can BMA perform well on the
large scale NRP instances?

In Sections 5.2 and 5.3, we will give the details of the NPR
instances in our experiments. The NRP instances in this
paper can be found in http://oscar-lab.org/people/~jxuan/
page/project/nrp/.

5.2 Classic NRP Instance Generation

As requirements are usually private data of software
companies, no open large NRP instances can be found in
the literature. In this paper, we evaluate our algorithm on
two sets of the NRP instances. One set includes 15 instances
generated under certain constraints based on the classic
literature of the NRP experiments [4]; the other set includes
24 realistic instances mined from open bug repositories of
three open source software projects.

The classic set of the NRP instances consists of five groups
and each group includes three instances. In each group,
instances have distinct budget bounds, each of which equals
to the cost ratio (0.3, 0.5, or 0.7, respectively) multiplied by the
sum of all the costs. Table 5 shows the details of the five
groups of instances. According to Bagnall et al. [4], these
instances are based on Definition 1. Taken the group nrp-1 as
an example, all the requirements are classified into three
levels separated by the symbol “/”. A requirement in the
second level may depend on some requirements in the first
level while a requirement in the third level may depend on
some requirements in the first and second levels. An instance
name is formed by the group name and the cost ratio. For
example, nrp-1-0.3 is an instance in the group nrp-1 and the
cost ratio is 0.3. The details of the instance nrp-1-0.3 are as
follows: There are three levels of requirements, 20, 40, and
80 requirements in each level. The costs of requirements in the
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three levels are from 1 to 5, from 2 to 8, and from 5 to 10,
respectively. A requirement in the first level has at most eight
child requirements. Similarly, a requirement in the second
level has at most two child requirements. There are
100 customers, each of who requests 1 to 5 requirements. In
addition, each customer provides a profit between 10 and 50.

5.3 Mining Realistic NRP Instances

Besides the classic instances, we extract a set of NRP
instances from open source bug repositories. To face the
lack of large scale open requirements repositories, the
requirements data can be mined from other databases. To
our knowledge, only one requirements repository is mined
for experiments, i.e., the requirements database mined from
an open source forum project by Duan et al. [14]. In their
paper, requests or problems in the forum project are mapped
to the requests in a requirements repository to evaluate their
requirements prioritization and triage approach.

In our work, to build large NRP instances, we mine the
NRP instances from bug repositories (also called bug tracking
systems, e.g., a popular bug repository, Bugzilla [7]). A bug
repository is a database for the storage of numerous bug
reports, each of which is submitted by a user (maybe a
developer, a tester, or an end user) for recording the details of
suggestions or problems. One bug report may be commented
by one or more users; meanwhile, one user may make
comments on one or more bug reports. The user comments on
the bug reports provide a similar scenario for the require-
ments requests in requirements repositories. For example, if
two users make comments on three bug reports in a bug
repository, we can extract a software release in which two
customers request three requirements in the requirements
analysis. Thus in our experiments, a bug report and a user in
bug repositories are mapped to a requirement and a
customer in the NRP, respectively. In addition, a user
comment on a bug report is mapped to a requirement
request; the severity of a bug report is mapped to the cost of a
requirement. Similarly to the classic set of NRP instances, the
profit of a customer is randomly generated within a certain
range. We present the corresponding relationship between
bug repositories and the NRP in Table 6.

To mine the NRP instances, we employ the bug reposi-
tories in three open source software projects, namely, Eclipse
(a Java integrated development environment) [15], Mozilla (a
set of web applications) [47], and Gnome (a desktop project)
[19]. The XML form of these bug repositories can be found in
Mining Challenges 2007 and 2009 of the IEEE Working

Conference on Mining Software Repositories (MSR) [46]. To
generate various instances, we set different parameters for
bug repositories. In each group of instances, first we select
10,000 continuous bug reports from a bug repository. The
time period of the selected bug reports is around the software
release time since the bug reports in this period are usually
active [2]. Then, we filter out the bug reports and users (i.e.,
the requirements and customers in Table 6) out of a specified
range by limiting the number of user comments (i.e., the
requests in Table 6). As a result, the characteristics of a group
can be generated. In Table 7, we show the details of 12 groups
of instances extracted for experiments. The form of instances
is based on Definition 2. Each group of instances consists of
two instances, with the cost ratio 0.3 or 0.5, respectively.
Therefore, the budget bound of each instance equals to the
value of the sum of costs multiplied by the cost ratio. Thus,
24 realistic instances are mined for the following experiments.

