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Abstract. It becomes a great challenge in the research area of meta-
heuristics to predict the hardness of combinatorial optimization problem
instances for a given algorithm. In this study, we focus on the hardness
of the traveling salesman problem (TSP) for 2-opt. In the existing lit-
erature, two approaches are available to measure the hardness of TSP
instances for 2-opt based on the single objective: the efficiency or the ef-
fectiveness of 2-opt. However, these two objectives may conflict with each
other. To address this issue, we combine both objectives to evaluate the
hardness of TSP instances, and evolve instances by a multi-objective op-
timization algorithm. Experiments demonstrate that the multi-objective
approach discovers new relationships between features and hardness of
the instances. Meanwhile, this new approach facilitates us to predict the
distribution of instances in the objective space.

Keywords: TSP · 2-opt · multi-objective optimization algorithm · ran-
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1 Introduction

Many metaheuristics such as genetic algorithms [12], local search [1], simulated
annealing [11], tabu search algorithm [7], and ant colony optimization [9] have
been used to solve NP-hard combinatorial optimization problems (COPs). For
a particular NP-hard problem, there exist easy instances and hard instances for
distinct algorithms. Hereafter, an instance could be obtained by specifying al-
l the problem parameters with the given problem formulations [10]. With the
development of metaheuristics, it becomes a hot topic to select an appropriate
algorithm to resolve a given instance of a NP-hard COP. In [18], Rice first pro-
posed the problem of algorithm selection, which seeks to predict which algorithm
is likely to perform best on one given instance.

What exactly makes an optimization problem instance hard or easy? To
answer this question, Macready [14] makes it clear that the features of an instance
determine its hardness for a particular algorithm. Some recent survey papers [4]
[15] point out that the instance features might influence algorithm performance
which is denoted as exploratory landscape analysis. Researches in [13] [17] study
the problem hardness to an algorithm by analyzing the expected running time.



In this study, we focus on the hardness of the Traveling Salesman Problem
(TSP), which aims at finding a shortest tour visiting each of N cities once and
returning to the starting city in the end. There have been a great number of
metaheuristics to solve the TSP. We choose 2-opt [8], one of the most popular
local search algorithms, to analyze the hardness of TSP instances based on their
feature vectors. For a large-scale TSP instance, we calculate its features to predict
its hardness for 2-opt, then we can know whether it is cost-effective to select 2-
opt. More precisely, if the instance is hard for 2-opt, it is considerable to choose
some other metaheuristics instead. However, it is still a challenge to measure
the hardness of TSP instances for 2-opt. Two different approaches have been
proposed to evaluate the hardness of TSP instances. One adopts the efficiency
of 2-opt obtaining a local optimum to measure the hardness of TSP instances
when solving these instances [19], while the other employs the effectiveness of
the solutions achieved by 2-opt to evaluate the hardness of the instances [16].
Accordingly, each of them only considers one objective, either the efficiency
or the effectiveness of 2-opt respectively. However, there exist some conflicts
between two objectives [16]. For example, 2-opt possesses high efficiency but
may achieve poor effectiveness with bad solutions on some instances, whereas it
obtains desired effectiveness with low efficiency on some other instances.

To address this challenge, we evaluate the hardness of TSP instances by
combining both the effectiveness and the efficiency objectives. More precisely,
for 2-opt, one instance is easier than another if 2-opt achieves higher efficiency
and better effectiveness on the former instance. Based on this evaluation for-
mulation, we evolve easy and hard instances by a multi-objective optimization
algorithm following NSGA-II [2]. For the purpose of straightforward illustration
and significant analysis, all the instances are mapped into a 2-dimension ob-
jective space. Results show that the easy instances and the hard instances are
distributed within different areas in the objective space. To study which features
mainly affect the distribution of the instances in the objective space, we get the
influence coefficient of each feature by training a prediction model. New relation-
ships are discovered by the multi-objective approach that at least six features
have a major influence on the hardness of TSP instances. The distribution of
random TSP instances and TSPLIB instances in the objective space can be well
predicted based on these relationships.

