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IntroductIon

Hyper-heuristics aim to design general solving 
technologies for various problems by choos-
ing existing heuristics (Burke, Hyde, Kendall, 
Ochoa, Ozcan, & Woodward, 2010). In con-
trast to meta-heuristics focused on the domain 
knowledge, hyper-heuristics tend to produce 
the High Level Heuristics (HLHs) for guid-
ing the Low Level Heuristics (LLHs) (Burke, 
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ABStrAct
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use	an	existing	simulated	annealing	based	hyper-heuristic	as	a	baseline.	The	experimental	results	indicate	
that	HyGrasPr	can	achieve	better	solutions	than	SAHH	within	the	same	running	time	and	the	path-relinking	
phase	is	effective	for	the	framework	of	HyGrasPr.

Hyde, Kendall, Ochoa, Ozcan, & Qu, 2010). 
The high level heuristics are referred to the 
heuristics designed by algorithm experts over 
the problem domains while the LLHs are re-
ferred to the heuristics designed by the problem 
domain experts. Since the domain knowledge is 
necessary for a particular problem and is hard 
to explore by an algorithm designer (Ochaoa, 
Qu, & Burke, 2009), the primary motivation 
behind the hyper-heuristics is to help the algo-
rithm designers to jump out of the limit from 
the problem domain and to produce general 
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approaches. Based on the ability of general 
problem solving, hyper-heuristics have been 
applied to many kinds of problems, especially 
NP-hard problems, such as the timetabling 
(Burke, McCollum, Meisels, Petrovic, & Qu, 
2007; Qu & Burke, 2009), the cutting stock 
(Terashima-Martin, Moran-Saavedre, & Ross, 
2005), the workforce scheduling (Remde, Cowl-
ing, Dahal, & Colledge, 2006; Remde, Dahal, 
Cowling, & Colledge, 2009) and the p-median 
(Ren, Jiang, Xuan, & Luo, 2010).

In general, the goal of a hyper-heuristic 
is to design HLH to find an optimal LLH se-
quence, which can generate optimal solutions 
to the problems. As one kind of heuristics, 
most of hyper-heuristics draw on the experi-
ments from the existing meta-heuristics, e.g., 
a simulated annealing based hyper-heuristic 
(Dowsland, Soubeiga, & Burke, 2007) and a 
genetic algorithm based hyper-heuristic (Ross, 
Martin-Blazquez, Schulenburg, & Hart, 2003). 
However, the kinds of hyper-heuristics are 
much fewer than those of meta-heuristics. The 
insufficiency of hyper-heuristics has limited the 
development of hyper-heuristics (Burke, Hyde, 
Kendall, Ochoa, Ozcan, & Woodward, 2010).

Greedy Randomized Adaptive Search 
Procedure (GRASP) with path-relinking is one 
of the effective meta-heuristics for problem 
solving (Resende & Ribeiro, 2003). There is 
no hyper-heuristic based on GRASP with path-
relinking. As a typical meta-heuristic, GRASP 
with path-relinking is an iterative procedure to 
find the optimal solution. GRASP with path-
relinking consists of three phases, such as the 
construction phase, the local search phase, and 
the path-relinking phase.

Motivated by the success of this algorithm 
in meta-heuristics, we propose a Hyper-heuristic 
using GRASP with Path-Relinking (HyGrasPr) 
in this paper. Our algorithm, HyGrasPr, gener-
ates LLH sequences to produce solutions in an 
iterative procedure. In each iteration, HyGrasPr 
builds an initial LLH sequence and applies a 
local search operator to find a relatively good 
LLH sequence. To avoid to be trapped as a lo-
cal optimal LLH sequence, the path-relinking 
strategy is applied to obtain potential good 

solutions. To show the experimental results of 
HyGrasPr, we take the nurse rostering problem 
as a case study. On this problem, an existing 
simulated annealing based hyper-heuristic 
(SAHH) is employed as an experiment baseline. 
The results indicate that HyGrasPr can achieve 
better solutions than SAHH within the same 
running time.

The rest of this paper is organized as fol-
lows. First, we give the background of our work. 
We then propose the details of our HyGrasPr 
and present the experiments results with a case 
study on the nurse rostering problem.