5.4 Answers to Research Questions

In this section, we will answer the research questions
proposed in Section 5.1. We evaluate our algorithm BMA on
the 39 NRP instances mentioned in Sections 5.2 and 5.3.

5.4.1 Answer to RQ1: Parameter Configuration for BMA

For the three input parameters of BMA, including the
maximum number � of levels, the minimum scale � of
instances, and the number � of local optimal solutions, the
parameters � and � can be viewed as the termination
conditions of BMA. However, the parameter � is a key
value to decide the scale of the backbone. We experimen-
tally evaluate the relationship among the number of local
optimal solutions, the scale of the backbone, and the quality
of the backbone.

In the framework of BMA, any algorithm can be
embedded as a local search operator �. To compare the
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experimental results, we employ the existing best local
search algorithm, SA, to obtain local optimal solutions [7].
The solid empirical results and simplicity of SA have led to
a wide range of applications in combinatorial optimization.
In the experiments in this paper, we set the parameters for
SA according to [4], i.e., the starting temperature is set to
100 and the nonlinear ratio is set to 10�7.

In Fig. 7, we present the experimental results to visualize
the relationship among the parameter �, the scale of the
backbone, and the quality of the backbone. To simplify the
visualization, the backbone in Fig. 7 is a combined backbone
(see Fig. 2), which is the combination of the approximate
backbones and the soft backbones in all the levels of BMA.
For a �-level BMA, given the approximate backbone �ak and
the soft backbone �sk in the kth level, we define the combined
backbone as �c ¼ [1�k��ð�ak [ �skÞ.

We evaluate the scale and the quality of the combined
backbone with two criteria, namely, the ratio of the
combined backbone scale and the ratio of optimal custo-
mers in the combined backbone. Given an NRP instance
with the scale n, the ratio of the combined backbone scale in
the original instance is j�

cj
n ; given the best known solution

X�, the ratio of optimal customers in the combined
backbone is j�

c\X�j
j�cj . In this experiment, we set � ¼ 10 and

� ¼ 20. Each point is calculated as an average of the results
from 10 independent runs.

In Fig. 7, the scale of the combined backbone decreases and
the ratio of optimal customers increases while the number of
local optimal solutions increases. Four of the curves in this
experiment present the same trend when varying the number
of local optimal solutions. The curve of the instance nrp-1-0.5
does not correspond with the curves of other instances since
nrp-1-0.5 is a small instance, which is much easier to solve
than the other four instances. Based on each value of �,
the instance scale of nrp-1-0.5 can be easily reduced. For all
five instances, when each approximate backbone in a level is
generated by two local optimal solutions, the scale of the
combined backbone is nearly the same as the instance scale
and the number of optimal customers is less than 0.8 of
the scale of the combined backbone; on the other hand, when
each approximate backbone is generated by 10 local optimal
solutions, the scale of the combined backbone is less than 0.4
of the instance scale for four out of five instances and the
number of optimal customers is more than 0.9 of the scale of
the combined backbone for all the five instances. From Fig. 7,
we consider that four to six local optimal solutions for each
approximate backbone is a good choice for the tradeoff
between the scale of the combined backbone and the number
of optimal customers.

Based on this part, the answer to RQ1 is that the value of
the input parameter �, i.e., the number of local optimal
solutions, can affect the scale and the quality of the backbone
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of BMA. The large scale backbone and the high-quality

backbone cannot be obtained simultaneously while tuning

the value of �. Thus, for the following experiments, we choose

a tradeoff value 5 for �, which can balance the scale of the

combined backbone and the number of optimal customers

obtained by the BMA. For other parameters � and � in BMA,

we choose parameter values as follows: In Fig. 5, we have

studied the influence of the change of instance scales by

tuning the pair of instance reductions. We set � ¼ 10 since

over 10 pairs of instance reductions may significantly reduce

the instance scale. For the parameter of the minimum scale of

an instance, we manually set� ¼ 20 since an instance with the

scale less than 20 could be easy to solve [13].