The remainder of this paper is organized as follows. Section 2 analyzes the
relationships between two existing evaluation approaches to the hardness of TSP
instances. Section 3 generates instances based on the multi-objective approach.
Section 4 investigates the relationships between features and hardness. We eval-
uate the relationships on random TSP instances and sampled TSPLIB instances
in Section 5. We conclude this paper in Section 6.

2 Traditional evaluations of hardness of TSP instances

In this section, we demonstrate the conflicts between two existing approaches for
evaluating the hardness of TSP instances. There are two approaches to evaluate



the hardness of TSP instances in the literature based on single objective: effi-
ciency or effectiveness. Smith-Miles et al. [19] measure the hardness of a given
TSP instance by the efficiency of 2-opt on this instance, which is calculated by
the number of 2-opt swaps to reach a local optimum. They consider that 2-opt
has high efficiency on easy instances and low efficiency on hard instances. Mean-
while, Mersemann et al. [16] evaluate the hardness of a given instance for 2-opt
by the effectiveness of 2-opt on this instance, which is presented by the quality of
the solution achieved by 2-opt. To measure the quality of a solution obtained by
2-opt, they compare the solution against the global optimal solution achieved by
the concorde solver [3]. Both researches use an evolutionary algorithm to evolve
hard and easy TSP instances, and analyze the relationships between the fea-
tures and the hardness. We adopt the genetic algorithm with the same crossover
and mutation operators used in [16] to evolve instances based on the efficiency
objective or the effectiveness objective. Moreover, we denote the corresponding
collections of instances as “swaps instances” and “quality instances”, respective-
ly. A TSP instance is represented by a list of N (x, y) city coordinates on a 1×1
grid. To validate our finding on the instances provided on TSPLIB, we rescale
the city coordinates of TSPLIB instances to a 1× 1 grid as well.

2.1 Evolving TSP instances by traditional evaluations of hardness

We generate swaps instances and quality instances with fixed sizes of 25, respec-
tively [16]. The size of an instance means the number of cities in the instance.
We choose the 2-opt in [8] whose main idea is that making an initial solution
randomly and obtaining a local optimum after a few of 2-opt swaps. Accordingly,
we adopt 2-opt on each TSP instance and take the number of 2-opt swaps to
reach a local optimum as the fitness of the instance for the genetic algorithm
when generating swaps instances. It is obvious that the fitness of each instance
depends on the random initial solution, which makes the fitness of instances un-
certain. To make the fitness of instances more reasonable, we use 2-opt to solve
each instance 500 times, and take the average of the number of 2-opt swaps to
reach a local optimum as the fitness of the instance.

We generate TSP instances randomly for the initial population. When e-
volving an easy swaps instance, the instance which takes less 2-opt swaps for
2-opt to reach a local optimum has higher fitness. We select the instances with
higher fitness from the current generation for the next generation, and the in-
stance with the highest fitness in the last generation will be choosed as an easy
swaps instance. We repeat this process until we get the expected number of easy
swaps instances. In contrast, the instance taking more 2-opt swaps to reach a
local optimum has higher fitness when evolving hard swaps instances, and we
choose the instance with the highest fitness after generations of optimization
as a hard swaps instance. Repeat this process until the desired number of hard
swaps instances are evolved.

In addition, we evolve quality instances based on the effectiveness objective
which is measured by the approximation ratio of path length that 2-opt achieves
for a given TSP instance to the length of global optimal path achieved by the



concorde solver. The approximation ratio equals to 1 means that 2-opt has the
same effectiveness as the concorde solver when solving an instance. Therefore, the
closer the approximation ratio of a given instance is to 1, the easier the instance
is for 2-opt. Similar to the process of evolving swaps instances, we generate the
quality instances by taking the approximation ratio instead of the 2-opt swaps
as the fitness of instances for the genetic algorithm.

