
. REVIEW .

SCIENCE CHINA
Information Sciences

December 2014, Vol. 57 121101:1{121101:23
doi: 10.1007/s11432-014-5221-6

c
 Science China Press and Springer-Verlag Berlin Heidelberg2014 info.scichina.com link.springer.com

Developer social networks in software engineering:
construction, analysis, and applications

ZHANG WeiQiang1, NIE LiMing 2, JIANG He2, CHEN ZhenYu1 & LIU Jia 1*

1State Key Laboratory for Novel Software Technology, Nanjin g University, Nanjing 210093, China;
2School of Software, Dalian University of Technology, Dalia n 116024, China

Received August 29, 2014; accepted October 8, 2014; publish ed online October 29, 2014

Abstract With the increasing popularity of Internet, more and more de velopers are collaborating together for
software development. During the collaboration, a lot of in formation related to software development, including
communication and coordination information of developers , can be recorded in software repositories. The
information can be employed to construct Developer Social N etworks (DSNs) for facilitating tasks in software
engineering. In this paper, we survey recent advances of DSN s and examine three fundamental steps of DSNs,
namely construction, analysis, and applications. We summa rize the state-of-the-art methods in the three steps
and investigate the relationships among them. Furthermore , we discuss the main issues and point out the future
opportunities in the study of DSNs.

Keywords developer social networks, social network analysis, softw are maintenance, communication and co-
ordination, prediction and recommendation

Citation Zhang W Q, Nie L M, Jiang H, et al. Developer social networks in software engineering: construction,
analysis, and applications. Sci China Inf Sci, 2014, 57: 121 101(23), doi: 10.1007/s11432-014-5221-6

1 Introduction

With the popularity of Internet, more and more developers geographically distributed in the world are
getting involved in one software project [1{3]. Such projects usually have software requirements changing
dynamically, agile software process evolving rapidly, teams organized loosely, and developers collaborating
freely. In the context, the activities of developers could be recorded in some software repositories, e.g.,
email systems, con�guration management tools, bug tracking systems, etc. [4], in order to facilitate
coordination and communication among developers.

It should be noted that in traditional software development, the number of developers may be consid-
ered as a negative factor, i.e. adding developers into a team may slowdown the progress further [5]. In
contrast, there are many new features in modern software development nowadays. First, as both the size
and the complexity of software increase, the number of developers in a software team also grows. Second,
developers' collaboration methods are mainly those based on Internet instead of face-to-face talk. Third,
developers have more chances to participate in tasks of di�erent software development phases. Therefore,
developers and relationships among developers take important roles in modern software development. It
becomes a new challenge to utilize the information of developers to improve software engineering tasks.

In the past decade, a series of studies have been conducted by using the method of Developer Social
Networks (DSNs)1) to facilitate tasks in software engineering. In this paper, we reviewrecent advances

* Corresponding author (email: liujia@software.nju.edu. cn)
1) http://software.nju.edu.cn/iSE/DSN.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:2

Version control system Email archives Bug tracking system
Email

Project
participation Bugzilla

Other

SNA Role Community Property

Evolution Pattern Recommendation Visualization

Integration build
quality prediction

Defect prediction

Bug triage

Bug fixing

Out of maintenance

Figure 1 Construction, analysis and applications of DSNs.

related to DSNs and divide the studies of DSNs into three steps: construction, analysis, and applications.
The main purpose of this paper is to examine the performance of these steps and the relationships hidden
behind them.

The construction methods, analysis methods, and application scenarios of DSNs are brie
y shown in
Figure 1. DSNs can be constructed by di�erent methods based on di�erent data sources and developer
relationships. DSNs can be analyzed by various social network analysis methods that capture and under-
stand the features and characteristics of DSNs. These features and characteristics of DSNs will be �nally
applied to certain software engineering tasks, in order to make them e�ective and e�cient.

In this paper, we collect all the related papers with DSNs in the literature (the methodology used to
get the set of papers is described in Section 2), and summarize DSN construction methods (Section 3),
DSN analysis methods (Section 4), and DSN application scenarios (Section 5) respectively. Then we
discuss the main issues of DSNs in Section 6, including why DSNs work, when DSNs can be used, and
how to use DSNs. Finally, we point out the future research directions about DSNs in Section 7, including
new construction methods, new analysis methods, and new application scenarios.

2 Paper selection methodology

First of all, we need to collect papers related with our topic, i.e. developer social networks. The method-
ology is as follows. The collection process starts from Google Scholar2) . We search research papers using
the keywords \developer network" and check the �rst 50 searchresults. Then unrelated papers are �l-

2) http://scholar.google.com.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:3

tered out. We usually just read the title and abstract. But if necessary, we also take a brief look at the
introduction part.

In order to �lter out papers, three criteria are used. First, if the paper does not discuss topics about
software engineering, it is excluded. For example, many found papers are about general social networks,
and they are out of our scope. Second, if there are no networks constructed in the paper, it is excluded.
For example, some papers discuss communication in software development, but do not construct any
developer networks. Third, if nodes of the network in the paper are not developers, such as source �les,
the paper is excluded. After a round of selection, there are no more than twenty papers left.

From these papers, we get their references and the papers citingthem. Then the above three �ltering
steps are performed again on the result papers. This iterative process does not stop until there are no
more new papers selected. In the end, we collect 86 related papers.

3 Construction of developer social networks

In this section, we will summarize the construction methods of DSNsin our paper collection to investigate
the current research status. DSNs constructed by distinct methods may lead to di�erent conclusions, and
�nally can be applied in di�erent software engineering tasks.

DSNs describe developers and relationships among them in the form of networks. A fundamental
problem in constructing DSNs is the de�nition of relationships among developers. Many kinds of re-
lationships will arise among developers in the life-cycle of software development. Developers need to
communicate, collaborate, or coordinate with one another when they are performing di�erent tasks in
software development.

Nowadays, the Internet has become available to everyone all overthe world. This makes open-source
software development more and more popular. Anyone interestedin a project can participate in it as a
developer3) , such as a bug reporter, a tester, a commenter, or even a code committer. As a result, there
are a large number of developers involved in one project with many communication and coordination
links. These links are left in software repositories latently. It is natural to use these links to improve
software engineering tasks. As the �rst step, DSNs can be constructed with these links in the software
repositories.

With respect to the data source of software repository, the existing methods for constructing DSNs
can be divided into �ve categories: project participation based DSNs (PP-DSNs), version control system
based DSNs (VCS-DSNs), email archives based DSNs (EA-DSNs), bug tracking system based DSNs
(BTS-DSNs), and other DSNs. In the remaining part of this section, we will discuss each category of
DSNs in every subsection respectively. We additionally provide a tablein our website4) to summarize
software projects used to construct DSNs in our paper collection.

3.1 Project participation based DSNs

A project participation based DSN (PP-DSN) is constructed using the following rule: if two developers
have both participated in the same project, there is a link between them in the DSN.

Following the above rule, every pair in the same project is connected, and the whole network contains
all the developers (who have ever participated in at least one project) in SourceForge.Net. This is a
reasonable DSN construction method for SourceForge.Net. In SourceForge.Net, most projects are small
and involve only a few of participants. It is expected that two developers working in the same project
have common interests and skills. As a result, the cooperation relationships of developers are used to
construct DSNs. Madey et al. [6] �rstly used project participation connections to construct and study
DSNs in 2002. Subsequently, several researchers employed this type of DSN construction method [7{10].

The PP-DSNs is based on data from a platform with a lot of projects, such as SourceForge.Net.
SourceForge.Net is a web-based project support site, providing project management tools, bug tracking,

3) This paper does not distinguish the roles of developers.
4) http://software.nju.edu.cn/iSE/DSN.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:4

mailing list service, discussion forums, and version control software. Open-source software projects can be
managed on this site, and developers also can choose their favoriteprojects to participate in. This kind
of connection is very close, because the scales of most projects are usually small (less than 10 developers)
and their tasks are very concentrated. Besides SourceForge.Net, the PP-DSNs can also be created based
on other platform like Github [11].

The main limitation of PP-DSN construction method is that it is too coar se in some cases. It cannot
be used to investigate on a speci�c project. Developers in a PP-DSNare even not in one project, but
include all of users in the website of management platform. It considers coarse-grained relationships of
project participation in DSN construction. Some detailed relationships within each project are ignored,
along with the temporal relationships in this type of DSN construction. If a project has proceeded for
many years, the method still links a current developer with someonewho has quit the project 10 years
ago. Obviously, they may have no connection in software development in this case.

3.2 Version control system based DSNs

A version control system based DSN (VCS-DSN) is constructed using the following rule: if two developers
have both committed the same �le or module, there is a link between them in the DSN.

Lopez-Fernandez et al. [12] �rstly used VCS-DSNs in 2004. They constructed DSNs as weighted
undirected networks. Two developers who have contributed to atleast one common module are linked,
and the weight of the corresponding edge is the number of commits performed by both developers to all
the common modules.

In general, the change logs of software could be used to construct DSNs [12{23]. This type of DSN
construction method focuses on activities in one project. The most direct way is to collect histories
recorded in Version Control System (VCS), namely the code committing activities. The source code
may be the most important outcome of software development. Thesource code could be managed by
version control systems, such as CVS [12], SVN [19], Git [20]. When developers complete programming
or �x some bugs, they will commit their current �les and the VCS will up date the source code repository
according to the modi�ed version. The change log records the developers committing �les. It means that
developers are connected by the �les which they have modi�ed.

The �rst characteristic of VCS-DSNs is that they are undirected. These undirected links of developers
are from their common features, such as working on the identical project, modifying the identical software
entity, etc. We also could introduce more information, such as temporal relationships of developers, to
construct directed DSNs. This will be studied in our future work.

Di�erent source code relationships can be used to construct VCS-DSNs. An appropriate granularity is
important to VCS-DSNs. It should be determined by the size of a �le, the frequency of commits, and the
responsibilities of developers. It is better to choose coarse granularities such as module or class (e.g., [12])
in these cases as many �les are too small, with only a few of commits performed on a �le every day, and
two developers seldom modify the same �le. In general, VCS-DSNs with module relationships will be
more dense than VCS-DSNs with �le relationships [14]. The link granularity of VCS-DSNs should be
decided according to the speci�c situation with real project data.