BAcKground

hyper-heuristics and 
meta-heuristics

Hyper-heuristic technology is able to handle 
a wide range of problem domains rather than 
current meta-heuristic technology concentrated 
on a particular problem or a narrow class of 
problems (Burke, Kendall, Newall, Hart, 
Ross, & Schulenburg, 2003). A solution of a 
meta-heuristic is a structure abstracted from 
the problem domain; on the other hand, a 
solution of a hyper-heuristic is a sequence of 
LLHs. Many hyper-heuristics are based on the 
mechanism from meta-heuristics, e.g., hyper-
heuristics based on tabu search for timetabling 
and rostering (Burke, Kendall, & Soubeiga, 
2003), simulated annealing for determining 
shipper sizes (Dowsland et al., 2007), for au-
tomated planograms (Bai & Kendall, 2005), 
genetic algorithm (bin-packing) (Ross et al., 
2003), and for 2D-regular cutting stock prob-
lems (Terashima-Martin et al., 2005), genetic 
programming for two dimensional strip pack-
ing (Burke, Hyde, Kendall, Ochoa, Ozcan, & 
Qu, 2010), and ant colony optimization for 
project presentation scheduling (Burke, Ken-
dall, Silva, O’Brien, & Soubeiga, 2005) and 
for p-median by Ren et al. (2010). Moreover, 
Bai, Burke and Kendall (2008) investigate 
both the meta-heuristics and hyper-heuristics 
for fresh produce inventory control and shelf 
space allocation. Considering the similarity 
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between meta-heuristics and hyper-heuristics, 
many experiments from meta-heuristics can 
be employed to guide the hyper-heuristic de-
sign. Thus in this paper, we introduce another 
meta-heuristic to serve for hyper-heuristics, 
i.e., GRASP with path-relinking.

grASp with path-relinking

GRASP is a multi-start meta-heuristic, in which 
each iteration consists a construction phase 
and a local search phase while path-relinking 
is a strategy to provide various solutions by 
“relinking” existing solutions (Resende & 
Ribeiro, 2003). For some of the applications, 
path-relinking is combined with GRASP to 
conduct a post-optimization or an intensification 
strategy to each local optimum (Festa, Pardalos, 
Pitsoulis, & Resende, 2006). Path-relinking is 
an enhancement strategy to build paths between 
solutions and to find other relevant solutions 
in the paths. Since time-consuming in practice, 
path-relinking is not applied at each GRASP 
iteration, but only periodically (Resende & 
Ribeiro, 2003).

hYper-heurIStIc uSIng 
grASp WIth pAth-relInKIng

Framework

In this section, we present the details of our 
HyGrasPr. The solution generated by HyGrasPr 
is an LLH sequence, which can be applied to 
the problem instance in order to obtain the final 
solution to the problem. The LLH sequence is 
generated by an iterative procedure of GRASP 
with the path-relinking phase. In HyGrasPr, 
we first build an LLH sequence with the fixed 
length in GRASP construction phase. Then, we 
search the neighborhood of the LLH sequence 
for obtaining the local optimal LLH sequence 
(Croes, 1958). If an LLH sequence gets the best 
solution, we store it as the current best LLH 
sequence. Next, we use the current best LLH 
sequence and the local optimal LLH sequence to 
conduct the path-relinking phase. In each itera-

tion, we apply the local optimal LLH sequence 
to the current solution to find the optimal LLH 
sequence for the problem. In our framework, 
we give three parameters, namely the number 
of iteration, the length of LLH sequence in each 
iteration, and the controllable parameter for the 
greedy or random strategies.

The pseudo-code for HyGrasPr is presented 
in Table 1. The kernel idea of our algorithm is 
to find the optimal LLH sequence by combining 
GRASP with path-relinking. In our implementa-
tion, we store the current best LLH sequence, 
which can be used for guiding problem solving 
in the path-relinking phase. Specifically, after 
a particular number of GRASP iterations, the 
local optimal LLH sequence is compared with 
the current best LLH sequence found by now. 
If the two LLH sequences are different with 
each other, we call the path-relinking phase. 
At the end of each iteration, the current best 
LLH sequence is updated for the next itera-
tion. Existing work on the path-relinking for 
the meta-heuristics shows that the input length 
for the path-relinking can increase the running 
time (Resende & Ribeiro, 2003). In this work, 
the length of LLH sequence is determined ac-
cording to an empirical result.

