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Abstract—Convolutional Neural Networks (CNNs) are widely
deployed on the Graphics Processing Unit (GPU) to support Deep
Learning (DL) based services. Popular DL frameworks usually ig-
nore the inter-operator parallelism when executing the inference of
CNNs, which results in high inference latency. Although some inter-
operator scheduling methods have been proposed, there remains
a critical trade-off issue between inference latency (effectiveness)
and scheduling time (efficiency). In this article, we propose LIOS,
a novel latency-based heuristic inter-operator scheduling method
to balance inference latency and scheduling time. In LIOS, a CNN
latency model is built based on the given CNN and GPU. Then every
operator is assigned a priority value to represent its importance.
During each iteration of the scheduling process, LIOS identifies the
current data-independent operators, selects the operator with the
highest priority value, and assigns it to the GPU stream with the
smallest finish time. Extensive experimental results have demon-
strated the effectiveness and efficiency of LIOS. For the effective-
ness, LIOS can speed up the inference of normal-size and large-size
CNNs by 1.13∼ 1.59× compared to sequential scheduling. This
result is comparable to IOS, the latest state-of-the-art scheduling
method. For the efficiency, LIOS can speed up the scheduling
process by 7∼ 9210× compared to IOS.

Index Terms—Convoluitonal neural network, deep learning,
inference acceleration, inter-operator scheduling.

I. INTRODUCTION

A S ONE of the most widely used DL models, CNNs are the
foundation of many service applications [1], [2], [3] and

have achieved great success in many fields, including computer
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vision, natural language processing, and speech synthesis [4],
[5], [6]. A typical CNN is organized as a data flow graph where
each node represents an operator (the basic computing unit that
performs tensor operations) and each edge represents a tensor
that flows from one operator to another. In modern service
systems, CNNs are often deployed on the GPU since they can
provide a better parallel computing ability than the CPU when
processing tensors [7]. Before deploying a CNN, the execution
order of each operator should be determined. This process is
known as inter-operator scheduling and the time spent on it is
called the scheduling time. After deployment, the inference of
a CNN can be executed and its execution time is known as the
inference latency. However, with the development of CNN struc-
tures, the increasing computation cost results in the high latency
of CNN inference in real-world environments [8], [9]. Another
severe problem is the limited utilization of parallel computing
resources in the GPU since the parallelism inside a CNN is not
fully explored [10]. This problem leads to even higher inference
latency of CNNs. Therefore, methods are proposed to reduce the
CNN inference latency in the GPU environment by making use
of CNN parallelism. In the literature, two kinds of parallelism
inside a CNN are commonly used [10], [11].

Intra-Operator Parallelism: Intra-operator parallelism means
that when executing the inference of a CNN, each operator
is separated into small tasks that can be executed in parallel.
AutoTVM [11], Ansor [12], and Chameleon [13] explore this
parallelism by operator tuning. Specifically, they optimize a
CNN by refining the implementation code of each operator.
These methods can provide speedup for CNN inference, how-
ever, because of the huge search space, the time spent on oper-
ator tuning is usually unacceptable. Besides, only focusing on
the intra-operator parallelism is not enough for getting a high
GPU utilization [10]. Thus, methods based on inter-operator
parallelism are proposed.

Inter-Operator Parallelism: Different from intra-operator
parallelism where each operator is executed one by one, inter-
operator parallelism aims to reduce the inference latency of
CNNs by concurrently executing the operators of a CNN, i.e.,
inter-operator scheduling, which can support CNN-based ser-
vice applications by improving their efficiency. Nimble [7] is a
DL framework that supports concurrent execution of operators.
However, the main contribution of Nimble is to avoid redundant
scheduling by an ahead-of-time strategy and Nimble only uses
a scheduling method that ignores the latency information of
CNNs. Another commonly used scheduling strategy similar to
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Nimble is simple greedy scheduling [10], which tries to execute
as many operators as possible at a time. Different from the
above methods, Ding et al. [10] find out that the scheduling
problem is comprised of overlapping sub-problems, each of
which has its optimal structure. Thus, IOS, a scheduling method
based on dynamic programming, is designed to reduce the
inference latency of CNNs. By using IOS, the authors try to find
the optimal schedule of a CNN. All the above inter-operator
scheduling methods can provide speedup for CNN inference,
however, there is a critical trade-off issue between inference
latency (effectiveness) and scheduling time (efficiency).

On the one hand, IOS greatly reduces the inference latency
of CNNs but suffers from the huge scheduling time. The ability
of IOS to reduce inference latency is better than all the existing
scheduling methods. However, due to its exponential time com-
plexity and the huge scheduling space of computation graphs,
the scheduling time of IOS is very long. Take NASNet-A [14],
a widely used CNN, for example, IOS can provide 1.37× infer-
ence speedup compared to sequential scheduling, but it takes IOS
46 minutes to execute the scheduling process. In contrast, for the
same CNN, the scheduling time of simple greedy method is only
less than 1 s. The huge scheduling time would be an obstacle to
the deployment of IOS, which is the reason why a more efficient
scheduling method is required. Besides, it is difficult for IOS
to achieve the optimal schedule in the real-world environment
since the execution latency of each operator varies whenever
being measured.

On the other hand, some inter-operator scheduling methods
(e.g., simple greedy scheduling) do not take the latency of
operators into consideration. Though having short scheduling
time, these latency-insensitive methods only provide limited
inference speedup. For example, on NASNet-A, simple greedy
scheduling spends less than 1 s on the scheduling process but
only provides 1.2× inference speedup compared to sequen-
tial scheduling. It is obvious that the effectiveness of simple
greedy scheduling is much worse than IOS. Since latency-
insensitive scheduling methods are not good enough at reduc-
ing inference latency, a more effective scheduling method is
required.

To balance the inference latency and scheduling time, we pro-
pose a novel heuristic inter-operator scheduling method named
Latency-based Inter-Operator Scheduling (LIOS). For each
operator in a CNN, LIOS decides the execution order and which
GPU stream to be used for its execution, based on the proposed
two heuristic strategies. For a given CNN and GPU, LIOS works
as follows. First, a CNN latency model is built and each operator
is assigned with a priority value. Then the loop of scheduling
starts. In each iteration, the data-independent operator with the
highest priority is selected. After that, LIOS determines the start
time, the finish time, and the used GPU stream for the chosen
operator by considering which plan can result in the earliest
finish time. Finally, the data dependency of operators is updated
at the end of this iteration. The process is repeated until all the
operators are scheduled and then LIOS produces a schedule.