VCS-DSNs can be either a weighted graph or an unweighted graph, because the strengths of developer
links may not be always the same. The weights of edges in DSNs indicatethe strengths of developer
relationships. The weights can be calculated by several ways. The weight can represent the number of
common �les that two developers have both committed [20]. The weight can be de�ned as the number
of commits performed by both developers to all common modules [12].The weight can be considered
as a kind of metric and researchers could compute the weight by complex formula [19,21,22]. Also, the
weights can be ignored for constructing an unweighted DSN. This can simplify the analyses and reduce
the cost.

A critical factor of VCS-DSNs is time duration. A DSN can be constructed based on the data from
one month, two months, or longer. The simplest way is to use all the data. The corresponding record is
taken into account no matter when the committing event happens. In this way, a developer joining the
project now may be connected in a DSN to another developer who left the project 3 years ago. To avoid

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:5

this kind of unreasonable situation, VCS-DSNs can be constructedusing data recorded during limited
time duration [22]. Meenely et al. [14] constructed VCS-DSNs with thesoftware process data during
every development cycle, which produces a released version. If a speci�c time is selected, it needs careful
consideration to determine the duration length. One month is chosen in some cases but there are no
detailed explanation, probably out of experience and convenience inmany papers [22]. Pohl and Diehl
used time sliding window to conduct dynamic analysis of evolution of DSNs [15].

In summary, VCS-DSNs can fairly capture the coordination relationships among developers. The
assumption of VCS-DSNs is that two developers are similar if they modify common source code. The
source code modi�cation may be the most important action of developers. VCS can provide structural
information. However, this modi�cation link of developers is not a straightforward \social" relationship.
This relationship is established in source code, not immediate communication.

3.3 Email archives based DSNs

Communication is essential for developers in software developmentlife-cycle. Communication can be
performed in many ways, such as face-to-face, telephone, and meetings. These ways are highly e�cient
and e�ective, but they are not satisfactory for geographically distributed software teams. The popularity
of open source software also accelerates the globalization of software development. Nowadays, commu-
nication via the Internet has gone popular in such a way that all the histories of communication could
be recorded and made accessible. Email is a popular communication method utilized by software teams,
because it is straight forward and the server is easy to deploy. Therefore, email archives based DSNs
(EA-DSNs) was born. The construction rule of EA-DSNs is: if two developers communicate via email,
there is a link between them in the DSN.

It is a straightforward way of constructing EA-DSNs because people around the world often com-
municate via email [24{32]. Software teams often use public email lists, which everybody can see and
participate in. Anyone sends an email to this list and then all the people in the list can receive it. Anyone
interested in this topic can reply and others can also see the reply email. This kind of communication form
works in a similar way as a forum. Project leaders in a project can release announcements, developers
can talk about technical problems, and users can report bugs.

There are some challenges to construct EA-DSNs: (1) emails are textual messages written in natural
languages; (2) a single developer may use multiple email addresses; (3) email addresses may be di�cult
to be mapped to usernames in the VCS; (4) some email messages maybe noise. Bird et al. [26] proposed
many heuristics to overcome the above challenges. They classi�ed the topics of emails into either process
topics (e.g., general announcements) or product topics (e.g., technical discussions for bug �xing). Their
study shows that DSNs constructed only by emails about product topics are more related to development
activities.

There are some communication links in the email list of a development team. Someone sends an email
to this list, and then anyone in this list can see it. Once if another one replies this email, a social link
appears. It is natural to use communication relations to construct EA-DSNs in the following cases.

(1) If a developer A responds to another developerB , a link B ! A could be constructed [26]. In this
case, the link B ! A is directed and denotes thatA receives and understandsB 's message. In a public
mailing list, if B sends an email thenA replies to B , the link B ! A is constructed. This kind of DSNs
is to describe the situation of information transmission.

(2) An email sent to the public mailing list may achieve several developers' replies. According to Case
1, each of these emails can also be used to construct a link from the sender to the replier. In this case,
all the developers who participate in the same topic can be considered to have common interests, so each
pair of them can be linked in a DSN [31]. This kind of DSNs is an undirected graph.

(3) Some work does not mention public mailing lists clearly [27]. They may use internal emails in the
general way. So in these papers, a link from developerA to B in DSNs may be constructed whenA sends
an email to B .

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:6

3.4 Bug tracking system based DSNs

A bug tracking system (i.e., defect/issue/problem tracking system) [33] is a repository to manage bug
reports within the life-cycle of software. In bug tracking systems, communication is performed by com-
ments, so DSNs can be constructed by relationships of comments [33{38]. The �rst rule to construct bug
tracking system based DSNs (BTS-DSNs) is: if two developers bothcomment on a common bug report,
there is a link between them in the DSN. In a bug tracking system, bugreports can be created, assigned,
modi�ed, commented and closed. Bug reports are usually structured with many prede�ned �elds, e.g.,
title, component, severity, version and so on, to facilitate bug �xing. In addition, some so-called bug
reports are actually requests of new features or enhancements. In this sense, the bug tracking system
becomes the modi�cation request system, where developers manage not only bug reports but also other
modi�cation requests. Since developers' communication and coordination are recorded structurally in
either bug tracking systems or modi�cation request systems, DSNs can be mined and constructed from
bug repositories in various ways.

This kind of relationship is based on common interests and skills of developers. Here, comments can be
replaced by general participation, because bug reports can be not only commented, but also modi�ed and
assigned to, etc. It arises to be another DSN construction pathway with comments of bug reports [24,39].
The method mines directed links by concerning reply-to relationshipsin comments as the second rule
of BTS-DSNs: if developer A replies to developer B's comment of a bugreport, there is a link from A
to B in the DSN. This kind of relationship is much closer than others before. Two developers of a link
comment a common bug report, and communicate with each other directly. It should be noted that the
comments are always considered as a reply to its previous comment inbug tracking systems. It is not
clearly labeled as replies to which one of previous comments. However, the comments in a bug report
discuss about the same topic and a comment is often submitted to reply to the latest opinion. This kind
of DSNs is constructed as a directed graph using comment information of bug reports.

The above two ways both construct one DSN based on all of data. ABTS-DSN can be constructed
based on comments for some speci�c �les in the third way [40]: for each �le, if a bug report is related to
this �le, then add the relationships associated with the comments ofthis bug report to the DSN for this
�le. This rule builds a BTS-DSN for each �le, in order to compute a cert ain �le-based metric. It uses
the relations between version control systems and bug tracking systems. It is di�cult for many projects,
because these two types of systems are often separated (unless those projects which can make the links
between the two types of systems straightforward), so that noinformation can be located to a �le with
a bug report directly.

Besides comments or general participation, other speci�c actionsin bug tracking systems attract re-
searchers' attention to construct DSNs. For example, bug reports can be reassigned. When an assigned
developer cannot �x the current bug report, it can be reassignedto another developer. This phenomenon
is very common in bug tracking systems. Many bug reports are reassigned for many times until �xed.
BTS-DSNs can also be constructed to capture this phenomenon asfollows [41,42]: if a bug report is
reassigned to developer A, and its previous assignee is developer B,there is a link from B to A in a DSN.
The tossing process of each bug report is mapped into a path passing through developers. All these paths
make up the whole DSN, a directed graph. Bug tossing graphs can beused to help triagers in software
teams �nd the proper bug �xer when the current assignee of a bugreport cannot �x it.

There exist some other methods to construct BTS-DSNs. Zhang and Lee [43] proposed a special rule to
construct BTS-DSNs as follows: in a bug report, if developer A is assigned to �x this bug and developer
B comments this bug report, there is a link from A to B in the DSN. This r ule connects a directed link
from the assignee to every commenter of a bug report. In this way, a model is built to predict the most
appropriate bug �xer. The assignee and the commenters of a bug report are both related with it, but
the assignee has much closer relationship. This is because the commenters may be just interested in this
bug report, while the assignee needs to have relevant skills to �x it. Zanetti et al. [44,45] used another
two rules to construct BTS-DSNs: (1) if developer A adds developer B to the CC list of a bug report,
there is a link from A to B in the DSN; (2) If developer A assigns developer B a bug report, there is a

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:7

link from A to B in the DSN. The CC interaction means that A is aware ofB and A knows B 's interests.
The assignment interaction means that A and B take up di�erent roles. Wu et al. [46] proposed the
following BTS-DSN construction way: for a newly coming bug report, a DSN is constructed such that
nodes are all the potential assignees and every pair of nodes is linked with the weight of the similarity
between the two developers. The motivation is to e�ectively assign bug reports. When a new bug report
comes, the bug reports similar with the new one are found by their features. Then the developers who
have participated in these bug reports are de�ned as the nodes ofa DSN. Every pair of them is linked
in this DSN, and the weight of a link is the similarity between the two developers. This type of DSN is
constructed every time when there is a new bug reported. This kindof construction is very special and
appropriate particularly for its application scenario.

3.5 Other DSNs

In addition to the above categories, some DSN construction methods are speci�c and not commonly
used in a certain repository. It is natural that DSNs can be constructed according to the prede�ned
organizational structure in an enterprise [47,48]. This method is onlyapplied for traditional commercial
software projects, because their organizational structures are de�ned carefully and clearly. The related
data needs to be collected from either documents or interviews. However, this method is di�cult to be
employed in open source software projects, since no prede�ned organizational structure exists. DSNs
can be constructed with the recommendation grades that a developer gives to another one. Wagstrom
et al. [25] conducted a study based on a website where developers can grade one another. Lim and
Bentley [49] conducted the study by interviewing stakeholders, and asking developers to grade others. If
A can give a grade toB , it means A understands B 's skills, so a link from A to B is added with the
grade as its weight. DSNs can be constructed according to their communication during the process of
code integration build [50]. Communication information collected to construct DSNs is recorded on the
particular code integration build platform. DSNs can be constructed from the transformation of technical
networks [51,52]. These papers analyze code's caller-callee dependencies to achieve a technical network,
and transform it to a DSN, which indicates their technical dependencies. DSNs can also be constructed
with the cross links in developers' blogs [25]. This method is also used in aspecial scenario that every
developer has a personal blog main page. Those developers often write technical articles, and can read
and refer to articles in other developers' blogs. Such cross links are picked out to construct DSNs.

