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Abstract. Recent years have witnessed the sharp growth of research interests in
Search Based Software Engineering (SBSE) from the society of Software
Engineering (SE). In SBSE, a SE task is generally transferred into a combina-
torial optimization problem and search algorithms are employed to achieve
solutions within its search space. Since the terrain of the search space is rugged
with numerous local optima, it remains a great challenge for search algorithms
to achieve high-quality solutions in SBSE. In this paper, we propose a new
paradigm of SBSE, namely Transformed Search Based Software Engineering
(TSBSE). Given a new SE task, TSBSE first transforms its search space into
either a reduced one or a series of gradually smoothed spaces, then employ
search algorithms to effectively seek high-quality solutions. More specifically,
we investigate two techniques for TSBSE, namely search space reduction and
search space smoothing. We demonstrate the effectiveness of these new tech-
niques over a typical SE task, namely the Next Release Problem (NRP). The
work of this paper provides a new way for tackling SE tasks in SBSE.

Keywords: Search based software engineering � Search space transformation �
Search space reduction � Search space smoothing � Next release problem

1 Introduction

Since Harman and Jones proposed the conception of Search Based Software Engi-
neering (SBSE) in 2001 [1], SBSE has attracted a great amount of research interests
from the society of Software Engineering (SE). As shown in the SBSE repository1, up
to Feb. 3, 2015, 1389 relevant research papers involving over 659 authors around the
world have been published.

As stated in [1, 2], a SE task in SBSE is firstly transferred into an optimization
problem for solving and then various search algorithms are employed to seek solutions
within its search space, a high-dimensional rugged space consisting of points (solutions).
Some typical search algorithms include Evolutionary Algorithms (EA, e.g., Genetic
Algorithms, Genetic Programming, and Memetic Algorithms), Ant Colony Algorithms
(ACO), Tabu Search (TS), Simulated Annealing (SA), Particle Swarm Optimization
(PSO), Hill Climb (HC), etc. Up to now, SBSE has covered most SE tasks across all the

1 SBSE repository: http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/.
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stages of the software lifecycle, including requirement/specification, design, verification,
testing/debugging, maintenance, and software project management (see Fig. 1).

Since the search spaces in SBSE are usually rugged with numerous local optima,
search algorithms are apt to get trapped into poor local optima. In this paper, we
propose a new paradigm of SBSE named Transformed Search Based Software Engi-
neering (TSBSE) to tackle this challenge. In TSBSE, the search spaces are transformed
so as to either constrain search algorithms within promising regions or provide better
initial solutions for search algorithms. More specifically, we present two techniques for
search space transformation, namely search space reduction and search space
smoothing. Taking the Next Release Problem (NRP) as a case study, we investigate
how to resolve SE tasks within TSBSE.

The remainder of this paper is structured as follows. In Sect. 2, we present the new
SBSE paradigm TSBSE. Then in Sect. 3 we present the related work of the NRP. In
Sects. 4 and 5, we present the detailed technique of search space smoothing over NRP
and the experimental results, respectively. In Sect. 6, we discuss the threats to validity.
Finally, we conclude this paper and discuss the future work in Sect. 7.

2 Transformed Search Based Software Engineering

In this section, we introduce the new paradigm of SBSE, namely Transformed Search
Based Software Engineering (TSBSE). A key challenge lying in SBSE is that search
algorithms in SBSE may easily get trapped into poor local optima, due to the rugged
terrain of search spaces with numerous local optima. Therefore, TSBSE aims to tackle
the above challenge by transforming the search spaces. As shown in Fig. 2, given a SE
task, TSBSE firstly transfers it into a combinatorial optimization problem. Then,
TSBSE transforms the related search space to facilitate the process of searching
solutions. More specifically, two techniques are available for search space transfor-
mation, namely search space reduction and search space smoothing. Third, search
algorithms, e.g., EA, ACO, TS, SA, PSO, are employed to search within the trans-
formed search space. In the following part, we illustrate more details of search space
reduction and search space smoothing.

1.Problem Transfer

3. Apply Result

2.Search within 
Search Space

Fig. 1. Roadmap of SBSE
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Search Space Reduction. In SBSE, a search space may consist of numerous local
optima and, search algorithms are apt to get trapped into poor local optima. The basic
idea of search space reduction in TSBSE is to constrain search algorithms in a reduced
search space consisting of high-quality solutions. In such a way, search algorithms
could better find high-quality solutions within reasonable running time.