Each iteration of our HyGrasPr begins with 
an initial solution Sbegin as an input and ends 
with a new solution Snext as an output. The new 
solution Snext	is obtained by applying an LLH 
sequence to the initial solution Sbegin. The goal 
of the hyper-heuristics is to find an optimal 
LLH sequence, which is applied to the original 
problem. We denote the LLH sequence as Seq. 
The final sequence of HyGrasPr is combined by 
all the LLH sequence obtained for each iteration.

grASp

Based on an LLH sequence with the length N, the 
hyper-heuristic may provide various solutions 
for the original problem. To generate an optimal 
LLH sequence, the GRASP procedure works 
with two parameters, namely used to denote 
the length of the LLH sequence and to conduct 
the construction of the restricted candidate list.
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In general, each iteration of GRASP con-
sists of two phases, namely the construction 
phase and the local search phase. We describe 
the construction phase and the local search 
phase for GRASP in our HyGrasPr. The con-
struction phase of HyGrasPr is different from 
the typical GRASP construction for the meta-
heuristics. The output of the construction phase 
is an LLH sequence, which is build from an 
empty sequence. In each iteration of the con-
struction phase, we add an LLH to the current 
LLH sequence until the LLH sequence length 
reaches the particular value N. The LLH to be 
added is randomly selected from the Restricted 
Candidate List (RCL). The RCL is a subset of 
the set of all candidate LLHs. If an LLH can 
generate a solution according with the given 
threshold, the LLH will be added to  
the RCL. The threshold is defined as 
c c cmin max min( )+ −a , where cmin  and cmax  
are the minimum and maximum of the evalu-
ation function values for a new solution after 
applying the LLH to the current solution. The 
parameter a  is a controllable parameter and 
0 1£ £a . If a  = 0, the construction phase 
can be viewed as a greedy construction while if 
a  = 1, the construction phase can be viewed as 
a random construction. We present the pseudo-
code of the construction phase in Table 2.

After the construction phase of the Hy-
GrasPr, we apply a local search phase to optimize 
the current LLH sequence. The 2-opt search is 
employed in the local search phase. To find the 
optimal LLH sequence, each LLH in the Seq 
is traversed to search for the opportunity to 
build the final optimal LLH sequence. In each 
step, we change the selected LLH with other 
candidate LLHs, and then apply the new LLH 
sequence Seqtemp to the solution Sbegin. If the new 
Seqtemp in the neighborhood could obtain a bet-
ter solution, we replace Seqlocal with Seqtemp. 
After applying the current best LLH sequence 
to the solution Sbegin, the new obtained solution 
is used as the initial solution in the next itera-
tion. In Table 3, we present the pseudo-code of 
the local search.

path-relinking

In this section, we propose the path-relinking 
phase for HyGrasPr. Path-relinking can be 
viewed as an enhancement to the GRASP pro-
cedure. The main idea of the path-relinking is 
to explore the trajectories that connect an initial 
LLH sequence to a guiding LLH sequence. The 
initial LLH sequence is the input of the path-
relinking while the guiding LLH sequence is 
the objective to guide the exploration. In Hy-
GrasPr, a move of the path-relinking phase is 

Table	1.	Pseudo-code	for	HyGrasPr	

Procedure GRASP with path-relinking 
Input: maximum iteration Iteration,
Seq length N,
parameter used in construction a ,
call path-relinking frequency PF
Output: Solution S

1 for i = 1,…, Iteration do
2 Seq = GRASP_Construction(N, a , Sbegin, Snext
3 Seqlocal = Local_Search(N, Sbegin, Snext, Seq)
4 if i % PF= 0 then
5 Path-Relinking(Seqbest, Seqlocal, Sbegin, Snext)
6 endif 
7 update Seqbest
8 Sbegin¬ SnextNew
9 endfor
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defined as a change from one LLH to another 
for reducing the difference between the guiding 
LLH sequence and the initial LLH sequence. 
In our experiments, the initial LLH sequence 
is the best LLH sequence found up till now and 
the guiding LLH sequence is the local optimal 
LLH sequence in current iteration. The initial 
LLH sequence can be defined as Seqi and the 
guiding solution can be defined as Seqg. We 
present the pseudo-code for this phase in Table 4.