In addition to the single types of DSNs above, there exist some hybrid DSNs which are not pure DSNs.
These nodes in hybrid networks include not only developers but also some other entities. Developers are
still related to each other, although not directly, in these hybrid DSNs. The most prevalent kind of hybrid
networks is the socio-technical network [53{57]. These hybrid DSNs contain both software modules and
developers. There can be three kinds of links in a socio-technical network: (1) module to module, based
on software dependency, (2) developer to developer, based on developers' cooperation, (3) developer to
module, based on the ownership. Surian et al. [58] constructed a network made up of developers, projects
and project features. Similar to PP-DSNs, the source of experimental data is SourceForge.Net. There
are two kinds of links in the hybrid DSNs: (1) developer to project, which indicates what projects a
developer has participated in, (2) project to project feature, which indicates what features a project has.
Some other software entities, e.g. requirements, bug reports, test cases, etc. may be also counted to
construct hybrid DSNs [56]. A lot of attempts are needed to see if any network analysis method is useful
for these networks in a particular scenario in the future.

4 Analysis of developer social networks

As a speci�c social network, DSNs have been studied for a relativelyshort time. Some simple methods
from the area of Social Network Analysis (SNA) have been introduced in DSNs. Based on SNA, the
properties of social networks can be discovered. Some pertinentconclusions and predictions are made
that explain a series of phenomena in software engineering and improve software development activities.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:8

We review the general SNA methods used in DSNs in Subsections 4.1{4.7. The bridge to the gap between
SNA methods and software engineering is discussed in Subsection 4.8.

4.1 SNA metrics

A social network has the small world and scale free properties. Many SNA metrics have been proposed
to capture the properties of the whole network and a single node [40,53,54]. We review three types of
SNA metrics: centrality, global metrics and other metrics.

Centrality is designed to measure how central a node locates in the network. Di�erent criteria have
been proposed to decide the value of a node's centrality [12,14,27,35,40,45,46,53,54]. With the �rst three
metrics in the following list, the centrality of a developer can be determined reasonably in most situations.
The centrality of a node equals to the importance of a developer basically in DSNs.

(1) Degree Centrality is de�ned as the number of neighbors of a node [14,45,50,53]. If the DSN is
directed, there will be in-degree and out-degree. Degree centrality is the simplest way for measuring the
centrality of a node. If a developer has many neighbors, he/she is apparently popular. However, this
metric is just local to the node itself, without considering other parts of the whole network.

(2) Closeness Centrality is de�ned as the number of steps requiredto go from the current node to all
the other nodes [14,45,53,54]. Closeness centrality is also called connectivity or distance centrality. It
measures how closely a node is located to other nodes. If the distance is low, the location of the node is
central in the network.

(3) Betweenness Centrality is de�ned as the number of shortest paths between pairs of other nodes that
run through the node [14,45,50,53]. Betweenness centrality is used to measure brokerage or information

ow. More shortest paths run through a node, more important th is node is.

(4) Bonacich Power is de�ned as a variant of degree centrality [53,54]. It merges the degree of the
current node and the degree of its neighbors. A node is consideredcentral if it is connected to the nodes
that have connections to many other nodes.

(5) Reachability is de�ned as a variant of closeness centrality [53,54].It measures the connectivity of
a network. It denotes the portion of other nodes in the network starting from this node can be reached
with a particular number of steps.

(6) Barycenter Centrality is calculated based on the sum of the lengths of all the shortest paths that
pass through this node [40]. More central nodes will have smaller overall shortest paths.

(7) Eigenvector Centrality is de�ned as a sophisticated centrality measure with the feedback feature
(e.g., PageRank) [45,54]. Nodes connected to highly central nodes increase their own centrality recursively.

Global metrics are designed to investigate the network as a whole. The most simple global metric
may be the size of network, i.e. the number of nodes or edges. Diameter is de�ned as the biggest value of
all possible shortest paths between every pair of nodes in the network [7,40]. Higher diameter indicates
that it takes longer time that information travels the whole network . Density is de�ned as the proportion
of edges in a network to the total number of all the possible edges [40,50]. Higher density indicates that
the nodes in the network have tighter connections with one another.

There exist some other metrics. Clustering Coe�cient is calculated as the probability that any two
neighbors of the current node are connected [7,12,29,40,44,45]. Thismetric measures the local connectivity
density. Group Degree Centrality Index is de�ned as a measure of how central a network is [44]. The
network with the star topology has a higher value for this metric. Characteristic Path Length [44] is
de�ned as the average number of edges in the shortest path between nodes. Smaller value means that
information can spread more easily. K-coreness [45] is de�ned in thisway: if a node has a degreek
after removing all other nodes with degree up tok � 1, this node belongs to a given shellk. Number
of 2-paths [29] is de�ned as the number of 2-paths going through anode. It is a measure of local social
status. Brokerage is de�ned as the number of pairs of nodes thatare connected only by the current
node [30,54]. Nagappan et al. [47] proposed a set of special metrics,i.e. organizational metrics. Those
metrics are appropriate for hierarchically organized structures.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:9

4.2 Roles

The main purpose of SNA is to evaluate the importance of a node. Theabove mentioned centrality metrics
can assess quantitatively. The software engineering tasks alwaysneed to decide whether a developer is
an expert or plays some particular role. For example, Ricca and Marchetto [59] found that \heroes" are
common in open source software projects and they exclusively manage a conspicuous proportion of �les
and code. We can use SNA to �gure out the role that a developer plays in a software project.

Developer Ranking. Many researchers use SNA to �nd leaders or key developers in DSNs. A
ranking method is used to estimate which developer is more importantthan others. Centrality is the
most popular way to measuring the importance of developers. PageRank is the algorithm used by Google
search [60] and it can be also used for developer ranking [46]. The importance of a node is also evaluated
by the probability of \visiting" the node when a user joins the networ k [32]. This method considers both
the current node and its neighbors. HITS score [32] is a score method �rst proposed in the hyperlinked
environment. It combines both inlinks and outlinks of a node.

Some other e�orts also concern developer ranking or prioritization[42,43,56]. These ideas are either
borrowed from the general social network research or improvedbased on PageRank. In addition, these
methods are closely related with speci�c scenarios, e.g., bug triage or bug severity prediction. The
developers can be divided into the following two groups [13,21]: core developers, who lie in the center
position in DSNs; periphery/associate developers, who lie around core developers in DSNs. We can also
determine whether a developer belongs to core or periphery by either visualization [21] or clustering [13].
It should be noted that core developers may have di�erent de�nitions in various papers.

Information Flow. Information can travel along the edges in DSNs, because DSNs depict communi-
cation and coordination relationships among developers. Developers playing crucial roles in information

ow need to be identi�ed. The simplest method is to compute degree centrality. Hub is a developer with
a high degree [14]. A hub developer is relatively crucial with heavy burden in the project. However, the
threshold that decides a hub developer varies with projects. Other than important nodes, one can also
�nd important edges. Bridge is an edge whose endpoints will be completely disconnected if it is removed
from the network [40]. Bridges are important channels for information transition. Two developers or
even two communities cannot interact with each other when a bridgeis broken.

According to their roles in information
ow, developers can be categorized into three kinds in a directed
DSN [30]: coordinator, a developer who lies in the path between nodeswithin the same cluster; gatekeeper,
a developer who lies in the path between nodes of other clusters andnodes within the same cluster, as a
�lter for the incoming information; representative, a developer who lies in the path between nodes within
the same cluster and nodes of other clusters, as a proxy for the outgoing information. To identify the three
roles, one needs to �nd clusters of DSNs in advance. A social network is a kind of complex network with
the small world and scale free properties, and DSNs contain some community structures (or clusters).
In a cluster, a coordinator is an information broker within its cluster . A gatekeeper or representative
is an information broker across clusters. Damian et al. [48] found that brokers (namely gatekeepers or
representatives) are usually boundary spanners who have many communication links across domains.
Actually, betweenness is the most popular method to identify brokers [26]. In addition, there are also
information brokers during the requirement phase [61].

When connections are imbalanced, there will be an interesting phenomenon. Structural holes [50,54]
are gaps in the social network to indicate the diversity of information
ow. For example, A has a neighbor
B , but B does not have other neighbors. Then the absence of an edge betweenB and A's other neighbors
represents structural holes. This measure is concerned with thedegree to which there are missing links
in between nodes and with the notion of redundancy in networks. Researchers induce this concept into
software engineering as a measure to be used in prediction models.

4.3 Community structures

The community structure or modularity is a key characteristic of a social network. Many researchers have
evaluated whether it still holds good for DSNs and mine corresponding communities. Surian et al. [9]

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:10

Table 1 Variable with power law distribution in DSNs

Variable Papers

Degree of nodes Refs. [7,12]

Connectivity of nodes Ref. [9]

Out-degree of nodes Ref. [26]

In-degree of nodes Ref. [26]

Number of nodes of communities Ref. [9]

Number of messages sent by developers Ref. [26]

Number of messages read by developers Ref. [26]

Number of projects with n developers Refs. [6,7]

Number of developers on n projects Ref. [6]

Stakeholder involvement Ref. [26]

studied the connectivity of DSNs. As a result, the DSN in their work is not a connected one, but is made
of many disjoint connected components or clusters. In this case,every connected component is considered
as a community. Madey et al. [6] also identi�ed clusters by connectedgroups of developers. Both these
methods construct PP-DSNs. There exist many connected clusters in their works. Zanetti et al. [45] used
a special DSN construction method based on \CC and ASSIGN relationships in bug reports". In such
a case, a DSN is not connected either, but there is the largest connected component containing most of
nodes.

The reason why a DSN is not connected but contains many disjoint connected components lies in
that the DSN construction method makes the DSN too coarse. TheDSNs are usually connected if
DSN construction uses email archives, version control systems,or bug report comments [20,28,39]. The
visualization of the DSN is to show the DSN (a VCS-DSN) contains several small strongly connected
groups [21]. Developers in the same community usually belong to the same prede�ned team. In addition,
the organizational structure can be revealed. For example, one can know who plays the role of a broker.