To evaluate the effectiveness and efficiency of LIOS, we
conduct extensive experiments on CNNs. In the experiments,
we use the same benchmark as IOS, including NasNet-A [14],

SqueezeNet [15], Inception-V3 [16], and RandWire [17]. For
effectiveness, the experimental result shows that LIOS can
achieve results comparable with IOS, the latest state-of-the-
art scheduling method, on normal-size and large-size CNNs.
Specifically, LIOS can speed up the inference by 1.13∼ 1.59×
for these CNNs, compared to sequential scheduling. In some
cases, LIOS can even provide higher inference speedup than
IOS. For efficiency, LIOS achieves 7∼ 9210× speedup com-
pared to IOS. These results show that LIOS can achieve a balance
between inference latency and scheduling time for normal-size
and large-size CNNs.

The main contributions of the paper are summarized as
follows:
� To our knowledge, this study is the first to leverage latency-

based heuristics to solve the inter-operator scheduling
problem.

� We propose LIOS, a latency-based heuristic inter-operator
scheduling method, to tackle the critical trade-off issue
between inference latency and scheduling time among the
existing scheduling methods.

� We conduct extensive experiments on CNNs to show the
effectiveness and efficiency of LIOS. The result shows that
LIOS can provide inference speedup comparable with IOS
for most CNNs in the benchmark while keeping much
shorter scheduling time than IOS.

The rest of the paper is structured as follows. In Section II, we
introduce the background and present the problem definition of
inter-operator scheduling. Motivation is discussed in Sections III
and IV explains LIOS in detail. The experimental setup and
results are illustrated in Sections V and VI, respectively. We
discuss the application scope and potential usage of LIOS in
Section VII. In Section VIII, we review the related work. Finally,
we summarize the paper in Section IX.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we begin with the basic concepts of the CNN.
Then, the parallelism of a GPU and its hardware foundation
are introduced. Finally, definitions are made to formulate the
inter-operator scheduling problem.

A. Convolutional Neural Network and Representation

CNNs are widely used in classification and regression
tasks [18], [19]. If we treat a CNN as a black box, for a given
input (e.g., a three-dimensional tensor), it outputs a result tensor.

To clearly understand the inside dataflow, a CNN is usually
represented by a Directed Acyclic Graph (DAG), which is also
known as the computation graph. Fig. 1(a) shows a toy CNN and
all the operators are listed, e.g., conv1× 1 represents a convo-
lution layer of which the kernel size is 1× 1. The computation
graph of the CNN is shown in Fig. 1(b). We stipulate that there
is one entry node and one exit node in the DAG. Moreover,
data input and data output is not regarded as a node.1 In the
DAG, each vertex represents an operator (e.g., a convolution
layer), which performs tensor operations on the input data and

1Operator, node, and vertex are used interchangeably in this paper.
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Fig. 1. CNN and its computation graph (DAG).

Fig. 2. Example of concurrently executing operators on GPU streams.

outputs the computation result. Each directed edge from vertex
A to vertex B means that B uses the output of A as input
and is data-dependent on A. For each operator, the execution
cannot be interrupted and it can be executed only when all of
its predecessors have been executed. The inference process of
a CNN can be explained through the DAG. First, the input data
is fed to the entry node. Then, the data flows through the DAG
according to the edges, and tensor operations are performed.
Finally, the result comes out from the exit node.

B. GPU Parallelism

A GPU provides parallel computing ability in two ways. The
first kind is intra-operator parallelism. A typical NVIDIA GPU
consists of many Streaming Multi-processors (SMs) [20] and
each SM has its own computation resources (e.g., memory).
When an operator is launched, it is separated into independent
tasks that are sent to several SMs for concurrent execution. How-
ever, since only a single GPU stream is used in this parallelism,
the computation power of a GPU cannot be fully utilized when
one operator can not saturate the whole GPU and some SMs are
idle [10].

The second kind is inter-operator parallelism, which is the
foundation of inter-operator scheduling methods. Fig. 2 shows
an example of the concurrent execution of operators. In the
figure, seven operators are assigned to three GPU streams. Each
GPU stream can be seen as a task queue [7] where operators
are executed following the first-in-first-out principle. It can be
seen that operators on different streams run in parallel (e.g.,
op2 and op3) while operators on the same stream are executed
sequentially (e.g., op2 and op4). Note that the latency of one

Fig. 3. Weighted DAG and the latency table that stores the weight of each
node.

operator, executed alongside other operators, is usually longer
than the latency when it is executed solely on the GPU. The
reason stems from the additional cost of using multiple GPU
streams and the potential contention of GPU resources when
multiple operators run in parallel. Still, compared to sequential
execution, concurrent execution can greatly reduce the infer-
ence latency of a CNN. Different from the former parallelism,
inter-operator parallelism uses multiple GPU streams for the
concurrent execution of operators, which makes more SMs
active and improves the utilization of a GPU.

C. CNN Latency Model

In the inter-operator scheduling problem, for the given CNN
and GPU, we build a CNN latency model to represent their
information, which consists of two parts: a weighted DAG and
a GPU stream set.

Weighted DAG: First, the computation graph of the given CNN
is represented by a DAG G = (V,E). Then, each operator in the
DAG is executed on the given GPU and its latency is recorded.
Finally, we set the weight of each node to its execution latency.
As shown in Fig. 3, a weighted DAG is constructed based on the
CNN in Fig. 1(a) and the weight of each node is shown in the
latency table.

GPU Streams: Since the parallel computing abilities of dif-
ferent GPUs vary in a large range, the number of usable streams
in a GPU is not fixed and usually left for user to decide. We use
a set P = {p1, p2, . . ., px} to represent the set of GPU streams,
where x determines the number of usable streams.

D. Scheduling Problem Formulation

With the CNN latency model in Section II-C, we can define the
inter-operator scheduling problem. For a given CNN and GPU,
the key idea of scheduling is to properly arrange the start time,
the finish time, and which stream to be used, for the execution
of each operator. We begin with some basic definitions.

Definition 1: EST (vi, pj) is the Earliest Start Time of vertex
vi on stream pj . It is defined by

EST (vi, pj) = max

{
free(pj), max

vk∈pred(vi)
{FT (vk)}

}
,

(1)
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where free(pj) is the earliest time when stream pj is available
for executing operator vi, pred(vi) is the set of predecessors of
vi in the DAG, and FT (vk) is the finish time of operator vk. The
equation shows that EST (vi, pj) is constrained by two factors.
First, an operator cannot run on an occupied stream. Second, an
operator must wait until all of its predecessors are executed.