5.4.2 Answer to RQ2: Performance Evaluation

To evaluate the performance of BMA, we employ two direct

solving algorithms for comparison. One algorithm is a

Multistart Strategy-based SA (MSSA) [39]. In MSSA, the

existing best local search algorithm, SA [4], [5] is run

independently multiple times and the best solution among

these runs is chosen as the final solution [45]. The other

algorithm is Genetic Algorithm (GA), which is a bioinspired

and population-based technology for complex problems,

also for the NRP [69], [13]. Among many variants of GA, we

choose the implementation described in [13]. This imple-

mentation uses an elitism-based selection strategy to

construct the population and updates new population with

crossover and mutation operators.
We show the experimental results for the comparison

among MSSA, GA, and BMA on the NRP instances. SA is

employed as a local search operator in both MSSA and

BMA; the input parameters of SA are the same as those in

Section 5.4.1. We set the parameters of MSSA and BMA as

follows: In MSSA, we repeat SA for 30 times and choose the

best solution; in BMA, we set the parameters according to
Section 5.4.1, i.e., � ¼ 10, � ¼ 20, and � ¼ 5.

To our knowledge, there is no prior parameter value of
GA for the large scale NRP. Thus, we tune the parameters
for GA. To this end, we configure the parameters for GA
with an open access tuning tool, ParamILS [26], which
employs an offline local search framework for automatically
tuning parameters. In ParamILS, we set the training set as
three instances nrp-1-0.5, nrp-3-0.5, and nrp-5-0.5; we set
the test set as the two instances nrp-2-0.5 and nrp-4-0.5. The
cutoff time of ParamILS is set to 5,000 seconds. After the
parameter tuning by ParamILS, the values obtained are 100
for the population size, 0.3 for the elitism selection ratio, 0.3
for the crossover ratio, and 0.1 for the mutation ratio. Based
on the parameters for GA, we set the maximum number of
iterations to 105. We choose such a value for the number of
iterations to sufficiently show the solution quality of GA
and to balance the running time of three algorithms.

We independently run each of the three algorithms

(MSSA, GA, and BMA) 10 times. The results are collected to

measure the performance and to plot the profit distribu-

tions. In Tables 8 and 9, we show the experimental results of

MSSA, GA, and BMA on two sets of NRP instances. Each

table has five columns, including the details of instances,

the results of MSSA, the results of GA, the results of BMA,

and the profit distributions. In the first column, the

subcolumns are the instance name and the budget bound.

The following three columns include subcolumns for the

best profit, the average profit, and the average running

time. For BMA, the subcolumn “MSSA%” and “GA%”

present the rate of average profit in percentage to measure

the advantage by BMA against that by MSSA and GA. For

example, “MSSA%” is calculated as !BMA�!MSSA

!MSSA
, where !BMA

and !MSSA are the average profits obtained by BMA and
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MSSA, respectively. The average profit is used to measure

the quality, while the best profit is listed as a reference.

Since each of the three algorithms is run 10 times, we show

the profit distributions of solutions with box plots [41] for

all the algorithms in the last column. In a box plot, we

measure the stability of solutions with the range between

the first quartile and the third quartile. To normalize profits

of distinct instances, the point in box plots is calculated as
!ðXÞ�!ðXÞ

!ðXÞ
, where !ðXÞ is the profit obtained by the solution

X and !ðXÞ is the average profit of all the solutions by an

algorithm. Thus, the 0 percent point shows that the profit

equals to the average. Note that based on the normalized

profit distributions, each profit distribution shows the

distribution for only one algorithm on one instance, while

no comparison is conducted for the absolute values of

profits among MSSA, GA, and BMA.
In Table 8 for the classic instances, BMA obtains better

solutions within less running time than MSSA and GA on
most of the instances. Based on the subcolumn “MSSA%,”
the average profits obtained by BMA are 2 percent to
51 percent better than those by MSSA on all the instances.
Note that on only two instances are the average profits by
BMA less than 10 percent better than those by MSSA,

namely, nrp-3-0.7 and nrp-5-0.7. The reason for this result is
that the large cost ratio 0.7 makes it easy for MSSA to solve
these instances, i.e., the predefined cost is adequate for
making the decision. Thus, on these three instances, BMA
can do only a little better than MSSA. On the other hand,
based on the subcolumn “GA%,” the average profits by BMA
are 0 to 68 percent better than those by GA on all but one
instance. The exception instance is nrp-1-0.5, on which GA
can obtain better solutions than BMA. Moreover, on the other
two instances in the group nrp-1 (with scale 100), the profits
obtained by BMA are very similar to the profits by GA. That
is, GA can work well on small scale instances. Among the
rates in “MSSA%” and “GA%,” both the rates less than
1 percent and the rates more than 60 percent are provided by
“GA%.” As a result, we can find that the solutions of GA are
in a wider range than those of MSSA. From the profit
distributions of MSSA, GA, and BMA, the average profits on
most of the instances are surrounded by the ranges of the
profits. Moreover, among the last nine instances (the last
three groups) in Table 8, BMA can provide the most stable
solution distributions for six instances (i.e., in box plots, for
each of these six instances, the distance between the first
quartile and the third quartile is short). In summary, the
results in Table 8 show that the backbone-based instance
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reduction makes BMA obtain good solutions for the large
scale NRP.