Community structures are identi�ed by community detection algorit hms for large scale DSNs [28,36,38].
DSNs are constructed from \email communication" [28] and \common bug report comments" [36,38],
respectively. To detect community structures, a variant of Newman and Girvan community detection
algorithm is used in [28,36,38]. In this algorithm, a measure called \modularity" is used to quantify
the strength of a community structure. If connections are dense within each community and coarse
across communities, the modularity is high. These DSNs contain clearcommunity structures, since the
modularity of each DSN is high [28,36,38]. The communities detected canoften indicate the organization
of the project in the real world. For example, developers in one community probably come from the same
product team. In addition, Damian et al. [62] described a decision tree method enabling practitioners to
uncover latent social communities in software development.

4.4 Properties

Social networks are also small world and scale free networks [63], and they have three common properties.
(1) The average length of the path between any two nodes is shortrelative to the size of network. For

example, six degrees of separation is a popular theory in social network, i.e., anyone can reach another
one within six steps [64].

(2) There exist clearly community structures in the network. In another word, the clustering coe�cient
and the modularity measure are both adequately high. Some researchers �nd that communities can be
mined from DSNs [9,28,36,45].

(3) The distribution of degree in the network should follow the power law distribution [65].
Many e�orts verify whether the power law distribution can be found in DSNs, not only for degree, but

also many other variables [6,7,9,12,26,36]. We summarized them as shownin Table 1.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:11

The property of the power law distribution is found on DSNs constructed by di�erent methods, in-
cluding PP-DSNs [6,7,9], EA-DSNs [26], VCS-DSNs [12], and BTS-DSNs [36].The characteristic of the
power law distribution is that the diagram looks like a straight line, when depicted in log-log scale. How-
ever, there are also some exceptions which do not satisfy the power law distribution. For example, the
distribution of degree does not follow the power law in [36]. Similarly, thenumber of edges and node
degrees of the core cluster in [9] and clustering coe�cient of modules in [12] do not follow the power law
distribution. It should be noted that there is a common feature between these exceptions and the power
law distribution. Using the typical example, i.e. the degree of nodes as the variable, there are very few
nodes with high degree and far more nodes with low degree, no matter whether it follows the power law
distribution. This phenomenon indicates that there are signi�cant leaders in a DSN.

The small world property means that nodes are closely connected innetworks. A typical example is six
degrees of separation, which means that all developers are connected to every other developer within at
most 6 hops. Researchers can use the average path length to study this phenomenon. The average path
length is the average of the geodesic path (i.e. the shortest path)between every two node. Each of the
average path lengths is no more than 6 in the studies [7,9,36,38]. Hong et al. [36] showed the distribution
of the length of geodesic paths, and their diagram indicates that the length of most geodesic paths is
about 3. Xu et al. [7] used the diameter, i.e. the largest geodesic path, to demonstrate the small world
phenomenon. In summary, studies in the literature have shown that DSNs could considerably satisfy the
small world property.

4.5 Evolution

Evolution is an important topic in the research area of general social networks. However, it has not been
able to attract much attention in DSNs. Hong et al. [36] discussed the evolution of di�erent properties,
e.g., the power law distribution, degree of separation, modularity, and community size. Kumar and Gupta
studied the evolution of di�erent kinds of measures, e.g., the number of contributors, clique size, clustering
coe�cient, average degree, average path length, and average distance [38]. Cataldo and Herbsleb demon-
strated how DSNs in geographically distributed projects evolve [2]. Lim and Bentley explored evolving
relationships between social networks and stakeholder involvement in software projects [49]. Sharma and
Kaulgud applied social network analysis techniques to investigate team evolution in a project's testing
phase [66]. Research on the evolution of DSNs can help us understand the changes of software project
teams and software process.

4.6 Patterns

As DSNs are represented graphically, traditional graph analysis techniques can be conducted on DSNs,
e.g., graph mining (called collaboration pattern mining in DSNs). Jermakovics et al. [21] investigated
a kind of patterns named topological patterns, i.e. organizationalstructures in DSNs. There exists a
direct relationship between collaboration patterns and the outcome of the software development [9]. In
particular, a study indicated that collaboration among developers isan important factor that in
uences
the issue resolution time [67]. It is also necessary to detect better collaboration patterns for software
managers for reference. Surian et al. [9] proposed a study to minecollaboration patterns from DSNs
based on historical collaborative information. The combination of graph mining and graph matching is
used to get the frequent sub-graphs. Then, the top 30 topological collaboration patterns can be extracted.
After analyzing those collaboration patterns, the authors reveal that the frequent patterns are of small
sizes. However, those frequent collaboration patterns cannot able to predict project outcomes. Surian et
al. [57] further proposed an e�ective approach to extract discriminative collaboration patterns in DSNs.
The discriminative collaboration patterns could distinguish successful projects and failed ones by a high
accuracy. For mining discriminative patterns in DSNs with multiple labels, a translation process is used
to map this problem to mining simple graph patterns.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:12

4.7 Visualization

Visualization is important for social networks. If a DSN is visualized in an appropriate way, one can derive
many conclusions easily from the graph. Some papers conduct theiranalysis based on visualization of
DSNs [21,24,51,55,56,68{70]. For example, one can �nd out core developers, information brokers, and
community structures. In [21], Jermakovics et al. used visualizationas a primary method of analysis.
They drew DSNs of several open source projects, and showed many analysis results visually, e.g., team
structures and central members, di�erent roles in the organization, and small communities. Begel et
al. [56] designed a framework called Codebook, to present and connect people with their work artifacts.
With this tool, developers can coordinate with one another more conveniently and e�ciently. Sarma et
al. [55] developed a socio-technical dependency browser called Tesseract, in order to show hybrid DSNs
and help software engineers understand their software teams.

4.8 Bridging the gap between DSNs and SE

It is important to combine SNA methods and the features of software development. In this subsection, we
summarize the research works bridging the gap between DSNs and software development. Meneely and
Williams validated whether SNA metrics could capture real situations [20]. They interviewed developers
in real projects, and found that the results of SNA are in accordance with developers' perception. To
be speci�c, edges in a DSN can indicate that two developers are collaborating; the distance between two
developers in a DSN can stand for their degree of separation; the high centrality of a developer indicates
that he/she is an expert in the project.

Many researchers investigate the relationships between DSNs andsoftware development activities with
some hypotheses.

(1) Developers within the same community are more likely to collaborate directly [31].
(2) The average directory distance between �les committed to by developers in the same community

is less than the similar sized group of developers drawn from di�erentcommunities [28].
(3) The number of messages sent by a developer has strong relationships with the degree of this

developer, and the number of source changes this developer makes [26].
(4) SNA metrics such as degree and betweenness indicate developers who actually commit changes [26].
(5) Developers are more likely to play the role of gatekeepers or brokers than non-developers in the

complete email social network [26].
(6) The developers within the same module communicate with each other closely and frequently [28].
(7) The more modules a developer contributes, the more communication he/she will have with each

other [31].
(8) There is a signi�cant relationship between network centrality and coordination (A text-mining ap-

plication is developed to measure the coordinative activity of each developer using information extracted
from email datasets.) [27].

SNA metrics and other observations in DSNs are related to coordination in software development.
Besides activities such as committing changes, results analyzed on DSNs also have relationships with
other features in a project. For example, centrality is related to the size of project [24]; properties of
DSNs are related to the type of developers contained in DSNs [7]. Themore useful analysis of DSNs is to
predict the future of projects. In [10], Antwerp and Madey found that relationships which have already
existed before among developers are correlated with the successof open source projects. A novel social
measure based on DSNs is proposed by Zhou and Mockus in [37], and veri�ed to have relationships with
the future of participants, e.g., whether a participant will become a long term contributor. More papers
(e.g., [16]) use SNA metrics in bug prediction.

5 Applications of developer social networks

DSNs have been widely used in some applications associated with software development. As to the
functional point of view, these applications can be roughly divided into two groups, i.e., the Prediction

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:13

Data collection DSN construction Recommendation model Evaluation

Prediction model

DSN analysis Regression models
of classifiers

Similarity
computing

Ranking and
recommendation

Figure 2 Procedures of two groups of applications.

Model based applications and the Recommendation Model based applications (see Figure 2). Both groups
include data collection, DSN construction, and evaluation. The key di�erence between these two groups
is that, the Prediction Model based applications need to constructeither regression models or classi�ers,
while the Recommendation Model based applications compute and rank the similarity of developers for
recommendation.

5.1 Prediction model based applications

In the following part, we �rst describe the procedure of the Prediction Model based applications. As
shown in Figure 2, the Prediction Model based applications usually consist of 5 steps.

5.1.1 Data collection

To construct a DSN, relevant information during software development is collected, including the com-
munication between developers, the contributions of developers to components, and the dependencies
among components (e.g., modules, �les, packages, functions, binaries, pieces, etc). More speci�cally, the
communication among developers could be extracted from email archives [30,56,71]. The contributions
of developers include comments [33,36,46,50], commits [14,42,53,56,72], bug �xing [41,42], etc. The de-
pendencies among components include the calls of functions, class inheritance or coupling, and system
dependencies [54,73], etc.

The collected information could be stored in di�erent software artifacts in distinct projects. For com-
mercial software projects (e.g., Window Vista [47,53,54,74], Hibernate-ORM [23,52], and IBM Rational
Team Concert (RTC) [57,72]), the related information is stored in Jazz [71], people management soft-
ware [47,56], etc. In contrast, the related information for open source software projects (e.g., Eclipse
[36,38,41,42,45,54,73,75], Mozilla [33,36,41,42,45,46,75], SourceForge [9,57,58], and Netbeans [45,73]) is
stored in Bugzilla [39,41], Trac [17], and Git repository [52,76], etc. Meanwhile, in some studies, some
speci�c tools are developed to extract such information, e.g., MaX,Understand from SciTools [54], De-
pendency Finder [73], and CodeViz [42], etc.

5.1.2 DSN construction

In a DSN, the nodes represent either developers or components,and the edges represent the connections
of nodes, e.g., communication, contributions, and dependencies, etc. With respect to the information
used, DSNs can be called as contribution networks [14,53], communication networks [30,71], collaboration
networks [42,45,53,58], and dependency networks [54,77,78], etc.