Definition 2: ST (vi, pj) is the Start Time of vertex vi on
stream pj . It must satisfies ST (vi, pj) ≥ EST (vi, pj).

Definition 3: EFT (vi, pj) is the Earliest Finish Time of
vertex vi on stream pj . It is defined by

EFT (vi, pj) = EST (vi, pj) + wi, (2)

where wi is the weight of vi, i.e., the execution latency of
operator vi on the GPU.

Definition 4: FT (vi, pj) is the Finish Time of vertex vi on
stream pj . It must satisfies FT (vi, pj) ≥ EFT (vi, pj).

Definition 5: makespan denotes the inference latency of the
CNN, i.e., the time interval between the start and end of the
CNN. It is defined by

makespan = FT (vexit)− ST (ventry), (3)

where FT (vexit) is the finish time of the exit node in the
DAG and ST (ventry) is the start time of the entry node. In the
scheduling problem, ST (ventry) is set to zero and makespan =
FT (vexit).

Definition 6: Based on the above definitions, a schedule S is
defined by

S={(ventry, pentry, ST (ventry, pentry), FT (ventry, pentry)),

. . .,

(vi, pj , ST (vi, pj), FT (vi, pj)),

. . .,

(vexit, pexit, ST (vexit, pexit), FT (vexit, pexit))}, (4)

where vi ∈ V is a node in the DAG, pj ∈ P is a stream in
the GPU stream set. A schedule S starts with ventry, the entry
node of the DAG, and ends with vexit, the exit node. Each
tuple (vi, pj , ST (vi, pj), FT (vi, pj)) in a schedule S denotes
that operator vi is executed on stream pj with the start time of
ST (vi, pj) and the finish time of FT (vi, pj).

The purpose of latency-oriented inter-operator scheduling is
to find a schedule S that minimizes the makespan of the CNN.

III. MOTIVATION

In this section, we first discuss the importance of inter-
operator scheduling in GPU-based deep learning systems and the
obstacles faced by state-of-the-art scheduling methods. Then, we
explain why latency-based heuristics are leveraged to solve the
scheduling problem.

A. Significance and Obstacles of Scheduling

It has become a critical problem to reduce the inference la-
tency of CNNs [21]. A common practice is to make use of the par-
allelism inside a GPU [10]. Usually, a GPU with more SMs can
provide stronger parallel computing power. As shown in Table I,

TABLE I
THE NUMBER OF STREAMING MULTI-PROCESSORS IN TYPICAL MODERN GPUS

TABLE II
THE PERCENTAGE OF LATENCY CHANGE OF EACH OPERATOR IN NASNET-A

Fig. 4. The distribution of inference latency (ms) of NASNet-A after being
scheduled by IOS .

a typical modern GPU usually provides tens of SMs, indicating
strong parallelism. However, intra-operator parallelism based
methods and popular DL frameworks (e.g., TenorFlow [22] and
PyTorch [23]) only use a single GPU stream, which means
that the powerful inter-operator parallelism in modern GPUs is
ignored [7]. Thus, some inter-operator scheduling methods are
proposed to fill the gap and achieve a higher GPU utilization.

However, there is still room for improvement in inter-operator
scheduling methods. Except for the trade-off issue between in-
ference latency and scheduling time, IOS faces another obstacle.
Though trying to find the optimal schedule, it is difficult for IOS
to achieve this goal in the real-world GPU environment due to
the changing execution latency of operators. To illustrate that,
we execute NASNet-A 50 times and record the latency of each
operator. Then, the percentage of latency change of each operator
is calculated and shown in Table II. The result shows that the
change rate of 102 out of 139 operators is larger than 1%, which
indicates that the execution of an operator on the GPU is not
stable and the latency of most operators differs at each execution.
Moreover, we use IOS to produce a schedule for NASNet-A and
execute the scheduled CNN 50 times. As shown in Fig. 4, the
scheduled CNN also has changing inference latency. The reason
may be that IOS ignores the above latency instability and has
a huge scheduling time, which means that during or after the
scheduling process, slight variation in the operator latency will
make the schedule non-optimal.

In conclusion, inter-operator scheduling is crucial to reduce
the inference latency of CNNs on the GPU environment. Con-
sidering the obstacles faced by the existing scheduling methods,
we would prefer a new method that can both keep a short
scheduling time and produce near-optimal schedules to provide
good inference latency reduction.

B. Advantages of Heuristic Methods

To address the inter-operator scheduling problem, we turn to
heuristic methods. Heuristic methods are the general name for
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Fig. 5. Main framework of LIOS.

methods that use empirical knowledge to get solutions. The most
valuable characteristic of heuristic methods is finding pretty
good solutions with polynomial time complexity, instead of
exponential time complexity. This kind of method is often used
in classic NP-Hard problems since the time spent on finding the
optimal solution is unacceptable [24], [25].

Heuristic methods fit very well in solving the trade-off issue
among the existing inter-operator scheduling methods. By lever-
aging a heuristic method, we can get a near-optimal schedule,
while keeping a much lower scheduling time. To achieve a better
result in terms of reducing the inference latency, we design
heuristic strategies based on the latency information of a CNN,
which is ignored by Nimble and simple greedy scheduling.
Specifically, in LIOS, we take both the data dependency in the
CNN computation graph and the latency of each operator into
consideration. Then we heuristically assign these operators to
different GPU streams for concurrent execution. Another benefit
of the short scheduling time is that our heuristic method can
quickly adapt to the changing GPU environment.

IV. METHOD

In this section, we present the Latency-based Inter-Operator
Scheduling (LIOS) method. First, we give an overview of LIOS.
Then, two core phases in the heuristic scheduling procedure,
operator prioritizing and stream selection are introduced with
examples. At last, we illustrate the complete workflow and
deployment of LIOS.

A. Overview of LIOS

The framework of LIOS is shown in Fig. 5, which has three
procedures.
� CNN Latency Model Construction: For a given CNN and

GPU, we build a CNN latency model as described in
Section II-C. First, we construct a weighted DAG based
on the computation graph of the CNN, where the weight of
each node equals its execution latency on the GPU. Then,
a GPU stream set is created to represent the usable streams
in the GPU. The CNN latency model will be used as the
input of our scheduling method.

� Heuristic Scheduling: Heuristic scheduling is the main pro-
cedure of LIOS. In this procedure, we first associate each

vertex with a priority value to distinguish the importance of
each operator. Then, we continually pick an operator and
select a stream for its execution. When there is no operator
left, the scheduling result is obtained. Two core phases and
the complete workflow of this procedure are explained in
Sections IV-B, IV-C, and IV-D, respectively.