In Table 9 for the realistic instances, the experimental
results are basically similar to those in Table 8. The BMA
can obtain the best solutions on all the instances. The
average profits obtained by BMA are 19 to 35 percent better
than those by MSSA on all the instances, while the average
profits obtained by BMA are 5 to 21 percent better than
those by GA on all the instances. GA can beat MSSA on all
these instances. From the subcolumn “GA%,” the rates on
the instances extracted from Gnome (the instance names
starting with “nrp-g”) are smaller than the instances from
Eclipse and Mozilla. In other words, the advantage of BMA
is inconspicuous for the instances extracted from Gnome. A
reason for this fact is that Gnome provides the simplest
instances in our experiments, the instance scales of which
are less than 500 (see Table 7 for the instance scales). On the
contrary, for the large scale instances extracted from
Mozilla, BMA can obtain much better profits than MSSA
and GA. On the instances in Table 9, the profit distributions
are also stable. On 10 instances among all the 24 realistic
instances, the results obtained by BMA are the most stable
in the three algorithms. From the subcolumns “MSSA%”
and “GA%” in both Tables 8 and 9, in general, the rate of
profits decreases while the cost ratio increases for the
instances in each group (i.e., from 0.3 to 0.7 for the classic
instances or from 0.3 to 0.5 for the realistic instances). Thus,
BMA can obtain much better solutions on most of the
instances, which are with small cost ratios.

Based on this part, the answer to RQ2 is that the BMA
can obtain better solutions than the typical algorithms
MSSA and GA on the large scale NRP instances. Moreover,
the profit distributions provided by BMA are stable for
most of the instances.

In conclusion, the results of the experiments in this
section show that BMA can obtain better profits than MSSA
and GA within similar time on the large scale NRP
instances. From the perspective of algorithm design, the
approximate backbone leads to the fast solving for BMA,
the soft backbone is helpful in constructing the near-optimal
solutions to the problem instances, and the multilevel
reductions and refinements provide a framework to use the
existing algorithms. Based on these characteristics, BMA
outperforms the typical algorithms, MSSA and GA, on most
of the NRP instances.

6 THREATS TO VALIDITY

Our approach is a search-based technology to solve the
NRP in requirements engineering. There are three potential
threats to validity for our work.

6.1 Problem Definition

In this paper, only one kind of requirements dependency is
given to the NRP model following the existing definitions
[4], [5], [31]. However, there are some other kinds of
dependencies in requirements engineering. For example,
Carlshamre et al. [8] list six kinds of requirements
dependencies and the dependency in our work can be
viewed as a “REQUIRES” dependency in their approach;
Zhang et al. [65] explore four kinds of requirements

dependencies to facilitate the requirements reuse and
software design.

Since the requirements dependencies in the NRP are
formed as input parameters, it is straightforward to add
other kinds of requirements dependencies to the model of
the NRP. Based on the definition of the Simplified NRP, the
model aims to handle the requirements requested by
customers. As a result, the dependencies can be formed to
the requirements requested by each customer. Therefore,
our algorithm, BMA, can be extended to solve the NRP with
various requirements dependencies.

6.2 Algorithm Construction

In this paper, we use the approximate backbone and the soft
backbone to replace the backbone to construct our algo-
rithm. The basic principle for using the approximate
backbone is based on an empirical study, the fitness
landscape analysis. However, it is not exact when applying
the fitness landscape analysis for the relationship between
the backbones and the approximate backbones. A theore-
tical analysis can provide much knowledge to the applica-
tion of the approximate backbone. To our knowledge, the
fitness landscape analysis is a useful empirical technology
for approximately exploring the relationship between
solutions [44], [35], [54]. This approximation between local
optimal solutions and the optimal solutions can be viewed
as a tradeoff between theory and algorithm performance.