A cASe StudY oF the nurSe 
roSterIng proBlem

the nurse rostering problem

The nurse rostering problem is a typical prob-
lem in the family of the personnel scheduling 

problem (Burke, Causmaecker, Berghe, & 
Landeghem, 2004). The goal of the nurse ros-
tering problem is to decide the assignment of 
each nurse working over a specific planning 
period subject to various constraints (Burke, Li, 
& Qu, 2010). In this paper, we take the nurse 
rostering problem as a case study to investi-
gate the performance of our HyGrasPr. The 
benchmark instances can be obtained from the 
nurse rostering problem website (http://www.
cs.nott.ac.uk/~tec/NRP/). These instances in 
our experiments are generated from the real-
world scenarios. All the constraints in the nurse 
rostering problem instances are modeled as the 
weighted objectives (Curtois, Ochoa, Hyde, & 
Vazquez-Rodriguez, 2010). The mathematical 
formulation of these objectives is described in 
(Burke, Curtois, Qu, & Vanden-Berghe, 2008).

Table	2.	Pseudo-code	for	construction	of	GRASP	in	HyGrasPr	

Procedure construction 
Input: LLH sequence length N,
parameter a ,
the initial problem solution Sbegin
Output: LLH sequence Seq,
a new problem solution Snext

1 Seq¬ F ,
2 best value by LLH sequence of current Iteration Best	←∞
3 while the length of Seq	< N

4 for every LLH Hi ÎH(the set of low level heuristics) do
5 apply Hi to current solution Scurrent get new solution Si
6 Ci = objective value of Si
7 endfor 

8 cmax ¬  max{ ci| ciÎC}

9 cmin ¬  min{ ci| ciÎC}

10 the restricted candidate list RCL¬  {iÎH | ci	£ c c cmin max min+ −a( ) }
11 randomly select a heuristic num h from RCL
12 if ch < Best then
13 Best = ch
14 endif 
15 add h to Seq

16 S Scurrent h¬
17 endwhile 

18 S Snext current¬
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Table	3.	Pseudo-code	of	local	search	of	GRASP	in	HyGrasPr	

Procedure local search 
Input: LLH sequence length N,
LLH sequence Seq,
initial problem solution Sbegin,
        best value by LLH sequence of current Iteration Best,
        Snext got from construction phase
Output: local optimal LLH sequence Seqlocal,

problem solution Snext
l

1 Seqlocal¬ Seq
2 for i = 0,...,N do
3 for j = 0,…, Hnum(the number of low level heuristics) do
4 if the ith LLH of Seq! = j then
5 get a new LLH sequence Seqtemp by replacing ith LLH of Seq with j
6 Stemp¬ Sbegin
7 localOptimalFlag = false
8 for k = 0,…,N do
9 apply kth LLH of Stemp to Stemp
10 compute the objective value of Stempvalue
10 if value < Best then
11 Best = value
12 Seqlocal = Seqtemp
13 localOptimalFlag = true
14 endif 
15 endfor 
16 if localOptimalFlag then
17 Snext¬ Stemp
18 endif 
19 endif 
20 endfor 
21 endfor

Table	4.	Pseudo-code	of	path-relinking	in	HyGrasPr	

Procedure path-relinking 
Input: initial solution Seqi,
guiding solution Seqg
Output: the best LLH sequence Seqbest
1 compute the sum Number of different LLHs between Seqi and Seqg
2 save the different LLHs in the move set, M
2 for i = 0,…,Number do
3 find the bestmove in the move set, M
4 apply the bestmove
5 update the Seqbest
6 update the best problem solution 
7 delete the selected bestmove from M.
8 endfor
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To show the performance of our HyGrasPr, 
we use 12 LLHs in this paper. These LLHs 
are obtained in the hyper-heuristic competi-
tion website (http://www.asap.cs.nott.ac.uk/
chesc2011/index.html). A detailed description 
of these heuristic is reproduced here for com-
pleteness (Curtois et al., 2010).