� Deployment: After obtaining a schedule, it is deployed on
the GPU. Then we can execute the CNN in a parallel form.

A running example is used to illustrate how IOS works.
Running Example: The CNN latency model in Fig. 3 is used

as an example. In the weighted DAG, there are 10 nodes and
12 edges. We set the GPU stream set to P = {p1, p2, p3}. The
scheduling process of each node is shown in Table III.

B. Operator Prioritizing Phase

The basic idea of operator prioritizing is that we can achieve
a smaller makespan by executing the important operator first.
Intuitively, we believe that an operator is more important if it has
longer execution latency. Thus, when facing the condition that
several data-independent operators (i.e., operators of which all
the predecessors are already scheduled) are ready, we first assign
a priority value Rank(vi) to each operator, which is defined by

Rank(vi) = node_weight(vi), (5)

where node_weight(vi) is the weight of vertex vi in the
weighted DAG, which equals the execution latency of vi. Then,
in the operator prioritizing phase, the data-independent operator
with the highest priority value will be scheduled first. The result
of our ablation experiment shows that this heuristic strategy
works very well.

Example: We focus on step 2 in Table III. After scheduling
v1, four data-independent nodes are appended to wait_list,
including v2, v3, v4, and v5. Then, in the operator prioritizing
phase, a node should be selected. According to the execution
latency of each operator in the latency table from Fig. 3, the
priority values of the four nodes are 5, 5, 5, and 8, respectively.
Then, node v5 is picked for further scheduling since it has the
highest priority value among the candidate operators.
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TABLE III
THE SCHEDULING PROCESS OF THE CNN LATENCY MODEL IN FIG. 3

C. Stream Selection Phase

The stream selection phase is the next step of the operator
prioritizing phase. The core idea of this phase is that we hope
making the current operator finish earlier will finally result in
a smaller global makespan. Thus, for a selected operator in the
former phase, LIOS chooses a GPU stream for its execution
based on itsEFT value. In detail, LIOS first calculates theEFT
value of each stream. Then the stream with the smallest EFT
is selected. For a vertex vi, the selected stream p∗ is defined by

p∗ = pj∗

j∗ = argmin
j

EFT (vi, pj). (6)

Where vi is the operator currently being scheduled and
EFT (vi, pj) is the earliest finish time of operator vi on stream
pj . This equation means that LIOS selects the stream that makes
the current operator finish as early as possible. Combining the
two phases, it can be seen that LIOS tries to reduce the makespan
by finishing the execution of long-latency operators first.

Example: We continue with the example in Section IV-B.
Now that node v5 is the selected operator, in the stream selection
phase, a stream should be selected for its execution. Note that
node v1 is placed on stream p1 for execution in step 1. Thus,
node v5 cannot be executed on S2 or S3 at timestamp 0 because
it is data-dependent on node v1. Since the EST value of each
stream is the same, all the 3 streams have the same smallest
EFT value. Finally, LIOS selects the first stream that achieves
the smallest EFT , which is S1 in this case.

D. LIOS and Deployment

In this section, LIOS is explained in detail. First, the pseudo-
code of LIOS is shown in Algorithm 1 and we go through it
step by step. Second, a complete example is presented for a
better understanding of LIOS. Third, we explain how to deploy
a schedule to the hardware (e.g., a GPU) for the concurrent
execution of CNN operators.

As shown in Algorithm 1, LIOS begins with the CNN latency
model construction procedure at line 1, which is described in
Section II-C. The heuristic scheduling procedure starts at line 2.
From line 2 to line 3, LIOS initializes thewait_list and result list
S. The former is used to store operators waiting for scheduling
and the latter keeps the scheduling result. Each element in S is

Algorithm 1: Pseudocode of LIOS.
Input: A CNN model and GPU
Output: A schedule S
1: Construct CNN latency model: a weighted DAG

G(V,E) and a set P which has x usable GPU streams
2: Create an empty scheduling result list S
3: Create an empty list wait_list and put ventry as the first

element
4: Compute the priority value Rank(vi) for each operator
5: while wait_list is not empty do
6: vi ← operator with the highest Rank value in

wait_list
7: for each stream pj in P do
8: Compute EFT (vi, pj)
9: end for

10: p∗ ← stream pj which minimizes the EFT (vi, pj)
11: Append (vi, p

∗, EFT (vi, p
∗), EST (vi, p

∗)) to S
12: Remove vi from wait_list
13: Update data dependency among operators
14: Put data-independent operators into wait_list
15: end while
16: return S

a schedule tuple defined in Definition 6. Then, LIOS computes
the priority value Rank for each operator, according to the node
weight of the operator. In the while loop from line 5 to line 15,
LIOS iteratively schedules every operator in the weighted DAG.
At line 6, the operator with the highest Rank in wait_list is
picked for scheduling. From line 7 to line 8, the EFT value of
vi on each stream is calculated. Then LIOS selects the stream
with the smallest EFT at line 10. At line 11, LIOS determines
the schedule tuple of operator vi and stores it inS. After finishing
the scheduling of an operator, LIOS first removes the operator
from wait_list and then updates the data-dependency among
operators, which is described from line 12 to line 13. The reason
for updating the data dependency is that some new operators will
be ready for execution after the execution of their predecessors.
The final statement inside the while loop is at line 14, where
those newly ready operators are appended to wait_list. When
there is no operator in the wait_list, the loop ends, and the
schedule S is obtained.
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Fig. 6. Visualized scheduling result in Table III (makespan=38).

For time complexity, it can be seen from the pseudocode that
the time complexity of LIOS is O(xn2) for a GPU stream set
with x usable streams and a weighted DAG G = (V,E) with n
vertices.

Example: We illustrate the working process of LIOS in detail
and start from step 1 in Table III. First, v1 is appended to
wait_list because the entry node of DAG has no predecessor.
Then, after operator prioritizing and stream selection, v1 is
assigned to p1 with a start time of 0 and a finish time of 3. In step
2, data-dependency is updated and the newly data-independent
nodes (v2, v3, v4, and v5) are appended into wait_list for
operator selection. Then v5 is selected and assigned to p1 with
a start time of 3 and a finish time of 11. The above process
repeats until all the nodes are scheduled, which is step 10 in
the table. The final scheduling result in Table III is visualized
and shown in Fig. 6. Compared to the unscheduled CNN, of
which the operators are sequentially executed, LIOS reduces
the theoretical makespan from 73 to 38.