In the fitness landscape analysis, we use the best known
solutions to replace the optimal solutions. This replacement
may bring some perturbation to the analysis results. Since
the optimal solutions to large scale instances are always
hard to find within polynomial time, we follow the existing
approaches to choose the most similar substitutions, i.e., the
best known solutions [44], [54].

The soft backbone, another approximation of the back-
bone in our work, is also experimentally evaluated.
Experimental results on four classic instances (in Fig. 5)
have indicated the necessity of the soft backbone. However,
an exact theoretical analysis is much better to quantify the
power of the soft backbone, e.g., how to analyze the scale of
the soft backbone for a given NRP instance. For both the
approximate backbone and the soft backbone, a deep
theoretical analysis may provide a further guideline for
the design of backbone-based algorithms.

6.3 Instance Bias

In the experimental results, we evaluate our algorithm on
two sets of the NRP instances, namely, a set generated
under given constraints and a set extracted from bug
repositories. However, both of these two sets of instances
may bring threats to the validity of our experimental
results. On one hand, the classic generated NRP instances
are a series of controllable randomized instances. Com-
pared with real requirements repositories, these generated
instances could provide extra stochastic distributions for the
requirements data. On the other hand, the new extracted
instances are much more realistic since the items in bug
repositories can be viewed as a kind of requirements
information. However, the knowledge gap between bug
repositories and requirements repositories may lead to a
bias for the evaluation results. To avoid the bias between
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our instances and real requirements data, the best method is
to build open large requirements repositories in the future.

7 RELATED WORK

To our knowledge, this paper is the first work using
backbone-based algorithms to solve requirements engineer-
ing problems. In this section, we investigate the related
work of this paper.

7.1 The NRP and Requirements Selection

To balance customer profits and requirements costs, Bagnall
et al. [4] first proposed the NRP in 2001. In this work, they
model the NRP, provide the instance generation rules, and
apply numerous search-based algorithms to approximately
solve the NRP. The most relevant problem of the NRP is the
process of Release Planning (RP) [21], which addresses
selecting optimal releases to satisfy software requirements
constraints [56] or release time [62], [40]. Both the NRP and
the RP aim to find an optimal decision for requirements
selection, especially dependency constraints-based require-
ments selection. The NRP tends to address customer profits
for the coming release, while the RP tends to directly assign
requirements for multiple releases. A recent review of the
RP by Svahnberg et al. [59] lists and compares the related
work of the RP.

Based on the number of problem objectives, the related
work of the NRP can be divided into two categories,
namely single-objective and multi-objective. In the single-
objective NRP (or the NRP for short), such as the problem
in this paper, the cost bound of a software release is
predefined and the problem objective is to obtain the
maximum profits from customers. For example, Greer and
Ruhe [21] propose a genetic algorithm-based approach to
optimize software releases; Jiang et al. [31] propose an ant
colony optimization algorithm to solve the NRP; Baker et al.
[5] extend the NRP with component prioritization and solve
this problem with the greedy algorithm and the simulated
annealing. Moreover, for the resource allocation for soft-
ware releases, Ngo-The and Ruhe [50] propose a two-phase
optimization by combining integer programming to relax
the search space and genetic programming to reduce the
search space. In this paper, we address the large scale
single-objective NRP. Our approach is to downgrade the
problem scale, in contrast to the existing algorithms, which
solve the problems directly.

In the Multi-Objective NRP (MONRP), besides the profit,
another objective is usually defined to minimize software
costs. Zhang et al. [69] first proposed the MONRP and gave
an empirical study with the genetic algorithm-based multi-
objective optimization algorithms in 2007. Many extensions
of the MONRP are studied to balance the benefits and
resources, including fairness [17], sensitivity [25], and
robustness with completion time [22]. Moreover, Saliu and
Ruhe [57] detect feature coupling from both business
perspectives and implementation perspectives; Zhang et al.
[66] model two periods of profits to analyze the requirements
under varying time. A recent work by Zhang and Harman
[68] shows that the dependencies in requirements interaction
management can be formulated as an extension of the
MONRP.

The NRP is a combinatorial optimization model for
requirements selection. Requirements selection and optimi-
zation have impacted numerous aspects of requirements
engineering, including requirements management [55], [48],
[49], requirements prioritization [32], [3], requirements
triage [12], [14], and requirements visualization [16]. In
addition, for further research in requirements selection,
some worka investigate requirements interdependencies to
explore the relationship and conflicts between requirements
[8], [65], [20], [68].