• h1, local search heuristic using “hill climb-
ers” with vertical neighborhood operator 
(moving shifts vertically between two 
employees in the roster);

• h2, local search heuristic using “hill climb-
ers” with horizontal neighborhood opera-
tor (moving shifts horizontally in single 
employee’s work pattern in the roster);

• h3, local search heuristic using “hill climb-
ers” with new neighborhood operator 
(introducing new shifts or deleting shifts 
into the roster);

• h4, local search heuristic, variable depth 
search using new moves as links in the 
ejection chain;

• h5, local search heuristic, variable depth 
search using new moves as links in the 
ejection chain and test replacing an entire 
work pattern for a single employee as a 
link in the chain;

• h6, ruin and recreate heuristic, un-assigning 
x = Round(b × 4) + 2 schedules(b  is the 
intensity of mutation and Round() is the 
rounding function). The heuristic first 
randomly selects x employee’s schedules 
and un-assigning all the shifts in them. 
They are rebuilt by first satisfying objec-
tives related to requests to work certain 
days or shifts and then by satisfying objec-
tives related to weekends;

• h7, same as h6 but “x = Round(b  × Number 
of employees in roster)”;

• h8, same as h6 but creating a small perturba-
tion in the solution by using x = 1;

• h9, crossover heuristic, choosing the best x 
assignments in each parent and make these 
assignments in the offspring;

• h10, crossover heuristic, it creates a new 
roster by using all the assignments made in 

the parents. It makes those that are common 
to both parents first and then alternately 
selects an assignment from each parent and 
makes it in the offspring unless the cover 
objective is already satisfied;

• h11, crossover heuristic, creating the new 
roster by making assignments which are 
only common to both parents;

• h12, mutation heuristic, randomly mutating 
a selected roster.

results

We show the performance of our HyGrasPr in 
the experiments. All the experiments are run 
on a PC with Intel Core Duo 2.53 GHz and 
4GB RAM running on a Microsoft Windows 
7 Ultimate.

Before showing the experimental results, 
we give some experiments on the parameter 
values and performance. We test our algorithm 
on 4 typical problem instances (ORTEC02, 
Ikegami-3Shift-DATA1, Ikegami-3Shift-DA-
TA1.1, and Ikegami-3Shift-DATA1.2) with 
different parameters. The parameter a  which 
is the probability of choosing RCL in GRASP 
is set to 0.3. The parameter N, the length of 
LLH sequence is set to 5, 10, 15, and 20, re-
spectively. We limit the time bound to 30 
minutes. The results are shown in Table 5.

It is showed that when the parameter a  
is fixed to 0.3, the LLH sequence length with 
the value 15 gets the best result. In general, for 
the length from 5 to 15, the objective function 
of solutions is decreasing when the length in-
creases. That is the length with the value 15 
may bring better solutions than others. On the 
other hand, when the sequence length increas-
es, the running time may increase. Therefore, 
the experiment with the length of the value 20 
can cost more time than the previous three 
experiments. Since we limit the time bound, 
the experiment with the length 20 cannot finish 
the process of searching. Thus, we choose 15 
as the sequence length in the following ex-
periments.

We study the parameter a  with the values 
among 0.1, 0.3, 0.5, and 0.7. We also limit the 
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time bound to 30 minutes. The results are 
showed in Table 6.

In the structure of the construction phase, 
the parameter a  is a trade-off between greedy 
and random. From the results, we can see that 
the value 0.3 maybe a good value for the in-
stances in our experiments.

The experiments of adjusting the param-
eters in our HyGrasPr on the nurse rostering 
problem above show that a  = 0.3 and N = 15 
can make our HyGrasPr perform well. Then 
we compare our hyper heuristic with an exist-
ing algorithm on the instances.

Table	5.	Objective	functions	for	HyGrasPr	with	different	sequence	length	on	4	typical	instances	

Sequence length 5 10 15 20

ORTEC02 335.0 350.0 310.0 335.0

Ikegami-3Shift-DATA1 18.0 11.0 17.0 22.0

Ikegami-3Shift-DATA1.1 23.0 21.0 13.0 21.0

Ikegami-3Shift-DATA1.2 20.0 23.0 18.0 20.0

Table	6.	Objective	functions	for	HyGrasPr	with	different	a on	4	typical	instances	