In the end, we describe the deployment of LIOS. After
obtaining a schedule for a CNN and GPU, CUDA [20], the
application programming interfaces provided by NVIDIA, is
used to create GPU streams, control the synchronization among
streams, and perform parallel execution of the CNN on the GPU.
For each operator in the CNN, cuDNN [26], the NVIDIA CUDA
deep neural network library, is used to create the corresponding
CUDA kernel. Though LIOS is designed for GPU, the schedul-
ing method can be applied in various hardware that supports
concurrent execution of CNN operators (e.g., multi-core CPUs).
The reason is that LIOS treats each GPU stream as a task queue
and this abstract conception can be adapted to other hardware.

V. EXPERIMENTAL SETUP

In this section, we first describe the benchmark, baselines,
implementation detail, and implementation environment. Then,
we present the three Research Questions (RQs) which will be
investigated in the experiment.

A. Benchmark, Baselines and Implementation Detail

In this section, we introduce the CNNs selected for the ex-
periment, the scheduling methods used for comparison, and the
details of implementation.

TABLE IV
INFORMATION OF THE COMPUTATION GRAPHS OF CNNS IN THE BENCHMARK

Benchmark: We follow the setup of IOS to build our bench-
mark. Popular and representative CNNs are used in the exper-
iment, including NasNet-A [14], SqueezeNet [15], Inception-
V3 [16], and RandWire [17]. The number of vertices and edges
in the computation graph of each selected CNN is shown in
Table IV. According to the number of vertices in the computation
graph, we divide the four CNNs into three categories. First, we
regard SqueezeNet as a typical small-size CNN which has a
small number of operators. By using small convolution layers
(e.g., conv1× 1), the number of parameters of SqueezeNet is
extremely small. Second, InceptionNet-V3 and Randwire are
regarded as normal-size CNNs commonly used in computer vi-
sion tasks [27], [28]. The former is well-designed by people with
expert knowledge while the latter is generated by some random
methods. Third, we use NASNet-A to represent the large-size
CNNs designed by neural architecture search methods [29].

Baselines: We show the effectiveness and efficiency of LIOS
by comparing it with the baseline methods. Among the inter-
operator scheduling methods, two kinds of scheduling methods
are selected for comparison. First, sequential scheduling and
simple greedy scheduling are used since they are classic meth-
ods. Second, IOS and Nimble, two state-of-the-art methods, are
selected. The detailed description of each method is as follows.
� Sequential scheduling is the most classic method that

is widely used in popular DL frameworks [7]. In this
method, no inter-operator parallelism is used and all the
operators are executed one by one. Thus, the ability of
an inter-operator scheduling method to provide inference
latency reduction can be shown by calculating its speedup
compared to sequential scheduling.

� Simple greedy scheduling is another commonly used
method [10]. It only takes the data-dependency among
operators into consideration and tries to execute as many
operators as possible at each time.

� Nimble [7] is a state-of-the-art method. It first transforms
the computation graph of a CNN to its Minimum Equiva-
lent Graph (MEG). Then, a bipartite graph is constructed
based on the MEG. Finally, a schedule is generated from
the maximum matching of the bipartite graph.

� IOS [10] is the latest state-of-the-art scheduling method
that leverages dynamic programming to find a schedule.
Besides, IOS is not a pure inter-operator method, since
it employs operator merging, an optimization method for
computation graph, to provide extra inference latency re-
duction in some conditions.

Implementation: The open-source version of IOS is used
while we implement LIOS and the other baseline methods by
using Python 3.7. For the hyperparameter setting, we follow the
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experiment setting of IOS, and set the number of usable streams
to 8 and the batch size to 1 in all the used methods to make fair
comparisons.

Environment: All the experiments are executed on an NVIDIA
RTX 3080 with NVIDIA Driver 470.129.06, CUDA 11.0, and
cuDNN 8.0.5. Specifically, NVIDIA RTX 3080 is a GPU with 68
SMs, which means that it has a strong parallel computing ability.
For CPU and memory, two Intel Xeon Gold 6226R @2.90 GHz
processors and 256 G RAM are installed on the server.

B. Research Questions

We propose and study the following three research questions.
RQ1 compares LIOS and other inter-operator scheduling meth-
ods to evaluate the effectiveness of LIOS. RQ2 compares the
time cost of LIOS and the baselines to evaluate the efficiency of
LIOS. RQ3 is an ablation experiment to study the contribution of
the two heuristic strategies of LIOS. RQ4 compares LIOS with
a typical operator fusion method to give a more comprehensive
evaluation of the effectiveness of LIOS.

RQ1: Can LIOS produce schedules that reduce the inference
latency of CNNs?

Motivation: RQ1 is proposed to show the effectiveness of
LIOS. Since reducing the inference latency of CNNs is the main
purpose of inter-operator scheduling methods, the inference
latency of CNNs after being scheduled by different methods
need to be compared.

Method: RQ1 is answered by comparing the inference latency
reduction provided by LIOS and the baseline methods. First, we
apply LIOS and the baseline methods to produce schedules for
each CNN in our benchmark. Then, we run each scheduled CNN
50 times and use box plots to record the distribution of inference
latency. After comparing the inference latency produced by each
scheduling method, we calculate the speedup provided by LIOS
compared to sequential scheduling.

RQ2: Can LIOS keep a short scheduling time?
Motivation: In addition to reducing the inference latency, an-

other important consideration of inter-operator scheduling meth-
ods is to keep a short scheduling time, which is very important for
real-world deployment. As described in Section III, IOS has an
exponential time complexity and spends huge scheduling time
on complex CNNs. LIOS is expected to solve this problem. Thus,
the scheduling time of LIOS and IOS needs to be compared.

Method: We answer RQ2 by comparing the scheduling time
of LIOS and IOS. Also, we provide the scheduling time of
Nimble, sequential scheduling, simple greedy scheduling, and
the variations of LIOS though they cannot provide inference
latency reduction comparable with IOS or LIOS. For each CNN
in the benchmark, we run the above scheduling methods 10 times
to produce schedules and record their average scheduling time.

RQ3: What are the contributions of the two heuristic strategies
to LIOS?

Motivation: Two heuristic strategies are used in our method.
First, in the operator prioritizing phase, we believe that the
operator with longer execution latency is more important and
should be executed first. Second, in the stream selection phase,
we choose the stream with the smallest EFT value for the

operator being scheduled. By investigating RQ3, we try to prove
that both heuristic strategies have positive contributions to LIOS.

