
Journal of Information Technology Research, 4(2), 31-42, April-June 2011 31

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords:	 GRASP,	Heuristics,	Hyper-Heuristics,	Nurse	Rostering	Problem,	Path-relinking

IntroductIon

Hyper-heuristics aim to design general solving
technologies for various problems by choos-
ing existing heuristics (Burke, Hyde, Kendall,
Ochoa, Ozcan, & Woodward, 2010). In con-
trast to meta-heuristics focused on the domain
knowledge, hyper-heuristics tend to produce
the High Level Heuristics (HLHs) for guid-
ing the Low Level Heuristics (LLHs) (Burke,

A hyper-heuristic using
grASp with path-relinking:

A case Study of the nurse
rostering problem

He	Jiang,	Dalian	University	of	Technology,	China

Junying	Qiu,	Dalian	University	of	Technology,	China

Jifeng	Xuan,	Dalian	University	of	Technology,	China

ABStrAct
The	goal	of	hyper-heuristics	 is	 to	design	and	choose	heuristics	 to	solve	complex	problems.	The	primary	
motivation	behind	the	hyper-heuristics	is	to	generalize	the	solving	ability	of	the	heuristics.	In	this	paper,	the	
authors	propose	a	Hyper-heuristic	using	GRASP	with	Path-Relinking	 (HyGrasPr).	HyGrasPr	generates	
heuristic	sequences	to	produce	solutions	within	an	iterative	procedure.	The	procedure	of	HyGrasPr	consists	
of	three	phases,	namely	the	construction	phase,	the	local	search	phase,	and	the	path-relinking	phase.	To	show	
the	performance	of	the	HyGrasPr,	the	authors	use	the	nurse	rostering	problem	as	a	case	study.	The	authors	
use	an	existing	simulated	annealing	based	hyper-heuristic	as	a	baseline.	The	experimental	results	indicate	
that	HyGrasPr	can	achieve	better	solutions	than	SAHH	within	the	same	running	time	and	the	path-relinking	
phase	is	effective	for	the	framework	of	HyGrasPr.

Hyde, Kendall, Ochoa, Ozcan, & Qu, 2010).
The high level heuristics are referred to the
heuristics designed by algorithm experts over
the problem domains while the LLHs are re-
ferred to the heuristics designed by the problem
domain experts. Since the domain knowledge is
necessary for a particular problem and is hard
to explore by an algorithm designer (Ochaoa,
Qu, & Burke, 2009), the primary motivation
behind the hyper-heuristics is to help the algo-
rithm designers to jump out of the limit from
the problem domain and to produce general

DOI: 10.4018/jitr.2011040103

32 Journal of Information Technology Research, 4(2), 31-42, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

approaches. Based on the ability of general
problem solving, hyper-heuristics have been
applied to many kinds of problems, especially
NP-hard problems, such as the timetabling
(Burke, McCollum, Meisels, Petrovic, & Qu,
2007; Qu & Burke, 2009), the cutting stock
(Terashima-Martin, Moran-Saavedre, & Ross,
2005), the workforce scheduling (Remde, Cowl-
ing, Dahal, & Colledge, 2006; Remde, Dahal,
Cowling, & Colledge, 2009) and the p-median
(Ren, Jiang, Xuan, & Luo, 2010).

In general, the goal of a hyper-heuristic
is to design HLH to find an optimal LLH se-
quence, which can generate optimal solutions
to the problems. As one kind of heuristics,
most of hyper-heuristics draw on the experi-
ments from the existing meta-heuristics, e.g.,
a simulated annealing based hyper-heuristic
(Dowsland, Soubeiga, & Burke, 2007) and a
genetic algorithm based hyper-heuristic (Ross,
Martin-Blazquez, Schulenburg, & Hart, 2003).
However, the kinds of hyper-heuristics are
much fewer than those of meta-heuristics. The
insufficiency of hyper-heuristics has limited the
development of hyper-heuristics (Burke, Hyde,
Kendall, Ochoa, Ozcan, & Woodward, 2010).

Greedy Randomized Adaptive Search
Procedure (GRASP) with path-relinking is one
of the effective meta-heuristics for problem
solving (Resende & Ribeiro, 2003). There is
no hyper-heuristic based on GRASP with path-
relinking. As a typical meta-heuristic, GRASP
with path-relinking is an iterative procedure to
find the optimal solution. GRASP with path-
relinking consists of three phases, such as the
construction phase, the local search phase, and
the path-relinking phase.