100 swaps instances and 100 quality instances of either easy or hard with
fixed sizes of 25 are evolved. Genetic algorithm parameters are set as follows.
The size of initial population is 100, and the number of generations is 1000. The
uniform mutation rate is 0.001, while the normal mutation rate is 0.01. We use
a 1-elitism strategy that the best individual survives and will be contained in
the next population, while the other instances for the next population will be
generated by uniform crossover of the instances with high fitness.

2.2 The conflicts between two single objective approaches

To observe whether there exist conflicts between two objectives, we get the
efficiency of 2-opt on quality instances and the effectiveness of 2-opt on swap-
s instances. Then each of quality instances and swaps instances can be mapped
into a 2-dimensional objective space.
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Fig. 1. The distribution of swaps instances and quality instances in the 2-dimensional
objective space.

In Fig.1, instances are denoted as points, the x -axis represents the effec-
tiveness of 2-opt on each instance, and the y-axis indicates the efficiency of
2-opt on each instance. Swaps instances are represented in blue color, and qual-
ity instances are in green color. Hard instances are denoted by triangles, while



easy instances are denoted as squares. It is shown in Fig.1 that 2-opt has lower
efficiency on easy quality instances than that on hard quality instances, and has
higher effectiveness on hard swaps instances than that on easy swaps instances.
Therefore, there raise some conflicts that the instances which are considered as
easy instances by one objective may be judged as hard ones based on the other
objective, which implies evaluating the hardness of instances based on separate
consideration of the efficiency objective or the effectiveness objective might be
insufficient. To address this issue, we present a new approach to evaluate the
hardness of instances which considers both the efficiency objective and the effec-
tiveness objective. More precisely, for 2-opt, one instance is easier than another
for 2-opt if 2-opt has higher efficiency and better effectiveness on the former, and
vice versa. Based on the concept of Pareto optimality [6], we also evolve easy
and hard instances which are denoted as “mul instances” by a multi-objective
optimization algorithm, and discover which features achieve the most influence
on the hardness of instances for 2-opt.

3 Evolving TSP instances by multi-objective optimization

Since we evaluate the hardness of instances based on a multi-objective approach,
we evolve TSP instances by a multi-objective optimization algorithm in this sec-
tion. We first impose an additional concept into the multi-objective optimization
algorithm as follows.
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Fig. 2. The distribution of instances in the 2-dimensional objective space.

Given two individuals p and q in the population Pop, p dominates q ( denoted
by p ≻ q ) if they satisfy the following conditions, where fk(∗) is the kth objective
of individual ∗:



– For all the objectives, p is not worse than q, i.e., fk(p) ≤ fk(q), (k = 1, 2).
– There exists at least one objective such that p is better than q. That is,

∃l ∈ {1, 2}, s.t. fl(p) < fl(q).

Algorithm 1 The construction of non-dominated individual set

1: for each p ∈ Pop do
2: for each q ∈ Pop do
3: if p dominates q then
4: sq = sq ∪ {q} //the set of individuals dominated by the individual q
5: end if
6: if q dominates p then
7: np = np + 1 //the number of individuals dominating the individual p
8: end if
9: end for
10: if np = 0 then
11: P1 = P1 ∪ {p}
12: end if
13: end for
14: i = 1
15: while Pi ̸= ∅ do
16: H = ∅
17: for each p ∈ Pi do
18: for each q ∈ sp do
19: nq = nq − 1 //the number of individuals dominating the individual q
20: if nq = 0 then
21: H = H ∪ {q}
22: end if
23: end for
24: end for
25: i = i+ 1
26: Pi = H //the set of non-dominated individuals after the ith generation
27: end while

2-opt is also conducted on each instance 500 times, and we take the average
number of swaps as the efficiency of 2-opt on the instance, while the average of
approximation ratio is taken as the effectiveness of 2-opt on the instance. The
parameters of the multi-objective optimization algorithm are also the same as the
genetic algorithm used in the previous section. The key difference between the
genetic algorithm [16] and the multi-objective optimization algorithm proposed
in this paper is that we choose two instances from a non-dominated individual
set randomly to evolve new instances by uniform crossover. We obtain the easy
instances or the hard instances from the non-dominated individual set in the last
generation. The pseudo-code (Algorithm 1) is used to build the non-dominated
individual set in each generation.