Method: An ablation experiment is designed for RQ3. First,
we design three variation methods based on LIOS, including
LIOS-Rand1, LIOS-Rand2, and LIOS-Rand. In LIOS-Rand1,
we randomly pick an operator from thewait_list in the operator
prioritizing phase, instead of using a heuristic strategy. In LIOS-
Rand2, we replace the heuristic in the stream selection phase by
randomly selecting a stream for the execution of the current oper-
ator. IOS-Rand is a purely random scheduling method in which
we use random selection in both phases. To investigate RQ3,
we compare the inference latency reduction provided by LIOS,
LIOS-Rand1, LIOS-Rand2, and LIOS-Rand. For comparison,
we apply the four scheduling methods to produce schedules for
each CNN in our benchmark. Then, each scheduled CNN is run
50 times and box plots are used to record the distribution of the
inference latency.

RQ4: How is the effectiveness of LIOS compared to operator
fusion methods?

Motivation: There are two kinds of typical methods to ex-
plore inter-operator parallelism, inter-operator scheduling and
operator fusion [10]. Operator fusion is a technique that merges
multiple operators into a single operator to improve GPU utiliza-
tion and reduce the execution latency [21]. By fusing multiple
operators, the time cost of launching operators is reduced and
the efficiency of memory access is improved. We compare LIOS
with operator fusion methods to give a more comprehensive
evaluation of its scheduling effectiveness. Apollo [30] (inte-
grated in Mindspore [31]) is an operator fusion method that
integrates graph-level node grouping and operator-level loop
fusion closely, widening the fusion search space. TensorRT [32]
is a popular inference framework provided by NVIDIA, which
provides typical operator fusion techniques. HFuse [33] provides
horizontal fusion strategies, which is different from the standard.

Method: In RQ4, we compare the inference latency reduction
provided by LIOS, TensorRT, and Apollo. First, we apply LIOS
and the operator fusion methods to optimize each CNN in the
benchmark. Then, we run each optimized CNN 50 times and use
box plots to record the distribution of inference latency. Accord-
ing to the experimental result, we give a more comprehensive
evaluation of LIOS.

HFuse is not compared in RQ4 since it is not an end-to-end
optimization for DL networks and cannot be directly applied to
CNNs, while LIOS mainly focuses on optimizing the inference
of the whole network.

VI. EXPERIMENTAL RESULTS

A. Investigation of RQ1

In this RQ, we investigate the effectiveness of LIOS by
comparing its ability to reduce the inference latency of CNNs
with the baseline methods.

Result: After being scheduled by LIOS and baseline methods,
the inference latency of RandWire, NASNet-A, InceptionNet-
V3, and SqueezeNet is shown in Fig. 7(a), (b), (c), and (d), re-
spectively. Note that the median latency of each CNN after being
scheduled by sequential scheduling is shown under the caption of
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Fig. 7. Box plots of the inference latency of each CNN after being scheduled
by IOS, LIOS, and simple greedy.

each subgraph and defined as seq_latency. The reason is that the
inference latency produced by sequential scheduling are usually
much longer than the other methods, except for SqueezeNet. A
box plot is used to show the distribution of inference latency of
each scheduled CNN after being executed 50 times. The median
of inference latency is shown as a line in the center of a box plot,
which represents the typical inference latency of a scheduled
CNN. The height of each box plot shows the latency variation
of a scheduled CNN. A scheduling method is more effective and
stable if it produces shorter median latency and smaller latency
variation for a CNN.

From the result, it can be seen that both IOS and LIOS
outperform the other scheduling methods on the benchmark.
On SqueezeNet, although LIOS produces shorter latency than
Nimble and simple greedy, it produces latency longer than
IOS. Since IOS and LIOS are superior among the methods, we
compare them in detail.

First, we analyze the results on RandWire, NASNet-A, and
InceptionNet-V3. By comparing the inference latency of CNNs
scheduled by IOS and LIOS, we can see that the latency re-
duction produced by them is very close. On NASNet-A, LIOS
produces slightly shorter median latency and achieves much
smaller variation than IOS. On Randwire, the median latency
produced by LIOS is a little longer than IOS, but LIOS still
has smaller variation. On InceptionNet-V3, though IOS is better
than LIOS in both the above two indexes, the gap between them
is still small. An interesting result on InceptionNet-V3 is that
LIOS can produce shorter latency than IOS in some cases.

Second, we compare LIOS and IOS on SqueezeNet, a small-
size CNN of which the seq_latency is only 0.769 ms. On this
CNN, LIOS can produce slightly shorter latency than sequential
scheduling, but the latency can still be longer than seq_latency
sometimes. The reason comes from the synchronization over-
head when operators are concurrently executed on GPU streams,
which is obvious when the inference latency of the CNN is
extremely short like SqueezeNet. IOS produces shorter median
latency than LIOS in this situation since it can list all the
schedules and pick the one that minimizes the synchronization
overhead.

Synchronization overhead is not quantitatively analyzed due
to the following two reasons. First, the number of synchroniza-
tions cannot be determined since some synchronizations are
triggered within a CuDNN kernel, which is not open-sourced.
Second, it is hard to analyze the accurate time cost of synchro-
nizations inside a CuDNN kernel with the current profiling tools.

Conclusion: LIOS can generate schedules to provide infer-
ence speedup for RandWire, NASNet-A, and InceptionNet-V3,
of which the speedup can achieve 1.13×, 1.36×, and 1.59×,
respectively, compared to sequential scheduling. This result is
comparable to or even better than IOS in some cases. Consider-
ing the huge scheduling time of IOS, LIOS is a better choice
when dealing with normal-size and large-size CNNs. While
for small-size CNNs like SqueezeNet, LIOS suffers from the
synchronization overhead. In this case, IOS is more suitable
since it can provide latency reduction and its scheduling time is
acceptable on small-size CNNs.
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TABLE V
SCHEDULING TIME(S) COMPARISON FOR IOS AND LIOS ON THE BENCHMARK

B. Investigation of RQ2

In this RQ, we investigate the efficiency of LIOS by compar-
ing the scheduling time between IOS and LIOS. Other baseline
methods are not compared and the reason is described in RQ2
in Section V-B.

Result: Table V shows the scheduling time of LIOS and IOS
on each CNN of the benchmark. It can be seen that LIOS
finishes scheduling within 2 seconds on all the CNNs, while
the scheduling time of IOS is much longer.

We analyze the result from two perspectives. First, for Rand-
wire, NASNet-A, and Inception-V3, LIOS shows its superiority
by providing huge speedup for the scheduling process, which
is 9210×, 1554×, and 142×, respectively, compared to IOS.
More significantly, LIOS reduces the scheduling time from
hour-level to second-level, which makes it more possible for the
deployment of LIOS in the real-world environment. Second, for
SqueezeNet, a small-size CNN, though the scheduling time of
IOS is not so large and acceptable in time-insensitive situations,
LIOS still provides 7× speedup compared to IOS.