Motivated by the success of this algorithm
in meta-heuristics, we propose a Hyper-heuristic
using GRASP with Path-Relinking (HyGrasPr)
in this paper. Our algorithm, HyGrasPr, gener-
ates LLH sequences to produce solutions in an
iterative procedure. In each iteration, HyGrasPr
builds an initial LLH sequence and applies a
local search operator to find a relatively good
LLH sequence. To avoid to be trapped as a lo-
cal optimal LLH sequence, the path-relinking
strategy is applied to obtain potential good

solutions. To show the experimental results of
HyGrasPr, we take the nurse rostering problem
as a case study. On this problem, an existing
simulated annealing based hyper-heuristic
(SAHH) is employed as an experiment baseline.
The results indicate that HyGrasPr can achieve
better solutions than SAHH within the same
running time.

The rest of this paper is organized as fol-
lows. First, we give the background of our work.
We then propose the details of our HyGrasPr
and present the experiments results with a case
study on the nurse rostering problem.

BAcKground

hyper-heuristics and
meta-heuristics

Hyper-heuristic technology is able to handle
a wide range of problem domains rather than
current meta-heuristic technology concentrated
on a particular problem or a narrow class of
problems (Burke, Kendall, Newall, Hart,
Ross, & Schulenburg, 2003). A solution of a
meta-heuristic is a structure abstracted from
the problem domain; on the other hand, a
solution of a hyper-heuristic is a sequence of
LLHs. Many hyper-heuristics are based on the
mechanism from meta-heuristics, e.g., hyper-
heuristics based on tabu search for timetabling
and rostering (Burke, Kendall, & Soubeiga,
2003), simulated annealing for determining
shipper sizes (Dowsland et al., 2007), for au-
tomated planograms (Bai & Kendall, 2005),
genetic algorithm (bin-packing) (Ross et al.,
2003), and for 2D-regular cutting stock prob-
lems (Terashima-Martin et al., 2005), genetic
programming for two dimensional strip pack-
ing (Burke, Hyde, Kendall, Ochoa, Ozcan, &
Qu, 2010), and ant colony optimization for
project presentation scheduling (Burke, Ken-
dall, Silva, O’Brien, & Soubeiga, 2005) and
for p-median by Ren et al. (2010). Moreover,
Bai, Burke and Kendall (2008) investigate
both the meta-heuristics and hyper-heuristics
for fresh produce inventory control and shelf
space allocation. Considering the similarity

Journal of Information Technology Research, 4(2), 31-42, April-June 2011 33

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

between meta-heuristics and hyper-heuristics,
many experiments from meta-heuristics can
be employed to guide the hyper-heuristic de-
sign. Thus in this paper, we introduce another
meta-heuristic to serve for hyper-heuristics,
i.e., GRASP with path-relinking.

grASp with path-relinking

GRASP is a multi-start meta-heuristic, in which
each iteration consists a construction phase
and a local search phase while path-relinking
is a strategy to provide various solutions by
“relinking” existing solutions (Resende &
Ribeiro, 2003). For some of the applications,
path-relinking is combined with GRASP to
conduct a post-optimization or an intensification
strategy to each local optimum (Festa, Pardalos,
Pitsoulis, & Resende, 2006). Path-relinking is
an enhancement strategy to build paths between
solutions and to find other relevant solutions
in the paths. Since time-consuming in practice,
path-relinking is not applied at each GRASP
iteration, but only periodically (Resende &
Ribeiro, 2003).

hYper-heurIStIc uSIng
grASp WIth pAth-relInKIng

Framework

In this section, we present the details of our
HyGrasPr. The solution generated by HyGrasPr
is an LLH sequence, which can be applied to
the problem instance in order to obtain the final
solution to the problem. The LLH sequence is
generated by an iterative procedure of GRASP
with the path-relinking phase. In HyGrasPr,
we first build an LLH sequence with the fixed
length in GRASP construction phase. Then, we
search the neighborhood of the LLH sequence
for obtaining the local optimal LLH sequence
(Croes, 1958). If an LLH sequence gets the best
solution, we store it as the current best LLH
sequence. Next, we use the current best LLH
sequence and the local optimal LLH sequence to
conduct the path-relinking phase. In each itera-

tion, we apply the local optimal LLH sequence
to the current solution to find the optimal LLH
sequence for the problem. In our framework,
we give three parameters, namely the number
of iteration, the length of LLH sequence in each
iteration, and the controllable parameter for the
greedy or random strategies.