Some related studies [3, 4] in the literature can be viewed as the applications related
to search space reduction. For example, in [3], Xuan et al. proposed a backbone based
multilevel algorithm to solve NRP. They constrain a shared common part of optimal
solutions and reduce the search space into smaller ones. Then, they employ Simulated
Annealing to iteratively search for high-quality solutions.

In Fig. 3, we present the pseudo code of the search space reduction. First, in each
reduction level, the search algorithm is applied on the current reduced search space to
produce a set of high quality solutions Ck

0. Then, the search space is reduced according
to the solutions Ck

0, e.g., by fixing the common parts of the solutions (lines 2–6 of
Algorithm 1). Second, after the search space reduction phase, the search algorithm is
applied on the final reduced search space, to obtain a local optimum Cdþ1

0 (line 7 of
Algorithm 1). Third, the local optimum Cdþ1

0 is transferred gradually back to the
feasible solution to the original search space (lines 8–10 of Algorithm 1). During the
refinement procedure, the best solution achieved so far is recorded. After the refinement
phase, the best solution is returned (line 11 of Algorithm 1).

2. Search Space Transformation

1.Problem Transfer

4. Apply Result

2.1Search Space Reduction 2.2 Search Space 
Smoothing

3. Search within 
Search Spaces

Fig. 2. Roadmap of TSBSE
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Search Space Smoothing. In SBSE, the terrain of a search space is usually rugged
with many poor local optima. Hence, the solutions of search algorithms may heavily
depend on the initial solutions fed into search algorithms. For example, Hill Climbing
may easily get trapped into a poor local optimum, if it is initialized with a random
solution. The idea of search space smoothing is to transform a search space into a series
of gradually smoothed ones. In the most smoothed search space, search algorithms are
apt to achieve high-quality solutions. Then, the resulting solutions are fed into the
second smoothed search space as its initial solutions. Since the terrains of the two
search spaces are similar in shape, these initial solutions could lead search algorithms to
better hit new high-quality solutions. In such a way, we eventually return to the original
search space and achieve the final solutions.

Figure 4 presents the process of search space smoothing over a one-dimensional
search space. The original search space is smoothed into two smoothed search spaces.
First, a solution is initialized in the most smoothed search space (smoothed search

Algorithm 1: Search Space Reduction
Input: search space , search algorithms , maximum number of reduc-
tion levels, a set of solutions
Output: best solution

1 begin
2 for k = 1 to do
3 Obtain a set of solutions by in 
4 Calculate high quality part of
5 Reduce the search space to by 
6 end
7 Obtain a local optimum in the reduced search space by 
8 for k = to do
9 Refine the solution with and in level k

10 end
11 return the best solution achieved
12 end

Fig. 3. Pseudo Code of Search Space Reduction

Fig. 4. Illustration of search space smoothing over one-dimensional search space
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space II) and a local optimum b is achieved. Then, the solution b is used as the initial
solution in smoothed search space I, and a local optimum c can be achieved. Finally,
the solution c is used as the initial solution in the original search space and the final
solution d is eventually returned.

In Fig. 5, we present the pseudo code of the search space smoothing. First, we
generate a smoothed search space

Q
0, in which the initial solutions C0 is generated

(lines 1–2 of Algorithm 2). Then, the search is conducted over a series of search spaces,
which are transferred gradually back towards the original, rugged search space (lines 3–
7 of Algorithm 2). More specifically, at each iteration, the search space is firstly tuned,
and the best solutions up to the previous iteration is regarded as the initial solutions. The
algorithm is then applied on the current tuned search space with these initial solutions to
obtain the current best solutions. Finally, after the search space is transferred to the
original search space, the best solution in the original search space is returned (line 8 in
Algorithm 2).

Some early studies [5] in the literature demonstrate that combinatorial optimization
problems could be better solved by search space smoothing. However, as to our
knowledge, no related work has been done in SBSE. Since for most tasks in SBSE, it is
still a challenge on how to prevent search algorithms from getting trapped into poor
local optima. We believe that search space smoothing is a promising technique to solve
the above problem and may significantly improve the effectiveness of search algo-
rithms in SBSE.