Besides, the time cost of the rest scheduling methods is shown
in Table VI. From Tables V and VI, it can be seen that sequential
and simple greedy scheduling yield the smallest scheduling
time cost (even can be ignored) among all the methods. LIOS,
variations of LIOS, and Nimbe have a similar second-level time
cost. As the complexity of CNN grows, the time cost of IOS
increases substantially.

Conclusion: LIOS greatly reduces the scheduling time in all
cases compared to IOS. The polynomial complexity of LIOS
ensures reasonable scheduling time in all situations, while IOS
suffers from its exponential complexity.

C. Investigation of RQ3

In this RQ, we investigate the contributions of the two heuris-
tics used in LIOS and analyze the result of LIOS-Rand, a purely
random scheduling method.

Result: After being scheduled by LIOS, LIOS-Rand1, LIOS-
Rand2, and LIOS-Rand, the inference latency of each CNN in
the benchmark is shown in Fig. 8(a), (b), (c), and (d), respec-
tively. From the result, it can be seen that LIOS outperforms
all the variant methods. Among the three variant methods,
LIOS-Rand1 produces the smallest median latency in most
cases except for SqueezeNet. In SqueezeNet, all the variant
methods produce similar median latency and LIOS-Rand2 has a
slightly better result. Besides, on every CNN, LIOS produces the
smallest latency variation compared to all the variant methods.

Fig. 8. Box plots of the inference latency of CNNs after being scheduled by
LIOS, LIOS-Rand1, LIOS-Rand2, and LIOS-Rand.

We analyze the result from two perspectives. First, both the
two heuristic strategies in LIOS are proved having positive con-
tributions since LIOS produces shorter inference latency in all
the CNNs compared to LIOS-Rand1 and LIOS-Rand2. Second,
the heuristic strategy used in the stream selection phase has a
bigger contribution than the strategy in the operator prioritizing
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TABLE VI
SCHEDULING TIME (S) RESULT OF VARIATIONS OF LIOS, SEQUENTIAL SCHEDULING, SIMPLE GREEDY SCHEDULING, AND NIMBLE

Fig. 9. Box plots of the inference latency of each CNN after being scheduled by LIOS and TensorRT

TABLE VII
AVERAGE INFERENCE LATENCY (MS) OF CNNS AFTER BEING OPTIMIZED BY

LIOS, TENSORRT, AND APOLLO

phase since LIOS-Rand1 produces shorter median latency than
LIOS-Rand2 in most cases.

In addition, there are two findings. First, though having large
latency variation, random scheduling (LIOS-Rand) can be a
pretty good method sometimes. For example, in the best condi-
tion, the latency produced by LIOS-Rand can be close to LIOS
on RandWire. Second, by observing the latency variation of each
scheduling method, we can see that LIOS is more stable than all
the variant methods.

Conclusion: Both the two heuristic strategies in LIOS have
positive contributions. The heuristic in the stream selection
phase has a bigger contribution in most cases. By combining the
two heuristics, LIOS achieves higher inference latency reduction
and stability.

D. Investigation of RQ4

In this RQ, we compare the inference latency provided by
LIOS, TensorRT, and Apollo to give a better analysis of the
effectiveness of LIOS.

Result: After being optimized by LIOS, TensorRT, and
Apollo, the average inference latency of NASNet-A, RandWire,
InceptionNet-V3, and SqueezeNet is shown in Table VII. The
inference latency distribution of the benchmark CNNs after
being optimized by LIOS and TensorRT is shown in Fig. 9(a),

(b), (c), and (d). Overall, it can be seen that LIOS provides more
latency reduction than TensorRT and Apollo.

First, from Table VII, it can be seen that Apollo has the worst
performance and provides much longer latency than LIOS and
TensorRT for all the CNNs. The huge performance gap may
result from the difference in the fusion strategies (e.g., Apollo
can only merge two reductions with the same tile size [34]) and
runtime engines.

Second, we analyze the results of LIOS and TensorRT on
NASNet-A, RandWire, and InceptionNet-V3. From Fig. 9(b),
we can see that LIOS consistently outperforms TensorRT by
providing shorter latency. For example, on NASNet-A, LIOS
provides up to 1.59× speedup compared to sequential schedul-
ing. However, TensorRT even produces longer latency than
sequential scheduling, which may result from the fact that certain
operator types of NASNet-A are not supported by TensorRT. In
contrast, the scheduling strategy of LIOS is not limited by the
types of operators.

However, on SqueezeNet, LIOS shows its limitation that the
extra time cost of stream synchronizations results in longer
latency than sequential scheduling, just as we state in the
result of RQ1. TensorRT can still provide latency reduction
(1.11 ∼ 1.19× speedup compared to sequential scheduling) in
this situation because as an operator fusion technique, it is free
from the extra time cost of executing operators in parallel.

Conclusion: In general, LIOS is more effective than TensorRT
and Apollo by providing shorter inference latency for NASNet-
A, RandWire, and InceptionNet-V3. While for small CNNs like
SqueezeNet, TensorRT can be a better choice.

VII. DISCUSSION

From the experimental result in Section VI, it can be seen
that LIOS can significantly reduce the inference latency of CNNs
while maintaining short scheduling time. However, LIOS shows
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its limitations in small-size CNNs, or CNNs without multiple
branches such as VGG [35]. In this section, we provide a detailed
discussion of the application scope for LIOS.

Generally, LIOS is suitable for DL models with multiple
branches and certain-size operators. As the computation ability
of hardware grows rapidly, this kind of network has been pre-
ferred since it can make better use of the hardware resources and
provide better performance in certain scenarios. Additionally,
rigid sequential structures designed by humans may constrain
the search space and potential of CNNs [17], which makes
CNNs with multiple branches important for various research
fields. Therefore, though limited, the application scope of LIOS
(inter-operator scheduling) is still broad.

For non-CNN workloads, such as transformers, inter-operator
parallelism exists while the fixed computation graph makes
automatic scheduler unnecessary. However, LIOS is effective
for situations where CNN and transformer are combined [36],
or potentially more complex transformer-based models in the
future. For non-inference workloads, the training procedure of
DL models, including forward propagation and back propaga-
tion, can be accelerated by LIOS. Forward propagation is the
same as inference and back propagation can be seen as a reverse
version of forward propagation.

Furthermore, inter-operator scheduling relies on the concur-
rent execution of operators to saturate the GPU resources, in-
cluding threads. Therefore, if the GPU is already highly utilized,
such as when employing a large operator or large batch size,
inter-operator scheduling will not bring latency reduction and
even increase it due to the additional cost of using multiple
streams.