5.1.3 DSN analysis

The metrics used to measure DSNs can be divided into two types, i.e., complexity metrics and network
metrics. The primary di�erences lie in that complexity metrics mainly fo cus on single elements, while
network metrics focus on the relationship between nodes in networks. Generally, complexity metrics
include the number of authors, number of commits [53], number of lines of added/changed code [14],
number of minor contributors [74], and density [50,71], etc. Some typical network metrics include the

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:14

degree centrality [77], closeness centrality, betweenness centrality [14,53], eigenvector centrality [45,54],
and PageRank [46], etc. In the literature, many tools have been designed to compute these metrics,
e.g. Java Universal Network/Graph library (JUNG) [40,71,73], UCINE T [54], SPSS [53], ORA [67], and
B LIN [58], etc. Meanwhile, the method of Principle Component Analysis (PCA) has been widely used
to select the nonlinear combinations of these metrics.

5.1.4 Regression models or classi�ers

In order to predict, one �rst needs to build either regression models or classi�ers on training data, and then
employs either regression models or classi�ers. According to distinct requirements, di�erent regression
models or classi�ers can be chosen, including negative binomial regression, Poisson regression, logistic
regression [14,47,53], Bayesian classi�er [50,71], and Naive Bayes [39{41], etc. To test how e�ective
the regression models are when predicting, Pearson and Spearmancorrelation coe�cients between the
predicted values and the ground truth are used. For classi�ers, some tools could be used, e.g., Weka
[39{41], and Support Vector Machine (SVM) [39,45,57], etc.

5.1.5 Evaluation

The metrics of precision and recall are widely used by most studies toevaluate the results of classi�cation
and prediction [46,47,50]. In addition, other metrics are also used, such as AUC (area under the ROC
curve) [54,57], Accuracy [39,41,57,58,75], and F-score [54,73].

5.1.6 Similarity computing, ranking and recommendation

Di�erent with the Prediction Model based applications, in the Recommendation Model based applications,
one computes and ranks the similarities of developers for recommendation. There are three types of
similarities; the similarities among developers, the similarities among projects, and the similarities among
developers and projects. Those similarity information can supportdeveloper recommendation and bug
triage, or just be used to construct DSNs (considering the similarity as the weight of an edge). As
general recommendation system techniques are often combined with general social network analysis,
similar studies have been performed in the area of DSNs. The commonly used methods for calculating
the similarities include collaborative �ltering [19,22,41,58,79], the full-text search algorithm of SQL Server
[56], and the Random Walk with Restart (RWR) [58], etc.

Since the information for constructing DSNs is primarily collected in software maintenance, most
applications of DSNs are conducted within software maintenance. From Subsection 5.2 to Subsection 5.5,
we detail typical applications of DSNs in software maintenance. In Subsection 5.6, we introduce some
applications out of software maintenance.

5.2 Integration build quality prediction

This subsection mainly introduces the studies for integration build quality prediction. These studies share
the common characteristics as follows. First, they all belong to thePrediction Model based applications.
Second, all of these studies are conducted on commercial software projects. Finally, in these studies,
some of �ve steps in the Prediction Model based applications are completed by speci�c tools, e.g. Java
Universal Network/Graph (JUNG) [71], and Bayesian classi�er [50,71], etc.

Wolf et al. [71] employed task-based potential relations in DSNs to predict the outcome of integration
build. The JUNG framework is used to construct and visualize multiple nodes of DSNs on the Jazz
project. The involved data are extracted from multiple forms of communication, such as the comments
of developers to bug reports, emails among developers, etc. Wolf et al. [50] also studied the relationship
between the team communication structure and the quality of software integration in DSNs. After a
case study of IBM's Jazz project, they suggested that the combination of some communication structure
metrics can be used to identify whether the integration build would fail. For detecting the relationship
between socio-technical congruence in DSNs and build-success probability, Kwan et al. [72] proposed a
method using both weighted congruence measures and unweightedcongruence measures. In their study,

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:15

this method is proved to be useful to �nd the lack of coordination. After performing a case study in the
RTC project, Kwan et al. revealed that the socio-technical congruence is not simply correlated with build
success (If the build type is a continuous build, then increasing the congruence leads to an increase in the
build success probability. If the build type is an integration build, then increasing congruence actually
leads to a decrease in the build success probability.).

5.3 Defect prediction

Defect prediction is a process, in which the historical data are usedto identify the components that
are most likely to fail afterwards [80]. The prediction of component defects can support managers to
adjust their behaviors and reduce testing costs. Nagappan et al.[81] and Schroter et al. [82] issued the
failure-prone components prediction based on complexity metrics.The studies for defect prediction based
on DSNs can be divided into two categories: the predictive studies based on DSNs extracted from churn
information and dependency relationships [14,53,54,73,83], and the predictive studies based on DSNs
extracted from quantitative analysis [23,33,42,47,52,74,84{87]. Moreover, these studies also involve the
balance between the probability of detection and the probability of false alarms [40].

5.3.1 Defect prediction based on DSNs extracted from churn information and dependency relationships

In DSNs, the churn information can re
ect the contributions of developers to components [14,53], e.g.,
comments, commits, updates, etc. The dependency relationshipsbetween components include class
inheritance or coupling, function dependencies, etc. [54,73] The data for constructing DSNs are taken
from revision control repositories, bug tracking systems, mailing lists, etc. Next, we present the details
of these studies.

Pinzger et al. [53] and Meneely et al. [14] constructed DSNs based onthe churn information to predict
component defects in two di�erent projects respectively. Speci�cally, Pinzger et al. [53] built a contribu-
tion network with two types of nodes on the Vista project. In this n etwork, two sets of nodes represent
developers and binaries respectively. The edges represent the contributions of developers to binaries. The
weights of edges represent the number of commits performed by adeveloper for a binary. Meneely et
al. [14] built a DSN with one single type of nodes using the data of Nortel Networks. In this network, the
nodes represent developers. An unweighted edge between two developers denotes that both developers
have collaborated on at least one �le during the same release. For quantitative analysis of the centrality of
nodes in DSNs, some network metrics are used in both studies, e.g., degree centrality, closeness centrality,
and betweenness centrality, etc. Moreover, the complexity metrics are also used in both studies, e.g., the
number of authors, number of commits, and number of lines of added or changed code, etc.

The dependency relationship also proves to be useful for predicting defects. In the work of Bird
et al. [54], the dependency graph and churn information are combined to generate a new type of DSN,
namely hybrid socio-technical networks. The authors reveal that hybrid networks achieve higher accuracy
than the networks using either dependency relationships or churninformation only. Hu and Wong [73]
extended the work of Bird et al. [54], and suggested that the strength of relations among nodes can be
used to predict the number of post-release defects. In their study, the strength of relations is measured
with a topic model, namely the citation in
uence model. The results of an empirical study show its
feasibility and high accuracy.

5.3.2 Defect prediction based on DSNs extracted from quantitative analysis

Researchers employ two kinds of quantitative analysis to construct DSNs, namely quantitative analysis
of organization structures and quantitative analysis of ownership.
(a) Studies based on DSNs extracted from quantitative analysis oforganization structures.

Brooks [5] stated that product quality is seriously a�ected by organization structures. Nagappan et
al. [47] investigated the relationship between organization structures and software quality in Windows
Vista. In their work, eight network metrics are proposed quantifying the organizational complexity in
DSNs. The results of an empirical study show the e�ciency of thoseorganizational metrics for identifying

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:16

failure-prone binaries. Bird et al. [85] also revealed that the organizational di�erences are much stronger
indicators of quality than geography in DSNs.

Moreover, the software quality is seriously a�ected by the organizational change and organization
structure risks. Mockus [86] pointed out that the organizational changes can increase the probability
of software defects. Bhattacharya et al. [42] also claimed that stable development teams can reduce
the number of defects. In order to �nd the risk of organization structures, Sureka et al. [33] used a
collaboration network derived from bug report repositories of Mozilla Firefox, to predict the risk and
vulnerability in organization structures. Amrit et al. [88] proposed T Echnical Social Network Analysis
(TESNA) methods, and develop tools to identify Socio-Technical Structure Clash (STSC) in a medium
industrial sized company, namely eMaxx.
(b) Studies based on DSNs extracted from quantitative analysis ofownership.

Besides organization structures, software quality is also seriouslya�ected by the experience of devel-
opers [89]. In general, one intuition is that a highly experienced developer could produce high quality
software, and a developer lacking experience may produce low quality software. In the domain of DSNs,
the experience of developers is usually measured by the ownership metric. For the empirical studies on
Windows Vista and Windows 7, Bird et al. [74] demonstrated that the ownership metric shows a stronger
relationship with pre-release failures than post-release failures. In addition, Bird et al. also revealed
that there exists a strong positive relationship between the number of minor contributors and failures.
Similarly, a pair of developers with low experience may also produce low quality software. For identifying
the defects induced by developer pairs, Ell [52] and Simpson [23] conducted their respective studies on
the Hibernate-ORM project. In both studies, the authors used the Failure Index (FI) to determine the
failure-inducing possibility of developer pairs in DSNs.

Moreover, the failure-prone prediction aims to not only achieve better accuracy, but also reduce the
probability of false alarms. Bi�cer et al. [40] proposed a set of metrics on issue repositories to achieve the
best balance between the probability of detection and the probability of false alarms. The churn metric is
compared as a benchmark on the empirical study about the developers' comments on the issues of IBM
Rational Team Concert (RTC) and Drupal projects.

5.4 Bug triage

Bug triage aims to assign an appropriate developer for a new bug report [90,91]. To avoid the expensive
cost of manual maintenance,�Cubrani�c and Murphy [92] �rst proposed automatic bug triage. T he tradi-
tional ways for bug triage are based on machine learning methods [92]. In recent years, some researchers
facilitate bug triage with DSNs.

5.4.1 Recommendation based on development experience

Based on the bug reports and their comments in Mozilla Firefox, Wu etal. [46] proposed an approach,
namely Developer Recommendation with k-nearest-neighbor search and EXpertise ranking (DREX), to
recommend developers for new bugs. The expertise is measured byPageRank and the degree in a DSN.
The recommended developers may share interests or potential knowledge on resolving the reported bug.
Similar as the work by Wu et al. [46], Zhang et al. [43] proposed an automated method for developer
recommendation based on the experience and �xing cost. Xia et al. [93] combined bug report analysis
and developer analysis and proposed an accurate method for developer recommendation.