3 Related Work

3.1 The Next Release Problem

Bagnall et al. [6] first proposed the Next Release Problem (NRP) to balance the profits of
customers and the developing costs of requirements in the next release of software

Algorithm 2: Search Space Smoothing
Input: search space , search algorithms , maximum number of smooth-
ing levels, a set of solutions
Output: best solution

1 begin
2 Generate a smoothed search space 
2 Generate initial solutions in 
3 for k = 1 to do
4 Tune the search space to , towards the original, rugged space.
5 Assign the current best solutions as the initial solution
6 Apply with in to get the current best solutions 
7 end
8 return the best solution achieved
9 end

Fig. 5. Pseudo Code of search space smoothing
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systems. Besides customer profits, a variety of problem objectives have been proposed in
literature, such as component prioritization [7], fairness [8], etc. According to the number
of problem objectives, we can classify the NRP into two categories, namely
single-objective NRP (or the NRP for short) and multi-objective NRP (or MONRP for
short).

For the category of single-objective NRP, Bagnall et al. [6] apply numerous
search-based algorithms, including greedy algorithms, local search, etc., on five ran-
domly generated instances to solve the NRP. In this work, they model the problem as
searching for the maximum profits from customers within a predefined cost bound of a
software system. The problem can be formalized as follows [6]:

Maximize
X

i�S
wi subject to cost [i2SR̂i

� ��B;B� Zþ ð1Þ

where S is a set of customers, R̂ is a set of requirements, wi is the importance of the ith
customer, and cost [i2SR̂i

� �
means the cost of satisfying all the requirements R̂ of the

ith customer. The cost should be within some bounds B.
Following the problem definition, Greer and Ruhe [9] propose a genetic

algorithm-based approach to iteratively generate the final decision of the NRP. Jiang
et al. [10] propose an ant colony optimization algorithm with a local search operator
(first found hill climbing) to approximately solve the NRP. A backbone-based multi-
level algorithm is proposed in [3]. In this paper, Xuan et al. iteratively reduce the search
space by adding the common part of the customers and customers with zero cost to the
requirements selection into the combined backbone (approximate backbone and soft
backbone). Then they refine the final decision according to the solution in the reduced
search space and the combined backbone. Baker et al. [7] extend the NRP with the
component selection and ranking, and explore both greedy and simulated annealing
algorithms to this problem. Moreover, Ngo-The and Ruhe [11] propose a two-phase
optimization approach, which combine integer programming and genetic program-
ming, to allocate the resources of software releases. Paixão et al. proposed a recov-
erable robust approach for [12] and extands the NRP with a novel formulation which
considers the production of robust solutions [13, 14]. Fuchshuber et al. [15] modify the
hill climbing algorithm with some patterns observed from the terrain visualization.
Araújo et al. [16] draw machine learning models into the NRP. Harman et al. [17]
analyze the NRP from the perspective of requirement sensitivity analysis. In this paper,
we propose the framework of search space transformation for SBSE, and take the
single-objective NRP as a case study. In contrast to solving the problems directly, we
smooth the search space to improve the search ability of existing algorithms.

For the category of multi-objective NRP, Zhang et al. [18] first take multi-factors in
requirements engineering into consideration and apply the genetic algorithm-based
multiobjective optimization to the MONRP. Many related work extend MONRP by
balancing factors between the benefits and fairness [19], sensitivity [20] robustness
[21], or uncertainty [22]. Besides, Saliu and Ruhe [23] aim at optimizing release plans
from both the business perspectives and the implementation perspectives. Zhang et al.
[24] seek to balance the requirements needs of today with those of the future. Veerapen
et al. [25] evaluate integer linear programming approach on both the single-objective
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and multi-objective NRP. A recent work by Zhang et al. [26] conduct comprehensive
empirical study of different search algorithms across different real world datasets in
NRP. Another review is conducted by Pitangueira [27].

3.2 Search Space Reduction for the NRP

Search space reduction is an effective approach to search high quality solutions for
SBSE in the framework of search space transformation. A typical application of search
space reduction has been studied in [3].