VIII. RELATED WORK

In this section, we present the related work of accelerating the
inference of deep learning models. First, we introduce the study
of inter-operator scheduling, the research area to which our paper
belongs. Then, we give an overview of deep learning compilers,
which use computation graph optimization and operator tuning
to provide speedup for the inference of DL models. Finally,
we summarize the research in the model placement area, which
focuses on the distributed system.

A. Inter-Operator Scheduling

In short, inter-operator scheduling is a kind of method that
manipulates the execution order of operators in a DL model
for different optimization purposes. There are two main cat-
egories. The first is latency-oriented and focuses on reducing
the inference latency of CNNs by exploring the inter-operator
parallelism. The second arises from the memory-constrained
situation at the edge and tries to reduce the peak memory
footprint of a DL model. LIOS belongs to the first category.

Latency-oriented inter-operator scheduling methods are usu-
ally designed for GPUs at cloud servers or PCs since the
utilization of these GPUs is usually limited when executing
the inference of a DL model. To solve this problem, Nim-
ble [7] employs ahead-of-time (AOT) scheduling and parallel
execution of operators for inference acceleration. However, the
main contribution of Nimble is its AOT strategy and it uses a

latency-insensitive scheduling method. Rammer [37] explores
the parallelism in a different way. In Rammer, operators are
separated into rTask, which is the basic scheduling unit. Thus,
Rammer is not a pure operator-level method. Based on dynamic
programming, IOS [10] is a scheduling method trying to find
the optimal schedule. Different from the above methods, LIOS
focuses on leveraging latency-based heuristics to find effective
sub-optimal schedules and keep the scheduling time short.

Memory-oriented inter-operator scheduling methods are used
to reduce the peak memory footprint for deep learning models
deployed in edge devices, where the limited memory resource
hinders the execution of large DL models. Serenity [9] leverages
a dynamic programming algorithm to optimize the memory
footprint of CNNs designed by the Neural Architecture Search
(NAS) technique. HMCOS [38] improves Serenity by proposing
a hierarchical method to greatly reduce the time cost of Serenity.
However, instead of lowering memory usage, the main purpose
of LIOS is to reduce the inference latency.

B. Deep Learning Compiler

Deep learning compilers aim at generating more efficient
implementation code for DL models on different target hard-
ware [39], [40]. In the process of transforming a high-level
DL model into low-level hardware implementation code, lots
of optimizations can be applied to reduce the inference latency
of DL models. In general, these optimizations can be divided
into two categories: operator tuning and computation graph
transformation.

Operator tuning focuses on optimizing the implementation
code of each operator in the DL model. Usually, a DL operator
is composed of nested loops. For example, Conv2D, one of
the most commonly used operators in CNNs, is made of loops
since the essence of convolution is several matrix multiplication.
Auto-TVM [11] proposes an automatic method based on manual
templates to tune the parameters (e.g., tiling and reordering)
in the execution of loops. In this way, Auto-TVM can achieve
inference speedup better than vendor-provided libraries such as
TensorRT [32]. To get rid of the dependency on manually written
program templates, Ansor [12] uses a hierarchical representation
and automatically builds the search space for loop optimizations.
In addition, TC [41] is a fully automatic DL compiler based on
the polyhedral model and can create a much bigger search space
than TVM. Tiramisu [42] is also a polyhedral-based method, but
it gives users more control by providing four kinds of scheduling
commands.

In contrast to operator tuning, computation graph transforma-
tion focuses on optimizing the computation graph. The purpose
of graph transformation is to generate functionally identical
but more efficient substitutions for the original computation
graph. TVM [21] divides operators into four categories and
then applies operator fusion strategies to build a new graph.
TASO [43] and MetaFlow [44] are DL compilers focusing
on graph optimizations and can automatically generate graph
substitutions. In TASO, instead of manually designed graph
optimization strategies, a cost-based search algorithm is used
to decide the used optimizations, e.g., operator fusion, operator
splitting, and layout transformation.
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Different from the inter-operator parallelism leveraged in
LIOS, the above optimizations mainly explore the intra-operator
parallelism. After applying these optimizations, the execution
speed of a single operator is improved but operators in a DL
model are still executed sequentially.

C. Model Placement

For DL services deployed at the edge, multiple computing
units (e.g., GPUs and CPUs) are provided to meet the need
for computing ability required by modern DL models, since a
single computing resource is not powerful enough [45]. Thus,
how to divide a DL model into subgraphs and place them into
different computing resources for execution becomes a signif-
icant problem. The model placement problem consists of two
sub-problems: graph partition and subgraph assignment.

We introduce two kinds of model placement methods. First,
reinforcement learning (RL) based methods are proposed to
solve the graph partition and subgraph assignment problem [46],
[47], [48]. These methods can achieve good performance but
lack versatility and require a huge time cost. To improve the
versatility, new methods are proposed by combining RL and
heuristics [49], [50]. Except for RL, methods based on integer
programming [51] or heuristics [45] are also proposed.

The above methods focus on accelerating a DL model for
the multi-processor system at the edge. In contrast, LIOS is
designed for the single-GPU system at a cloud server or PC.
LIOS can be used together with model placement methods
since the inter-operator parallelism in each subgraph is still
ignored by these methods. The co-using is possible because
modern edge devices have strong computing ability. For exam-
ple, NVIDIA Jetson AGX Xavier possesses 8 SMs, which is ca-
pable of handling the concurrent execution of a small number of
operators.

IX. CONCLUSIONS AND FUTURE WORK

Inter-operator scheduling is crucial to reduce the inference
latency of CNNs in the GPU environment. However, existing
inter-operator scheduling methods face a trade-off issue between
the inference latency and scheduling time. In this paper, we pro-
pose LIOS, a latency-based inter-operator scheduling method to
solve the conflict. In the experiment, LIOS can provide 1.13∼
1.59× inference speedup for normal-size and large-size CNNs,
compared to sequential scheduling. This result is comparable
to or even better than IOS. For the scheduling time, LIOS can
speed up the scheduling process by 7∼ 9210× compared with
IOS. The experimental results show that LIOS can achieve a
balance between the inference latency and scheduling time for
normal-size and large-size CNNs.

In the future, we have the following directions. First, we plan
to expand the scope of application from CNNs to all DL models.
Second, we intend to study the possibility of combining LIOS
with DL compilers to achieve a better inference acceleration.
Third, we will try to leverage reinforcement learning methods
to improve our heuristic method.
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