The pseudo-code for HyGrasPr is presented
in Table 1. The kernel idea of our algorithm is
to find the optimal LLH sequence by combining
GRASP with path-relinking. In our implementa-
tion, we store the current best LLH sequence,
which can be used for guiding problem solving
in the path-relinking phase. Specifically, after
a particular number of GRASP iterations, the
local optimal LLH sequence is compared with
the current best LLH sequence found by now.
If the two LLH sequences are different with
each other, we call the path-relinking phase.
At the end of each iteration, the current best
LLH sequence is updated for the next itera-
tion. Existing work on the path-relinking for
the meta-heuristics shows that the input length
for the path-relinking can increase the running
time (Resende & Ribeiro, 2003). In this work,
the length of LLH sequence is determined ac-
cording to an empirical result.

Each iteration of our HyGrasPr begins with
an initial solution Sbegin as an input and ends
with a new solution Snext as an output. The new
solution Snext	is obtained by applying an LLH
sequence to the initial solution Sbegin. The goal
of the hyper-heuristics is to find an optimal
LLH sequence, which is applied to the original
problem. We denote the LLH sequence as Seq.
The final sequence of HyGrasPr is combined by
all the LLH sequence obtained for each iteration.

grASp

Based on an LLH sequence with the length N, the
hyper-heuristic may provide various solutions
for the original problem. To generate an optimal
LLH sequence, the GRASP procedure works
with two parameters, namely used to denote
the length of the LLH sequence and to conduct
the construction of the restricted candidate list.

34 Journal of Information Technology Research, 4(2), 31-42, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In general, each iteration of GRASP con-
sists of two phases, namely the construction
phase and the local search phase. We describe
the construction phase and the local search
phase for GRASP in our HyGrasPr. The con-
struction phase of HyGrasPr is different from
the typical GRASP construction for the meta-
heuristics. The output of the construction phase
is an LLH sequence, which is build from an
empty sequence. In each iteration of the con-
struction phase, we add an LLH to the current
LLH sequence until the LLH sequence length
reaches the particular value N. The LLH to be
added is randomly selected from the Restricted
Candidate List (RCL). The RCL is a subset of
the set of all candidate LLHs. If an LLH can
generate a solution according with the given
threshold, the LLH will be added to
the RCL. The threshold is defined as
c c cmin max min()+ −a , where cmin and cmax
are the minimum and maximum of the evalu-
ation function values for a new solution after
applying the LLH to the current solution. The
parameter a is a controllable parameter and
0 1£ £a . If a = 0, the construction phase
can be viewed as a greedy construction while if
a = 1, the construction phase can be viewed as
a random construction. We present the pseudo-
code of the construction phase in Table 2.

After the construction phase of the Hy-
GrasPr, we apply a local search phase to optimize
the current LLH sequence. The 2-opt search is
employed in the local search phase. To find the
optimal LLH sequence, each LLH in the Seq
is traversed to search for the opportunity to
build the final optimal LLH sequence. In each
step, we change the selected LLH with other
candidate LLHs, and then apply the new LLH
sequence Seqtemp to the solution Sbegin. If the new
Seqtemp in the neighborhood could obtain a bet-
ter solution, we replace Seqlocal with Seqtemp.
After applying the current best LLH sequence
to the solution Sbegin, the new obtained solution
is used as the initial solution in the next itera-
tion. In Table 3, we present the pseudo-code of
the local search.

path-relinking

In this section, we propose the path-relinking
phase for HyGrasPr. Path-relinking can be
viewed as an enhancement to the GRASP pro-
cedure. The main idea of the path-relinking is
to explore the trajectories that connect an initial
LLH sequence to a guiding LLH sequence. The
initial LLH sequence is the input of the path-
relinking while the guiding LLH sequence is
the objective to guide the exploration. In Hy-
GrasPr, a move of the path-relinking phase is

Table	1.	Pseudo-code	for	HyGrasPr	

Procedure GRASP with path-relinking
Input: maximum iteration Iteration,
Seq length N,
parameter used in construction a ,
call path-relinking frequency PF
Output: Solution S