In [3], Xuan et al. propose a Backbone-based Multilevel Algorithm (BMA) to solve
the NRP. The BMA employs multilevel reductions to iteratively reduce the problem
scale and refine the final optimal solution. For each level, BMA combines approximate
backbone with soft backbone to build a part of final optimal solution and reduce the
search space by removing the common part of the optimal customers. The approximate
backbone is employed to fix the common part of local optima of several local search
operators. While the soft backbone is employed to augment the approximate backbone
by adding the customers who provide profits with zero cost to the requirements
selection. Based on the backbones, BMA resolves the large scale problem to a small
one and search solution to it efficiently. Finally, BMA constructs a solution to the
original instance by combining the approximate backbone, the soft backbone, and the
current solution to the reduced instance together. The experiments show that search
space reduction with backbones can significantly reduce the problem scale, meanwhile
improves the quality of solutions for NRP without time cost.

4 Search Space Smoothing for the NRP

In this section, we present the main idea of search space smoothing for the NRP, and
propose the algorithm framework. More specifically, we first introduce the motivation
of search space smoothing. Then, we demonstrate how to realize the search space
smoothing framework.

4.1 The Motivation

The motivation of search space smoothing is intuitive and simple, which is usually
described analogously as “seeing the forest before trees” [28]. The idea of search space
smoothing is to capture the general characteristics of the search space first, and
gradually gain more details of the search terrain. This process is realized by transferring
the search terrain from a smooth on towards the original rugged one. To achieve the
performance improvement with search space smoothing, researchers have proposed
various approaches. Among these approaches, most adopt the instance perturbation
techniques, to realize the gradual transfer from smooth search terrains to the original
rugged ones. Through a series of instance perturbations, search space smoothing
intends to avoid the search from being stuck by locally optimal traps. With the help of
well-defined smoothing strategies, search space smoothing is able to conduct such
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search space transferring at the cost of only a few extra parameters. In the existing
literatures, there exist several smoothing approaches, such as power law smoothing,
sigmoidal smoothing, etc. In this study, we take the power law smoothing as an
example, to investigate the possibility of realizing the search space smoothing.

As mentioned in Sect. 2, the objective of the NRP is to maximize the revenue of the
selected customer subset. Following the existing search space smoothing studies [5,
28], we propose the following smoothing formula:

wiðaÞ ¼ �wþ ðw0
i � �wÞa; w0

i � �w
�w� ð�w� w0

iÞa; w0
i\�w

;

�
ð2Þ

where w0 is the normalized revenue of the ith customer, �w indicates the normalized
average revenue of all the customers, and a is a parameter that controls the degree of
smoothing. By introducing the parameter, smoothed instances could be generated. In
Fig. 6, we provide the illustration of the influence caused by the smoothing parameter.
In the figure, the x- and y- axes represent the normalized revenue and the smoothed
revenue calculated with Eq. 2, respectively. The curves in the figure correspond to
different configurations of the parameter. It is obvious that when a � 1, all the reve-
nues tend to be equal, meanwhile when a is 1, the instance would degenerate to the
original instance. By adaptively controlling a, the search terrain could be fine-tuned
accordingly.

In Fig. 7, we present the pseudo code of the search space smoothing framework for
the NRP. The framework works in an iterative paradigm, according to certain schedule
of the parameter a. For example, suppose the simplest schedule: let a decreases linearly
from 5 to 1. At each iteration, we first construct a smoothed instance according to Eq. 2
(line 7 of Algorithm 3). Then, with the best solution up to the previous iteration as the
initial solution, we apply the embedded algorithm to improve the incumbent solution
(lines 8–9 of Algorithm 3). As a decreases towards 1, the search space gets transferred
towards the original space. Finally, when the main loop terminates, the best solution
achieved is returned (line 11 of Algorithm 3).
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We could observe that, search space smoothing does not make assumptions about
the algorithm which is embedded in the framework. Hence, it is easy to implement
search space smoothing based variants that adopt other algorithms. For the following
section, we would examine the flexibility of search space smoothing with a simple
evolutionary search algorithm.

4.2 Search Space Smoothing Based Memetic Algorithm

After introducing the background information of the search space smoothing frame-
work, we proceed to adapt the smoothing techniques for solving the NRP. In this
subsection, we embed a simple Memetic Algorithm (MA) into the search space
smoothing framework (denoted as SSS-MA). The reason we choose MA as the
embedded algorithm is that, MA could be viewed as the combination of genetic
algorithm and local search techniques. By balancing the intensification ability of local
search and the diversification of the genetic operators, MAs have achieved promising
performances in various problem domains [29, 30].