5.4.2 Bug triage based on tossing graph

Bug tossing is a phenomenon that a bug report is reassigned after its �rst assignment [75]. Tossing graphs
prove to be e�ective in improving the accuracy of bug triage [41,75]. Jeong et al. [75] �rst proposed the
tossing graph based approach to improve bug triage accuracy. A tossing graph is generated using the
reassignment information in bug repositories. Based on the prediction list of Naive Bayes or Bayesian
Networks, the developers with the large tossing probability are added to the new prediction list.

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:17

There exists some room for improvement in the work of Jeong et al. [75]. First, the equal-sized
folds training method is inadequate for large fold sizes. Second, retired and inactive developers are not
identi�ed. Third, the tossing probability is insu�cient for recommend ing the best developer. To deal with
these problems, Bhattacharya et al. [41] proposed and veri�ed several improvements on the Mozilla and
Eclipse projects, including: (1) intra-fold updates rather than int er-fold updates to train the classi�er,
(2) the new tossing ranking function with multiple factors, (3) the d eveloper expertise labeled on the
edges, and (4) the developer activity labeled on the nodes in a tossing graph.

5.4.3 Bug triage based on the importance of developers in DSNs

Besides tossing graphs, quantitative analysis for the importance of developers in DSNs is used to im-
prove the accuracy of bug triage. The importance of developers inDSNs is related with the developers'
contributions and the e�ectiveness of their works. In this area, the contributions refer to code commits,
comments on bug reports, etc.

Xuan et al. [39] �rst proposed the developer prioritization based on developer contributions in bug
repositories. In their work, the developer contributions in DSNs are measured with the comments for
bug reports. In the experiments of bug triage based on the developer prioritization, a prediction list is
generated by an existing machine learning approach, and then the developers with similar probabilities in
the prediction list are discriminated using the developer prioritization. Zanetti et al. [45] found that there
exists a relationship between the centrality of bug reporters and the quality of bug reports. The centrality
of bug reporters is quantitatively measured by nine topological metrics on DSNs. The relationship is used
to identify valid bug reports for e�cient bug triaging procedures.

5.5 Bug �xing

This subsection mainly introduces the studies of bug �xing based on DSNs, including the relationship
analysis between the properties of DSNs and the e�ectiveness of bug �xing process [38], and cross-system
bug �xing [30].

Kumar and Gupta [38] investigated the relationship between the properties of DSNs and the e�ective-
ness of bug �xing process. After an empirical study, they concluded that more modular communication
structures can improve the percentage and quality of bug �xing. Canfora et al. [30] found the phenomenon
of Cross-System Bug Fixings (CSBFs). Canfora et al. extracted and constructed a DSN from the mailing
lists and CVS, and then used various metrics to analyze the contributors involved in CSBFs. Their study
shows that the contributors involved in CSBFs change more sourcecode lines than other contributors.

5.6 DSN applications beyond software maintenance

Along with the progress of software development, a lot of information related to development can be
collected, which can also be used outside of software maintenance.

In the phase of the requirement analysis, traditional methods mayignore some stakeholders and require-
ments. Meanwhile, traditional methods also ignore the diversity of stakeholders and that of requirements.
To tackle the above challenge, Lim et al. [94,95] built a social network based on the recommendation of
stakeholders. In this network, the stakeholders can be users, developers, legislators, and decision-makers.
With this network, stakeholders and their requirements can be recommended and prioritized.

To determine developers' contributions to projects, Meneely et al. [17] presented two issue tracking
ticket annotations to identify the originator and the approver in an issue. In their work, the collaboration
information is combined with the version control system logs. Similarly, for identifying core developers of
each release, Zhang et al. [32] extracted multi-types of DSNs fromthe ArgoUML mail archives based on
topics. After an empirical study, they revealed that the metric of degree achieves the best performance
of all the metrics.

To build successful software systems, more and more software projects require collaboration and com-
munication of developers across the world during the entire software development lifecycle. Some studies
related to developers' recommendation have been conducted in recent years. Ohira et al. [79] proposed a

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:18

tool, namely Graphmania, to visualize the relationship among developers and projects using collabora-
tive �ltering and social network analysis. Begel et al. [56] presented a recommending framework, namely
Codebook, to mine
exibly transitive relationships between various artifacts of software repositories to
support inter-team coordination needs. The DSN in Codebook can satisfy the need to recommend the
counterparts of developers. Surian et al. [58] built a recommendingsystem based on the projects and
project properties to �nd reasonable developer candidates for agiven developer. The Developer-Project-
Property (DPP) graph is extracted as the network of developers' collaboration in their work.

6 Discussion

Based on the literature of DSNs, we investigate some key issues related to DSNs as follows.
Why DSNs work in resolving tasks in software engineering? As to our knowledge, there are

two key reasons why DSNs can work in software engineering. First,some special information, which is
not used in traditional software engineering, is captured in DSNs. Such new information includes churn
information, dependency relationships, quantitative analysis of organization structures and ownership,
tossing graphs. etc. With DSNs based on new information, one can �nd and mine some potential
relationships revealing the essence of software development. Therefore, DSNs can be used to achieve
better results for some speci�c tasks. For example, tossing graphs [75] can not only reduce the amount
of bug tossing events but also improve the accuracy of automatic bug triage. Second, new advances in
other social networks bring more new technologies and concepts for DSNs and eventually facilitate tasks
in software engineering. For example, collaborative �ltering is used inStakeRare [95] to avoid ignoring
stakeholders.

When DSNs can be used in software engineering? DSNs have shown their e�ects in improving
tasks in software engineering. To employ DSNs, some conditions must be satis�ed. First, some infor-
mation should be collected to construct DSNs. In the literature, a lot of information has been used,
including email archives, source code, code change logs, bug report logs, etc. Second, all collected infor-
mation should be related to tasks under resolving. For example, in the task of bug triage, the comments by
developers on bug reports indicate common interests and skills of developers. Therefore, such comments
could be employed to construct DSNs for recommending developersto a new bug report [57].

How DSNs can be used in software engineering? To employ DSNs for resolving tasks in software
engineering, one could follow several steps. First, one should clarify the objective of the task and �nd
related information for constructing DSNs. Then, one can investigate the hidden relationships between
DSNs and the task under resolving. With DSNs, one can either resolve the task solely with DSNs or
combine DSNs with existing approaches to facilitate the task. For example, in the phase of requirement
analysis of the RALIC project [94], the objective is to identify and prioritize all stakeholders and the
related information could be the initial set of stakeholders. After building the social network, Lim et
al. [94] conducted a survey to request existing stakeholders to recommend new ones. Based on the survey,
more complete social networks can be constructed and more stakeholders are involved.

7 Future work

The research area of DSNs cover a lot of disciplines, including linear and logic regression model, classi�-
cation, collaborative �ltering, and vector space model, etc. As to our knowledge, the research of DSNs
consists of three parts, i.e., construction, analysis, and applications. Therefore, researchers can explore
future directions in these parts successively.

New construction methods of DSNs. Since DSNs could be viewed as a special type of social
networks, new techniques in constructing social networks could be extended to them. For example, the
conformity phenomena in online social network have been considerably investigated in recent years. Tang
et al. [96] de�ned three major types of conformities and quantify them by the Con
uence model. Based
on this idea, one can construct hybrid DSNs across multiple projects and use the Con
uence model to

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:19

formalize the e�ects of social conformity and to predict user actions.
New analysis methods of DSNs. Some new analysis technologies arising in online social networks

can be used in the context of DSNs. For example, it is a great challenge to determine the developers'
collaboration in projects because many developers' links are hard to be captured [17]. In 2013, Kuo
et al. [97] proposed an unsupervised framework to predict the linksof unseen-type using aggregative
statistics in heterogeneous social networks. The work of Kuo et al. [97] could be a choice to resolve
the above challenge. Another example is to address the scalability problem of DSNs. Zhang et al. [32]
identi�ed the core developers of each release by extracting multi-types of DSNs from the ArgoUML mail
archives. However, along with the growth of DSNs' sizes, the method proposed by Zhang et al. [32]
becomes time consuming. A promising way to alleviate this problem is to employ Independent Path
Algorithm (IPA), a scalable algorithm proposed by Kim et al. [98] to �nd the most in
uential nodes in
a DSN.

New applications of DSNs. Nowadays, most applications of DSNs are conducted for software
maintenance. In the future, one can investigate extending DSNs to the whole life cycles of software,
including requirement analysis, design, implementation, and testing.For example, one may build up a
DSN with collaborations among software architects, so as to recommend software architects for a new
software project.

In addition, researchers may also investigate applications of DSNs innew areas of software engineering.
For example, mobile software engineering [99{104], a new branch of software engineering, involves millions
of mobile applications, millions of developers, and billions of users. In mobile software engineering, a DSN
can be constructed based on similar mobile applications (developers who have contributed to similar
applications can be linked). Then, a developer can achieve inspirations from similar open source projects
as the new mobile application under development.

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2014CB3407-
02), National Natural Science Foundation of China (Grant No s. 61170067, 61373013, 61370144), and Scienti�c
Research Foundation of Graduate School of Nanjing University (Grant No. 2013CL13).