Finally, we generate 100 easy instances and 100 hard instances with fixed sizes
of 25 which are mapped into the objective space as well. Fig.2 shows that the easy
and the hard instances locate in different regions and the mul instances present



convex distribution as expected. Some hard mul instances locate in those regions
that hard swaps instances or hard quality instances locate in, which illustrates
that the instances considered to be hard by the single objective approaches are
also considered to be hard by the multi-objective approach.

4 The influential features to the hardness of instances

In this section, we investigate whether there are different combinations of fea-
tures that affect the efficiency and the effectiveness of 2-opt most. We choose
the features used in [16]. There are totally 47 features classified into 8 groups,
including Distance Features, Mode Features, Cluster Features, Nearest Neighbor
Distance Features, Centroid Features, MST Features, Angle Features, and Con-
vex Hull Features. We calculate the features of all evolved instances and then
conduct comparative analysis between the single objective approaches and the
multi-objective approach.
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(a) Influential features discovered by
mul instances w.r.t. the effectiveness
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(b) Influential features discovered by
quality instances w.r.t. the effectiveness
objective.
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mul instances w.r.t. the efficiency objec-
tive.
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Fig. 3. The importance scores of features to the hardness.



We discover the features that affect the hardness of instances most by training
a prediction model based on the random forest [5]. The training set consists of 75
easy and 75 hard mul instances, and the other 25 easy and 25 hard mul instances
compose the test set. We use the features of the test set to predict the corre-
sponding efficiency and effectiveness of 2-opt. Root Mean Squared Error (RMSE)
is used to indicate prediction error, which is defined as follow:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (1)

where yi is the true value and ŷi is the predicted value of the ith element.
Then we delete each feature in turn, and record the percentage of error increase
when removing a certain feature which is denoted as the importance score of
this feature to the hardness. To find the features that affect the hardness of
instances most, we select the features whose importance scores to the hardness
are greater than 10%. Using the same approach on swaps instances, we can get
another combination of features that influence the efficiency of 2-opt most. The
combination of features that influence the effectiveness of 2-opt most can be
discovered on quality instances as well.

Considering Fig.3, we can find the features that affect the effectiveness and
the efficiency of 2-opt most discovered by the multi-objective approach are quite
different from those discovered by the single objective approaches, which im-
plies that new relationships between features and hardness are discovered by the
multi-objective approach. The features that affect the efficiency of 2-opt most
are also different from those affect the effectiveness of 2-opt most, which also
explains that separately considering the efficiency objective or the effectiveness
objective to evaluate the hardness of instances might be insufficient.

5 Validating the features on TSP instances

To clarify whether the new relationships discovered by the multi-objective ap-
proach are practically useful, we use the prediction model trained by mul instances
to predict the effectiveness and the efficiency of 2-opt on random TSP instances
and TSPLIB instances based on the feature vectors of these instances in this sec-
tion. In order to compare with the relationships discovered by the single objective
approaches, the prediction model trained by quality instances is used to predict
the effectiveness of 2-opt and the prediction model trained by swaps instances
is used to predict the efficiency of 2-opt on these instances, respectively. In this
section, RMSE is also used to indicate prediction error.