7.2 Search-Based Requirements Engineering

By fixing the optimal requirements for the next release, our
work is a kind of Search-Based Software Engineering (SBSE)
approach for requirements engineering. In SBSE, software
engineering problems are transformed into optimization
problems for approximately solving with search technolo-
gies [24], [23]. One typical field of SBSE is search-based
software testing (e.g., [42], [36], [1], [43]). Some other fields of
SBSE include design (e.g., [6], [53], [61]), quality (e.g., [37]),
refactoring (e.g., [51]), reverse engineering (e.g., [34]), etc.

Among the fields of SBSE, Search-Based Requirements
Engineering (SBRE) aims to manage requirements with
search technologies [24]. Most of work about the NRP and
its relevant problems is the typical application of SBRE. A
survey of SBRE shows the existing work and challenges in
this field [67]. In our work, the backbone-based algorithm is
introduced to SBRE for the first time.

7.3 Backbone and Its Application

The backbone, a basic structure for reductions and refine-
ments in our work, is a solving strategy for exploring the
hard problems in combinatorial optimization [58], [64], [33],
[30]. To our knowledge, besides our work, there is only one
concept similar to the approximate backbone for search
technologies in software engineering. That is, Mahdavi et al.
[38] propose a building block-based multiple hill climbing
approach for the software module clustering problem. From
the viewpoint of combinatorial optimization, a building
block in [38] is also an intersection of local optimal solutions
as the approximate backbone. However, in our work, the
concept of the soft backbone is first proposed in both
software engineering and combinatorial optimization. The
soft backbone and the multilevel strategy are combined
with the approximate backbone to solve large scale search
based problems.

Besides the backbone, the muscle and the fat in
combinatorial optimization are two other effective technol-
ogies for constructing the solutions. The muscle of an
instance is the union set of optimal solutions [29], [27],
while the fat of an instance is the part without any optimal
solution [11]. Drawn on the experiments from the existing
work in combinatorial optimization, each of the backbone,
the muscle, and the fat can be employed to further guide the
algorithm design for problems in requirements engineering.

7.4 Large Scale Optimization

The multilevel approach is a kind of large scale optimiza-
tion technology [60]. As we mentioned in Section 4.1, the
key idea of the multilevel approach is to iteratively convert
the original problem into multiple subproblems so that the
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algorithm can downgrade the problem scale to apply
existing algorithms. In this paper, our BMA is a multilevel
approach for reducing the problem scale in requirements
engineering.

Besides the multilevel approach, the cooperative co-
evolution approach is one of the recently proposed technol-
ogies for large scale optimization [63], [52]. In contrast to the
iterative reduction in the multilevel approach, the coopera-
tive co-evolution approach employs the divide-and-conquer
strategy to find the optimal solutions.

8 CONCLUSIONS AND FUTURE WORK

As an important problem in requirements engineering, the
Next Release Problem aims to balance customer profits and
requirements costs for the project decision. In this paper, we
propose a Backbone-based Multilevel Algorithm to solve
the large scale NRP. Based on the approximate backbone and
the soft backbone, BMA iteratively reduces the instance
scales and refines the solutions to construct the final solution.
Experimental results show that BMA can achieve better
performance than direct solving approaches. In our work, we
propose the soft backbone, which can be generated from the
instance after the instance reduction, for the first time.
Moreover, we also propose a method to generate require-
ments data from open bug repositories. This method can be
used to supplement the lack of open requirements databases.

Our future work will focus on the application of BMA to
other problems in software engineering. In requirements
engineering, BMA can be used to solve many other large
scale problems, such as release planning and requirements
prioritization. The backbone-based multilevel strategy can
build a bridge between large scale problems and existing
algorithms. We will explore some new problems, which
may be solved by the similar strategy of BMA. In addition,
we plan to develop BMA with a theoretical analysis, e.g.,
how to estimate the scale of the backbone without empirical
methods. Apart from applications in requirements engi-
neering, we want to apply the BMA to the regression test
case selection problem in software testing. The model of the
regression test case selection problem is very similar to the
NRP. Thus, the application of BMA can be extended to
various fields in software engineering.

Another further work is to explore the relationship
between open bug repositories and requirements reposi-
tories. In this paper, we map items in the NRP to ones in
open bug repositories. However, the domain knowledge
behind these two kinds of repositories may bring a gap to
the application from one repository to the other. We will
conduct an empirical study to find out the details of this
knowledge gap.
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