References

1 Herbsleb J D, Mockus A. An empirical study of speed and commu nication in globally distributed software develop-
ment. IEEE Trans Softw Eng, 2003, 29: 481{494

2 Cataldo M, Herbsleb J D. Communication networks in geograp hically distributed software development. In: Pro-
ceedings of 2008 ACM Conference on Computer Supported Coope rative Work, San Diego, 2008. 579{588

3 Manteli C, van Vliet H, van Den Hoo� B. Adopting a social netw ork perspective in global software development. In:
Proceedings of 7th International Conference on Global Soft ware Engineering, Porto Alegre, 2012. 124{133

4 Bird C. Sociotechnical coordination and collaboration in open source software. In: Proceedings of 27th IEEE Inter-
national Conference on Software Maintenance, Williamsbur g, 2011. 568{573

5 Brooks Jr, Frederick P. The Mythical Man-Month, Anniversa ry Edition: Essays on Software Engineering. New
Jearsey: Pearson Education, 1995. 20{41

6 Madey G, Freeh V, Tynan R. The open source software developm ent phenomenon: an analysis based on social
network theory. In: Proceedings of Americas Conference on I nformation Systems, Dallas, 2002. 1806{1813

7 Xu J, Gao Y Q, Christley S, et al. A topological analysis of th e open source software development community. In:
Proceedings of 38th Hawaii International Conference on Sys tem Sciences, Hawaii, 2005. 198a{198a

8 Xu J, Christley S, Madey G. Application of social network an alysis to the study of open source software. In: J•urgen
B, Philipp J S, eds. The Economics of Open Source Software Dev elopment. Amsterdam: Elsevier Science, 2006.
205{224

9 Surian D, Lo D, Lim E P. Mining collaboration patterns from a large developer network. In: Proceedings of 17th
Working Conference on Reverse Engineering, Beverly, 2010. 269{273

10 van Antwerp M, Madey G. The importance of social network st ructure in the open source software developer com-
munity. In: Proceedings of 43rd Hawaii International Confe rence on System Sciences, Hawaii, 2010. 1{10

11 Ferdian T, Bissyand�e T F, Lo D, et al. Network structure of social coding in GitHub. In: Proceedings of 17th
European Conference on Software Maintenance and Reenginee ring, Genova, 2013. 323{326

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:20

12 Lopez-Fernandez L, Robles G, Gonzalez-Barahona J M. Appl ying social network analysis to the information in CVS
repositories. In: Proceedings of 2004 International Works hop on Mining Software Repositories, Edinburgh, 2004.
101{105

13 Yu L, Ramaswamy S. Mining CVS repositories to understand o pen-source project developer roles. In: Proceedings
of 4th International Workshop on Mining Software Repositor ies, Minneapolis, 2007. 8{8

14 Meneely A, Williams L, Snipes W, et al. Predicting failure s with developer networks and social network analysis.
In: Proceedings of 16th ACM SIGSOFT International Symposiu m on Foundations of Software Engineering, Atlanta,
2008. 13{23

15 Pohl M, Diehl S. What dynamic network metrics can tell us ab out developer roles. In: Proceedings of 2008 Interna-
tional Workshop on Cooperative and Human Aspects of Softwar e Engineering, Leipzig, 2008. 81{84

16 Bettenburg N, Hassan A E. Studying the impact of social str uctures on software quality. In: Proceedings of 18th
IEEE International Conference on Program Comprehension, B raga, 2010. 124{133

17 Meneely A, Corcoran M, Williams L. Improving developer ac tivity metrics with issue tracking annotations. In:
Proceedings of 2010 ICSE Workshop on Emerging Trends in Soft ware Metrics, Cape Town, 2010. 75{80

18 Schwind M, Schenk A, Schneider M. A tool for the analysis of social networks in collaborative software development.
In: Proceedings of 43rd Hawaii International Conference on System Sciences, Hawaii, 2010. 1{10

19 Jermakovics A, Sillitti A, Succi G. Mining and visualizin g developer networks from version control systems. In:
Proceedings of 4th International Workshop on Cooperative a nd Human Aspects of Software Engineering, Hawaii,
2011. 24{31

20 Meneely A, Williams L. Socio-technical developer networ ks: should we trust our measurements? In: Proceedings of
33rd International Conference on Software Engineering, Ha waii, 2011. 281{290

21 Jermakovics A, Sillitti A, Succi G. Exploring collaborat ion networks in open-source projects. In: Proceedings of 9t h
IFIP WG 2.13 International Conference, OSS 2013, Koper-Cap odistria, 2013. 97{108

22 MacLean A C, Knutson C D. Apache commits: social network da taset. In: Proceedings of 10th IEEE Working
Conference on Mining Software Repositories, San Francisco , 2013. 135{138

23 Simpson B. Changeset based developer communication to de tect software failures. In: Proceedings of 35th Interna-
tional Conference on Software Engineering, San Francisco, 2013. 1468{1470

24 Crowston K, Howison J. The social structure of free and ope n source software development. First Monday, 2005, 10
25 Wagstrom P A, Herbsleb J, Carley K. A social network approa ch to free/open source software simulation. In:

Proceedings of 1st International Conference on Open Source Systems, Genova, 2005. 16{23
26 Bird C, Gourley A, Devanbu P, et al. Mining email social net works. In: Proceedings of 2006 International Workshop

on Mining Software Repositories, Shanghai, 2006. 137{143
27 Hossain L, Wu A, Chung K K. Actor centrality correlates to p roject based coordination. In: Proceedings of 2006

ACM Conference on Computer Supported Cooperative Work, Ban �, 2006. 363{372
28 Bird C, Pattison D, D'Souza R. Latent social structure in o pen source projects. In: Proceedings of 16th ACM

SIGSOFT International Symposium on Foundations of Softwar e Engineering, Atlanta, 2008. 24{35
29 Nia R, Bird C, Devanbu P, et al. Validity of network analyse s in open source projects. In: Proceedings of 7th

International Working Conference on Mining Software Repos itories, Cape Town, 2010. 201{209
30 Canfora G, Cerulo L, Cimitile M, et al. Social interaction s around cross-system bug �xings: the case of FreeBSD

and OpenBSD. In: Proceedings of 8th International Working C onference on Mining Software Repositories, Waikiki,
2011. 143{152

31 Zhang W, Yang Y, Wang Q. Network analysis of OSS evolution: an empirical study on ArgoUML project. In: Pro-
ceedings of 12th International Workshop on Principles of So ftware Evolution and the 7th Annual ERCIM Workshop
on Software Evolution, Szeged, 2011. 71{80

32 Zhang W, Yang Y, Wang Q. An empirical study on identifying c ore developers using network analysis. In: Proceedings
of 2nd International Workshop on Evidential Assessment of S oftware Technologies, Lund, 2012. 43{48

33 Sureka A, Goyal A, Rastogi A. Using social network analysi s for mining collaboration data in a defect tracking system
for risk and vulnerability analysis. In: Proceedings of 4th India Software Engineering Conference, Thiruvananthapu-
ram, 2011. 195{204

34 Howison J, Inoue K, Crowston K. Social dynamics of free and open source team communications. In: Proceedings of
IFIP Working Group 2.13 Foundation on Open Source Software, Como, 2006. 319{330

35 Datta S, Kaulgud V, Sharma V S, et al. A social network based study of software team dynamics. In: Proceedings
of 3rd Annual India Software Engineering Conference, Mysor e, 2010. 33{42

36 Hong Q N, Kim S, Cheung S C. Understanding a developer socia l network and its evolution. In: Proceedings of 27th
IEEE International Conference on Software Maintenance, Wi lliamsburg, 2011. 323{332

37 Zhou M, Mockus A. Does the initial environment impact the f uture of developers? In: Proceedings of 33rd Interna-
tional Conference on Software Engineering, Hawaii, 2011. 2 71{280

38 Kumar A, Gupta A. Evolution of developer social network an d its impact on bug �xing process. In: Proceedings of
6th India Software Engineering Conference, New Delhi, 2013 . 63{72

39 Xuan J F, Jiang H, Ren Z L, et al. Developer prioritization i n bug repositories. In: Proceedings of 34th International

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:21

Conference on Software Engineering, Zurich, 2012. 25{35
40 Bi�cer S, Bener A B, C� a�glayan B. Defect prediction using social network analysis on issue repositories. In: Proceed ings

of 2011 International Conference on Software and Systems Pr ocess, Honolulu, 2011. 63{71
41 Bhattacharya P, Neamtiu I. Fine-grained incremental lea rning and multi-feature tossing graphs to improve bug

triaging. In: Proceedings of 26th IEEE International Confe rence on Software Maintenance, Timisoara, 2010. 1{10
42 Bhattacharya P, Iliofotou M, Neamtiu I, et al. Graph-base d analysis and prediction for software evolution. In:

Proceedings of 34th International Conference on Software E ngineering, Zurich, 2012. 419{429
43 Zhang T, Lee B. An automated bug triage approach: a concept pro�le and social network based developer recom-

mendation. Intelligent Computing Technology, 2012. 505{5 12
44 Zanetti M S, Sarigol E, Scholtes I, et al. A quantitative st udy of social organisation in open source software com-

munities. In: Proceedings of 7th International Conference on Computer Science & Education, Melbourne, 2012.
116{122

45 Zanetti M S, Scholtes I, Tessone C J, et al. Categorizing bu gs with social networks: a case study on four open source
software communities. In: Proceedings of 35th Internation al Conference on Software Engineering, San Francisco,
2013. 1032{1041

46 Wu W J, Zhang W, Yang Y, et al. Drex: developer recommendati on with k-nearest-neighbor search and expertise
ranking. In: Proceedings of 18th Asia Paci�c Software Engin eering Conference, Ho Chi Minh City, 2011. 389{396

47 Nagappan N, Murphy B, Basili V. The in
uence of organizati onal structure on software quality: an empirical case
study. In: Proceedings of 30th International Conference on Software Engineering, Leipzig, 2008. 521{530

48 Damian D, Helms R, Kwan I, et al. The role of domain knowledg e and cross-functional communication in socio-
technical coordination. In: Proceedings of 35th Internati onal Conference on Software Engineering, San Francisco,
2013. 442{451

49 Lim S L, Bentley P J. Evolving relationships between socia l networks and stakeholder involvement in software project s.
In: Proceedings of 13th Annual Conference on Genetic and Evo lutionary Computation, Dublin, 2011. 1899{1906

50 Wolf T, Schr•oter A, Damian D, et al. Predicting build fail ures using social network analysis on developer communi-
cation. In: Proceedings of 31st International Conference o n Software Engineering, Vancouver, 2009. 1{11

51 de Souza C R, Quirk S, Trainer E, et al. Supporting collabor ative software development through the visualization
of socio-technical dependencies. In: Proceedings of 2007 International ACM Conference on Supporting Group Work,
Sanibel Island, 2007. 147{156

52 Ell J. Identifying failure inducing developer pairs with in developer networks. In: Proceedings of 35th Internation al
Conference on Software Engineering, San Francisco, 2013. 1 471{1473

53 Pinzger M, Nagappan N, Murphy B. Can developer-module net works predict failures? In: Proceedings of 16th ACM
SIGSOFT International Symposium on Foundations of Softwar e Engineering, Atlanta, 2008. 2{12