The pseudo code of SSS-MA is presented in Fig. 8. Similar to the existing genetic
algorithms, MA is a population based iterative process. The population consists of a set
of solutions to the NRP instance, each of which is encoded as a Boolean vector. MA
realizes the problem solving procedure with two phases, i.e., the initialization phase
and the main loop phase. First, all the individuals are randomly initialized and eval-
uated (line 2 of Algorithm 4). Then, for the second phase, the population is iteratively
evolved to optimize the individuals. At each iteration, we first modify the parameter a if
necessary. In this study, we consider a simple schedule, i.e., decrease a linearly from 5
to 1. After the smoothed instance is constructed (lines 4–5 of Algorithm 4), genetic
operators such as crossover and mutation are applied over each individual. In this

Algorithm 3: Search Space Smoothing for NRP
Input: Embedded Algorithm A
Output: optimized solution s

1 begin
2 for each customer i do
3 Normalize all the revenues so that 0
4 end
5 Generate initial solutions
6 for in predefined schedule do
7 Set the revenue vector with respect to Eq. 2
8 Assign the initial solution with the current best solution
9 Apply A with the smoothed instance for optimization

10 end
11 return best solution achieved
12 end

Fig. 7. Pseudo Code of the search space smoothing framework for NRP
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study, uniform crossover and bit-flipping mutation are employed to produce the off-
spring individuals (lines 7–9 of Algorithm 4). Furthermore, in addition to the genetic
operators, MA features the use of local search operators (line 10 of Algorithm 4). In
this study, we apply a bit-flipping based hill climbing procedure as the local search
operator. After all the operators have been applied, all the individuals and their off-
spring undergo a selection operator, to construct the population for the next iteration
(line 12 of Algorithm 4). In this study, the truncation based selection mechanism is
adopted. With the selected individuals, the evolution process continues the following
iterations, until certain stopping criteria are met.

5 Experiments

In this section, we present the extensive experiments, to demonstrate the effectiveness
of search space smoothing applied to the NRP. More specifically, we first present the
preliminary information of the experiments. Then, numerical experiments are con-
ducted over the benchmark instances. We compare the SSS-MA with the baseline MA,
to examine the performance of the proposed algorithm. Finally, we investigate why
search space smoothing works by illustrate the anytime performance of SSS-MA.

Before presenting the experimental results, we first briefly give the background
information of the experiments. In this study, the algorithms are implemented in C++,
compiled with g++ 4.9. The experiments are conducted on a PC with an Intel Core i5

Algorithm 4: Search Space Smoothing based Memetic Algorithm for NRP
Input: maximum iterator nIter, population size nPop, elitism rate eRate, mu-
tation rate mRate
Output: best solution achieved

1 begin
2 initialization
3 for i 1 to nIter do

4

5 Modify instance variables with Eq. 2
6 for nPop (1 – eRate) do
7 Randomly select two individuals as parents
8 Apply uniform crossover
9 Apply bit-flipping mutation over the offspring

10 Apply hill climbing over the offspring
11 end
12 Apply elitism selection
13 end
14 return best solution achieved
15 end

Fig. 8. Pseudo Code of SSS-MA
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3.2 GHz CPU and 4 GB memory, running GNU/Linux with kernel 3.16. For the
benchmark instances, there are two classes from [3] and [6], respectively.

To evaluate the performance of SSS-MA, we consider two comparative algorithms.
First, we adopt the basic MA as the baseline algorithm. The only difference between
MA and SSS-MA lies in the smoothing mechanism. By comparing the two algorithms,
we are able to examine the usefulness of search space smoothing. Second, besides MA,
we employ the solution achieved by the backbone guided algorithm BMA [3] as the
reference to evaluate the effectiveness of SSS-MA objectively, since BMA is among
the best heuristics for the NRP. Next, since there are parameters in both MA and
SSS-MA, we have to conduct the parameter tuning task. In this study, we choose to
tune the elitism ratio and the mutation rate, and fix the rest parameters for the two
algorithms. The reason for this experiment scheme is that, during the implementation,
we find that these two parameters have the major influence on the performance. In
particular, we employ the automatic tuning tool irace [31]. The parameter settings for
the algorithms are summarized in Table 1.