Value of a 0.1 0.3 0.5 0.7

ORTEC02 365.0 310.0 330.0 380.0

Ikegami-3Shift-DATA1 22.0 17.0 13.0 15.0

Ikegami-3Shift-DATA1.1 20.0 13.0 15.0 31.0

Ikegami-3Shift-DATA1.2 19.0 18.0 21.0 23.0

Table	7.	Results	for	SAHH,	HyGrasPr,	and	HyGrasPr	without	path-relinking	

Problem instance Time(s) SAHH HyGrasPr HyGrasPr without  
path-relinking

BCV-3.46.1 17870 3321.0 3307.0 3322.0

BCV-A.12.2 12012 2210.0 2005.0 2340.0

ORTEC02 4972 395 300.0 440.0

Ikegami-3Shift-DATA1 5981 12.0 11.0 21.0

Ikegami-3Shift-DATA1.1 6315 15.0 13.0 25.0

Ikegami-3Shift-DATA1.2 5990 15.0 14.0 36.0

CHILD-A2 43331 1103.0 1108.0 1240.0

ERRVH-A 20022 2165.0 2156.0 2344.0

ERRVH-B 16948 3167.0 3167.0 4093.0

MER-A 38369 9289.0 8934.0 14964.0
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We choose 10 typical problem instances 
from the nurse rostering problem instances. 
We make comparison with the Simulated 
Annealing Hyper-Heuristic (SAHH) (Bai, 
Blazewicz, Burke, Kendall, & McCollum, 
2007) proposed by Bai et al. SAHH is a hyper 
heuristic which includes a stochastic heuristic 
selection mechanism, a simulated annealing 
acceptance criterion, and a short-term memory. 
SAHH learns priorities of different low level 
heuristics from their historical performance 
and starts to select them depending on priori-
ties. Therefore, the heuristics with good per-
formance have higher priorities and are more 
likely to be chosen. The simulated annealing 
acceptance criterion is used to determine 
whether to be applied the selected heuristic. 
Information about the acceptance decisions 
by the acceptance criterion is then fed back 
to the heuristic selection mechanism in order 
to make good better decisions in the future. In 
(Bai et al., 2007), it was shown that SAHH is 
a well performed hyper-heuristic. SAHH can 
also be used for the nurse rostering problem. 
The number of iterations of SAHH is set to 
K = 12000 as described in (Bai et al., 2007). 
On each instance, the running time of our Hy-

GrasPr is limited to the used time of SAHH. In 
Table 7, we present the results for HyGrasPr, 
SAHH and HyGrasPr without Path-relinking.

From the result we can conclude that our 
hyper heuristic can outperform the existing 
algorithm, SAHH. Among the 10 instances, 
HyGrasPr can get 8 better solutions out of 10 
instances. We also compare HyGrasPr with 
the hyper heuristic implemented by GRASP 
without path-relinking. The performance of 
HyGrasPr is much better than that of HyGrasPr 
without path-relinking. This result shows that 
the path-relinking mechanism is very useful 
in our framework. In the path-relinking phase, 
the process the guidance of the LLH sequence 
from the initial one to the guiding one can 
provide various LLH sequences as the candi-
date LLH sequences. The performance of 
HyGrasPr is also better than that of SAHH.

To show the details of our experiments, 
we analyze the solving procedure of two 
algorithms, SAHH and HyGrasPr. Figure 1 
presents the details of the processes when 
solving the instance ORTEC02 using SAHH 
and HyGrasPr. The results show that our algo-
rithm HyGrasPr can improve solution step by 
step while SAHH provides a jumping curve. 

Figure	1.	Solving	procedures	of	SAHH	and	HyGrasPr	on	the	ORTEC02	instance
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At the same time for both the algorithms, the 
solutions in SAHH are not as better as those 
in HyGrasPr. Our HyGrasPr provides a much 
stronger searching ability.

concluSIon And Future 
WorK

In this paper, we propose a Hyper-heuristic using 
GRASP with Path-Relinking (HyGrasPr). The 
procedure of HyGrasPr consists of three phases, 
such as the construction phase, the local search 
phase, and the path-relinking phase. To present 
the experimental results, we give a case study on 
the nurse rostering problem. The results show 
that HyGrasPr can achieve better solutions on 
8 out of 10 instances than the existing simulate 
annealing hyper-heuristic.

In future work, we plan to give an empiri-
cal study on the performance of our HyGrasPr. 
Since the mechanism behind HyGrasPr is a 
little time-consuming, we want to design some 
improvement to reduce the running time. An-
other future work is to apply our HyGrasPr to 
some other problems. For example, we plan 
to give a comparison among the family of the 
nurse rostering problem. This work can show 
the generalization ability of our work.
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