5.1 Validating the features on random TSP instances

We generate 50 TSP instances with fixed sizes of 25 randomly which compose
the test set. There are three groups of training sets for building random forest:



– Mul Training Set: consisting of 75 easy mul instances and 75 hard mul instances;
– Quality Training Set: consisting of 75 easy quality instances and 75 hard

quality instances;
– Swaps Training Set: consisting of 75 easy swaps instances and 75 hard swap-

s instances.
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Fig. 4. Prediction comparision on random TSP instances.

We achieve a RMSE of 0.0253 when using the prediction model trained by
Mul Training Set to predict the effectiveness of 2-opt on random instances, and
the RMSE for the prediction model trained by Quality Training Set is 0.0523.
The RMSE for the prediction model trained by Mul Training Set to predict the
efficiency of 2-opt on random instances is 2.32, which is lower than that of 12.37
obtained by the prediction model trained by Swaps Training Set. The RMSE
values in the two different objective dimensions are not in the same order of
magnitude. This is because there exists a big gap between the magnitudes of the
2-opt swaps and the approximation ratio. Fig.4 shows that the prediction model
trained by Mul Training Set is better to predict the efficiency and the effective-
ness of 2-opt on random instances, which illustrates that the multi-objective
approach can better discover the relationships between the features and the
hardness than the single objective approaches.



5.2 Validating the features on sampled TSPLIB instances

In order to further validate the new relationships between features and hardness,
we use the prediction models trained by these three groups of training sets to pre-
dict the efficiency and the effectiveness of 2-opt on sampled TSPLIB instances.
The instances on TSPLIB have different sizes. However, the training instances
are all with the fixed sizes of 25. To be coincident with the training instances, we
select 50 TSP instances from TSPLIB whose size is larger than 25 and extract
25 coordinates of cities from each of the TSPLIB instances randomly. Then we
will obtain a test set with 50 sampled TSPLIB instances.

The prediction results are shown in Fig.5. The RMSE is 0.0464 for the pre-
diction model trained by Quality Training Set, and RMSE obtained by the pre-
diction model trained by Mul Training Set is 0.0247 when predicting the effec-
tiveness of 2-opt on sampled TSPLIB instances. The prediction model trained
by Mul Training Set achieves a better prediction with RMSE of 3.26 than the
RMSE of 10.93 obtained by the prediction model trained by Swaps Training Set,
which also implies that the model trained by Mul Training Set can better pre-
dict the efficiency of 2-opt on sampled TSPLIB instances. Overall, the multi-
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Fig. 5. Prediction comparision on sampled TSPLIB instances.

objective approach achieves higher accuracy in predicting the distribution of



TSP instances in the objective space, which illustrates that the multi-objective
approach can better discover the relationships between the features and the
hardness of instances for 2-opt.

In this section, we validate the features on the sampled TSPLIB instances
with fixed sizes of 25. Further investigation needs to be conducted on TSPLIB in-
stances with real sizes, which needs us to evolve training instances with different
sizes.

6 Conclusion

There are two existing approaches to evaluate the hardness of TSP instances
for 2-opt based on single objective. However, the objectives may conflict with
each other. The instances which are considered as easy instances by one sin-
gle objective may be judged as hard ones w.r.t. the other objective. To address
this challenge, we propose a new evaluation approach by combining both objec-
tives. For 2-opt, one instance is easier than another instance if 2-opt has higher
efficiency and better effectiveness on the former, and vice versa.

We use a multi-objective optimization algorithm to evolve hard and easy TSP
instances. Then we study the relationships between features and hardness. To
find the combinations of features that affect the efficiency and the effectiveness
of 2-opt most, we employ the random forest to get the importance score of each
feature. Experimental results show that the relationships between features and
hardness discovered by the multi-objective approach is quite different from those
discovered by single objective approaches. There are at least six features with
the most effect on the efficiency and the effectiveness of 2-opt discovered by
the multi-objective approach. In the end, we verify our finding on random TSP
instances and TSPLIB instances, and the results show that the relationships
discovered by the multi-objective approach can provide more help for us to
predict the distribution of TSP instances in the objective space.
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