5.1 Numerical Results

After the preliminary experiment, we proceed to carry out the numerical experiments.
For each benchmark instances, we independently execute the two algorithms for 10
times, and report the results in Table 2. The table is organized as follows. The first
column indicates the instances. The second column presents the best known solution
quality achieved by BMA. Then, in columns 3–5 and 6–8, the results for MA and
SSS-MA are given, respectively. For each algorithm, we list the maximum and the
mean of the solution quality, as well as the average time in seconds. From the table,
several interesting observations could be drawn. First, from the effectiveness aspect,
SSS-MA is able to achieve solutions with better quality than SSS-MA. Over the 39
instances, SSS-MA outperforms MA over 36 instances, in terms of the best solution
quality. When we compare the average solution quality of the two algorithms, similar
observations could be found. For both the two comparison scenarios, the conclusion
that SSS-MA outperforms MA is supported by the nonparametric Wilcoxon’s
two-sided signed rank test (with p-values < 0.0001). In particular, SSS-MA obtains
solutions that are better than the currently best known solutions over 6 instances.
Second, from the efficiency aspect, SSS-MA is slower than MA over all the instances.
The reason for this phenomenon might be that, for SSS-MA, especially during its
beginning iterations, the search is conducted over the smoothed terrain, it is possible

Table 1. Parameter setup for MA and SSS-MA

Parameter MA SSS-MA

Maximum iteration 5000 5000
Population size 10 10
Elitism rate 0.51 0.27
Mutation rate 0.02 0.01
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Table 2. Results

Instance BMA MA SSS-MA
Best Best Average Time Best Average Time

nrp1-0.3 1201 1204 1191.1 1.22 1200 1189.2 2.59
nrp1-0.5 1824 1836 1812.8 1.38 1834 1784.2 2.62
nrp1-0.7 2507 2507 2507 1.15 2507 2507 2.42
nrp2-0.3 4726 4007 3927.7 5.57 4365 4179.8 13.53
nrp2-0.5 7566 7034 6840.7 7.16 7353 7202.2 15.79
nrp2-0.7 10987 10585 10419 7.85 10683 10589.5 16.56
nrp3-0.3 7123 6846 6756 7.25 7001 6894.2 14.70
nrp3-0.5 10897 10566 10522.2 7.95 10758 10644.6 15.75
nrp3-0.7 14180 13867 13819.5 7.78 13990 13953 15.58
nrp4-0.3 9818 8950 8841.6 17.96 9164 9003.8 29.72
nrp4-0.5 15025 14609 14457.6 20.22 14794 14613.6 32.95
nrp4-0.7 20853 19996 19906.6 22.60 20205 20117.4 35.76
nrp5-0.3 17200 14873 14564.3 19.33 15417 15165.7 40.68
nrp5-0.5 24240 22409 22204.5 14.95 22785 22616.3 34.89
nrp5-0.7 28909 27494 27283.6 10.41 27854 27761.8 28.75
nrp-e1-0.3 7572 7396 7344.5 12.95 7539 7460.8 20.63
nrp-e1-0.5 10664 10607 10555 15.16 10740 10676.3 22.90
nrp-e2-0.3 7169 7053 6984.2 15.04 7097 7046.2 22.16
nrp-e2-0.5 10098 10021 9964.8 17.93 10081 10021.7 25.27
nrp-e3-0.3 6461 6345 6305 10.00 6385 6329.4 16.59
nrp-e3-0.5 9175 9090 9034.5 11.55 9095 9054.2 18.35
nrp-e4-0.3 5692 5553 5525.1 10.66 5633 5576.7 16.24
nrp-e4-0.5 8043 7982 7919 12.46 7989 7965.4 18.14
nrp-m1-0.3 10008 9573 9490.6 17.31 9735 9627 28.26
nrp-m1-0.5 14588 14416 14305.7 20.38 14607 14470.4 32.44
nrp-m2-0.3 8272 8044 7927.6 16.70 8128 8030.6 25.49
nrp-m2-0.5 11975 11970 11879.1 20.28 12045 11979.7 29.43
nrp-m3-0.3 9559 9302 9226.6 15.22 9470 9332 26.40
nrp-m3-0.5 14138 14123 14045.9 17.85 14289 14167.7 30.00
nrp-m4-0.3 7408 7197 7123.8 13.85 7288 7211.5 21.87
nrp-m4-0.5 10893 10836 10774.7 16.53 10940 10875.1 24.92
nrp-g1-0.3 5938 5917 5862 9.24 5930 5897.4 15.04
nrp-g1-0.5 8714 8657 8610.4 11.00 8701 8669.5 17.08
nrp-g2-0.3 4526 4474 4452.2 8.34 4495 4477.1 12.42
nrp-g2-0.5 6502 6447 6436.4 9.91 6489 6455.5 14.09
nrp-g3-0.3 5802 5749 5722.7 8.50 5739 5711.9 14.37
nrp-g3-0.5 8402 8327 8293.7 9.77 8359 8308.9 15.90
nrp-g4-0.3 4190 4149 4134.9 6.88 4173 4143.2 10.79
nrp-g4-0.5 6030 6002 5977.4 7.86 6010 5977.8 11.93
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that the hill climbing operator may be more time consuming. However, we can see that
the times for the two algorithms are in the same order of magnitude.