54 Bird C, Nagappan N, Gall H, et al. Putting it all together: U sing socio-technical networks to predict failures. In:
Proceedings of 20th International Symposium on Software Re liability Engineering, Mysuru, 2009. 109{119

55 Sarma A, Maccherone L, Wagstrom P, et al. Tesseract: inter active visual exploration of socio-technical relationshi ps
in software development. In: Proceedings of 31st Internati onal Conference on Software Engineering, Vancouver, 2009.
23{33

56 Begel A, Khoo Y P, Zimmermann T. Codebook: discovering and exploiting relationships in software repositories. In:
Proceedings of 32nd International Conference on Software E ngineering, Cape Town, 2010. 125{134

57 Surian D, Tian Y, Lo D, et al. Predicting project outcome le veraging socio-technical network patterns. In: Proceed-
ings of 17th European Conference on Software Maintenance an d Reengineering, Genova, 2013. 47{56

58 Surian D, Liu N, Lo D, et al. Recommending people in develop ers' collaboration network. In: Proceedings of 18th
Working Conference on Reverse Engineering, Limerick, 2011 . 379{388

59 Ricca F, Marchetto A. Heroes in FLOSS projects: an explora tive study. In: Proceedings of 17th Working Conference
on Reverse Engineering, Beverly, 2010. 155{159

60 Page L, Brin S, Motwani R, et al. The PageRank Citation Rank ing: Bringing Order to the Web. Stanford: Stanford
InfoLab. 1999

61 Marczak S, Damian D, Stege U. Information brokers in requi rement-dependency social networks. In: Proceedings of
16th IEEE International Requirements Engineering Confere nce, Barcelona, 2008. 53{62

62 Tamburri D A, Lago P, van Vliet H. Uncovering latent social communities in software development. IEEE Softw,
2013, 30: 29{36

63 Wang X F, Chen G R. Complex networks: small-world, scale-f ree and beyond. Circ Syst Mag, 2003, 3: 6{20
64 Watts D J, Strogatz S H. Collective dynamics of small-worl d networks. Nature, 1998, 393: 440{442
65 Barab�asi A L, Albert R. Emergence of scaling in random net works. Science, 1999, 286: 509{512
66 Sharma V S, Kaulgud V. Studying team evolution during soft ware testing. In: Proceedings of 4th International

Workshop on Cooperative and Human Aspects of Software Engin eering, Hawaii, 2011. 72{75
67 Duc A N, Cruzes D S, Ayala C. Impact of stakeholder type and c ollaboration on issue resolution time in OSS Projects.

In: Proceedings of 7th IFIP 2.13 International Conference, OSS 2011, Salvador, 2011. 1{16
68 Gloor P A, Laubacher R, Dynes S B. Visualization of communi cation patterns in collaborative innovation networks-

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:22

analysis of some W3C working groups. In: Proceedings of 12th International Conference on Information and Knowl-
edge Management, New Orleans, 2003. 56{60

69 Gilbert E, Karahalios K. CodeSaw: a social visualization of distributed software development. In: Proceedings of
11th IFIP TC 13 International Conference, Rio de Janeiro, 20 07. 303{316

70 Borici A, Blincoe K, Schroter A. ProxiScientia: toward re al-time visualization of task and developer dependencies
in collaborating software development teams. In: Proceedi ngs of 4th International Workshop on Cooperative and
Human Aspects of Software Engineering, Zurich, 2012. 5{11

71 Wolf T, Schr•oter A, Damian D, et al. Mining task-based soc ial networks to explore collaboration in software teams.
IEEE Softw, 2009, 26: 58{66

72 Kwan I, Schroter A, Damian D. Does socio-technical congru ence have an e�ect on software build success? A study
of coordination in a software project. IEEE Trans Softw Eng, 2011, 37: 307{324

73 Hu W, Wong K. Using citation in
uence to predict software d efects. In: Proceedings of 10th Working Conference on
Mining Software Repositories, San Francisco, 2013. 419{42 8

74 Bird C, Nagappan N, Murphy B, et al. Don't touch my code! Exa mining the e�ects of ownership on software quality.
In: Proceedings of 19th ACM SIGSOFT Symposium and the 13th Eu ropean Conference on Foundations of Software
Engineering, Szeged, 2011. 4{14

75 Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In: Proceedings of 7th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, Amsterdam, 2009. 111{120

76 Meneely A, Williams O. Interactive churn metrics: socio- technical variants of code churn. ACM SIGSOFT Softw
Eng Notes, 2012, 37: 1{6

77 Zimmermann T, Nagappan N. Predicting defects using netwo rk analysis on dependency graphs. In: Proceedings of
30th International Conference on Software engineering, Le ipzig, 2008. 531{540

78 Nguyen T H, Adams B, Hassan A E. Studying the impact of depen dency network measures on software quality. In:
Proceedings of 26th IEEE International Conference on Softw are Maintenance, Timisoara, 2010. 1{10

79 Ohira M, Ohsugi N, Ohoka T, et al. Accelerating cross-proj ect knowledge collaboration using collaborative �ltering
and social networks. ACM SIGSOFT Softw Eng Notes, 2005, 30: 1 {5

80 Fenton N E, Neil M. A critique of software defect predictio n models. IEEE Trans Softw Eng, 1999, 25: 675{689
81 Nagappan N, Ball T, Zeller A. Mining metrics to predict com ponent failures. In: Proceedings of 28th International

Conference on Software Engineering, Shanghai, 2006. 452{4 61
82 Schr•oter A, Zimmermann T, Zeller A. Predicting componen t failures at design time. In: Proceedings of 2006

ACM/IEEE International Symposium on Empirical Software En gineering, Rio de Janeiro, 2006. 18{27
83 Weyuker E J, Ostrand T J, Bell R M. Using developer informat ion as a factor for fault prediction. In: Proceedings

of 3rd International Workshop on Predictor Models in Softwa re Engineering, Minneapolis, 2007. 8{8
84 Cubranic D, Murphy G C, Singer J, et al. Hipikat: a project m emory for software development. IEEE Trans Softw

Eng, 2005, 31: 446{465
85 Bird C, Nagappan N, Devanbu P, et al. Does distributed deve lopment a�ect software quality? An empirical case

study of Windows Vista. Commun ACM, 2009, 52: 85{93
86 Mockus A. Organizational volatility and its e�ects on sof tware defects. In: Proceedings of 18th ACM SIGSOFT

International Symposium on Foundations of Software Engine ering, Santa Fe, 2010. 117{126
87 Bettenburg N, Hassan A E. Studying the impact of social int eractions on software quality. Empir Softw Eng, 2013,

18: 375{431
88 Amrit C, van Hillegersberg J, Kumar K. Identifying coordi nation problems in software development: �nding mis-

matches between software and project team structures. arXi v:1201.4142, 2012
89 Rahman F, Devanbu P. Ownership, experience and defects: a �ne-grained study of authorship. In: Proceedings of

33rd International Conference on Software Engineering, Ha waii, 2011. 491{500
90 Anvik J, Hiew L, Murphy G C. Who should �x this bug? In: Proce edings of 28th International Conference on

Software Engineering, Shanghai, 2006. 361{370
91 Kagdi H, Hammad M, Maletic J I. Who can help me with this sour ce code change? In: Proceedings of 24th IEEE

International Conference on Software Maintenance, Beijin g, 2008. 157{166
92 Cubranic D. Automatic bug triage using text categorizati on. In: Proceedings of 16th International Conference on

Software Engineering & Knowledge Engineering, Ban�, 2004
93 Xia X, Lo D, Wang X Y, et al. Accurate developer recommendat ion for bug resolution. In: Proceedings of 20th

Working Conference on Reverse Engineering, Koblenz, 2013. 72{81
94 Lim S L, Quercia D, Finkelstein A. StakeNet: using social n etworks to analyse the stakeholders of large-scale softwar e

projects. In: Proceedings of 32nd International Conferenc e on Software Engineering, Cape Town, 2010. 295{304
95 Lim S L, Finkelstein A. StakeRare: using social networks a nd collaborative �ltering for large-scale requirements

elicitation. IEEE Trans Softw Eng, 2012, 38: 707{735
96 Tang J, Wu S, Sun J. Con
uence: conformity in
uence in larg e social networks. In: Proceedings of 19th ACM

SIGKDD International Conference on Knowledge Discovery an d Data Mining, Chicago, 2013. 347{355

Zhang W Q , et al. Sci China Inf Sci December 2014 Vol. 57 121101:23

97 Kuo T T, Yan R, Huang Y Y, et al. Unsupervised link predictio n using aggregative statistics on heterogeneous
social networks. In: Proceedings of 19th ACM SIGKDD Interna tional Conference on Knowledge Discovery and Data
Mining, Chicago, 2013. 775{783

98 Kim J, Kim S K, Yu H. Scalable and parallelizable processin g of in
uence maximization for large-scale social networks ?
In: Proceedings of 29th IEEE International Conference on Da ta Engineering, Brisbane, 2013. 266{277

99 Wasserman A I. Software engineering issues for mobile app lication development. In: Proceedings of FSE/SDP
Workshop on Future of Software Engineering Research, Santa Fe, 2010. 397{400

100 Galvis Carre~no L V, Winbladh K. Analysis of user comment s: an approach for software requirements evolution. In:
Proceedings of 35th International Conference on Software E ngineering, San Francisco, 2013. 582{591

101 Gomez L, Neamtiu I, Azim T, et al. RERAN: timing-and touch -sensitive record and replay for Android. In: Pro-
ceedings of 35th International Conference on Software Engi neering, San Francisco, 2013. 72{81

102 Hao S, Li D, Halfond W G. Estimating mobile application en ergy consumption using program. In: Proceedings of
35th International Conference on Software Engineering, Sa n Francisco, 2013. 92{101

103 MacHiry A, Tahiliani R, Naik M. Dynodroid: An input gener ation system for Android apps. In: Proceedings of 9th
Joint Meeting on Foundations of Software Engineering, Sain t Petersburg, 2013. 224{234

104 Jiang H, Ren Z L, Nie L M. Software engineering issues in mo bile big data applications. Commun CCF, 2014, 10:
24{28