5.2 Anytime Performance Comparison

In the previous subsection, we have observed that SSS-MA outperforms MA in terms
of solution quality. However, SSS-MA is more time consuming accordingly. In this
subsection, we intend to investigate the dynamic characteristics of the two algorithms,
by visually comparing their anytime performance. We choose nrp-2-0.3 and nrp-g1-0.5
as the typical instances, and plot the anytime performance curves of MA and SSS-MA.
In Fig. 9, the x-axis indicates the number of iterations elapsed, and the y-axis indicates
the average solution quality achieved by the two algorithms.

From the figure, we find that for the beginning iterations, MA outperforms
SSS-MA. For example, over nrp2-0.3, after 200 iterations, the solution quality of MA
is 31559, while that of SSS-MA is 30089. However, as the search terrain gets trans-
ferred back to the original terrain, the solution obtained by SSS-MA is improved
accordingly. After 400 iterations, SSS-MA is able to achieve better solutions compared
to MA. These observations demonstrate that SSS-MA is able to avoid locally optimal
traps to some extent. Similar observations could be found over NRP-g1-0.5. Similar
phenomenon could be observed on the other instance we examine. Based on the
anytime performance comparison, we partially confirm that the reason for the slow
convergence of SSS-MA is caused by the smoothing operation.

6 Threats to Validity

In this paper, we demonstrate the effectiveness of search space smoothing, one of the
techniques in TSBSE, on a typical SE task the NRP. However, there are some threats to
validity: First, we validate the effectiveness of search space smoothing in TSBSE on 39
instances in the NRP and demonstrate the effectiveness of search space reduction with
several related work. The proposed technique should be validated with more real world
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data set and SE tasks. Second, we smooth the search space in the NRP with a typical
search space smoothing technique, the power law smoothing, which has been suc-
cessfully applied in several research work [28, 29]. With this technique, we improve
the optimal solution of the NRP with some time costs. However, the search space
smoothing technique may slightly affect the results of our case study. In the future, we
should validate and compare more search space smoothing techniques for SE tasks, and
propose more time efficient formulas.

7 Conclusion and Future Work

In this paper, we address the conception of Transformed Search Based Software
Engineering (TSBSE). Taking the Next Release Problem from the requirements
engineering as a case study, we investigate the feasibility of applying search space
smoothing for SBSE. The contributions of this study are tri-fold. First, we propose the
conception of the TSBSE, which unifies the techniques such as search space reduction
and search space smoothing. To the best of our knowledge, this is the first time such
conception is issued in the software engineering community. Second, we develop a
Search Space Smoothing based Memetic Algorithm (SSS-MA). We demonstrate that,
with minor modification, algorithms could be embedded into the search space
smoothing framework. Furthermore, numerical results reveal that, the proposed algo-
rithm is able to update several best known solutions over the benchmark of the NRP
instances. For the future work, we are interested in the following directions. First,
SSS-MA tends to be slower than directly executing the embedded algorithm. Hence,
how to accelerate the problem solving process deserves more efforts. Second, in the
existing literature, there exist several smoothing schemes. Comparisons between these
schemes seem interesting. Third, we would explore the possibility of extending the
search space smoothing framework to more problems in software engineering.
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