1 for i = 1,…, Iteration do
2 Seq = GRASP_Construction(N, a , Sbegin, Snext
3 Seqlocal = Local_Search(N, Sbegin, Snext, Seq)
4 if i % PF= 0 then
5 Path-Relinking(Seqbest, Seqlocal, Sbegin, Snext)
6 endif
7 update Seqbest
8 Sbegin¬ SnextNew
9 endfor

Journal of Information Technology Research, 4(2), 31-42, April-June 2011 35

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

defined as a change from one LLH to another
for reducing the difference between the guiding
LLH sequence and the initial LLH sequence.
In our experiments, the initial LLH sequence
is the best LLH sequence found up till now and
the guiding LLH sequence is the local optimal
LLH sequence in current iteration. The initial
LLH sequence can be defined as Seqi and the
guiding solution can be defined as Seqg. We
present the pseudo-code for this phase in Table 4.

A cASe StudY oF the nurSe
roSterIng proBlem

the nurse rostering problem

The nurse rostering problem is a typical prob-
lem in the family of the personnel scheduling

problem (Burke, Causmaecker, Berghe, &
Landeghem, 2004). The goal of the nurse ros-
tering problem is to decide the assignment of
each nurse working over a specific planning
period subject to various constraints (Burke, Li,
& Qu, 2010). In this paper, we take the nurse
rostering problem as a case study to investi-
gate the performance of our HyGrasPr. The
benchmark instances can be obtained from the
nurse rostering problem website (http://www.
cs.nott.ac.uk/~tec/NRP/). These instances in
our experiments are generated from the real-
world scenarios. All the constraints in the nurse
rostering problem instances are modeled as the
weighted objectives (Curtois, Ochoa, Hyde, &
Vazquez-Rodriguez, 2010). The mathematical
formulation of these objectives is described in
(Burke, Curtois, Qu, & Vanden-Berghe, 2008).

Table	2.	Pseudo-code	for	construction	of	GRASP	in	HyGrasPr	

Procedure construction
Input: LLH sequence length N,
parameter a ,
the initial problem solution Sbegin
Output: LLH sequence Seq,
a new problem solution Snext

1 Seq¬ F ,
2 best value by LLH sequence of current Iteration Best	←∞
3 while the length of Seq	< N

4 for every LLH Hi ÎH(the set of low level heuristics) do
5 apply Hi to current solution Scurrent get new solution Si
6 Ci = objective value of Si
7 endfor

8 cmax ¬ max{ ci| ciÎC}

9 cmin ¬ min{ ci| ciÎC}

10 the restricted candidate list RCL¬ {iÎH | ci	£ c c cmin max min+ −a() }
11 randomly select a heuristic num h from RCL
12 if ch < Best then
13 Best = ch
14 endif
15 add h to Seq

16 S Scurrent h¬
17 endwhile

18 S Snext current¬

36 Journal of Information Technology Research, 4(2), 31-42, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Table	3.	Pseudo-code	of	local	search	of	GRASP	in	HyGrasPr	

Procedure local search
Input: LLH sequence length N,
LLH sequence Seq,
initial problem solution Sbegin,
 best value by LLH sequence of current Iteration Best,
 Snext got from construction phase
Output: local optimal LLH sequence Seqlocal,

problem solution Snext
l

1 Seqlocal¬ Seq
2 for i = 0,...,N do
3 for j = 0,…, Hnum(the number of low level heuristics) do
4 if the ith LLH of Seq! = j then
5 get a new LLH sequence Seqtemp by replacing ith LLH of Seq with j
6 Stemp¬ Sbegin
7 localOptimalFlag = false
8 for k = 0,…,N do
9 apply kth LLH of Stemp to Stemp
10 compute the objective value of Stempvalue
10 if value < Best then
11 Best = value
12 Seqlocal = Seqtemp
13 localOptimalFlag = true
14 endif
15 endfor
16 if localOptimalFlag then
17 Snext¬ Stemp
18 endif
19 endif
20 endfor
21 endfor

Table	4.	Pseudo-code	of	path-relinking	in	HyGrasPr	

Procedure path-relinking
Input: initial solution Seqi,
guiding solution Seqg
Output: the best LLH sequence Seqbest
1 compute the sum Number of different LLHs between Seqi and Seqg
2 save the different LLHs in the move set, M
2 for i = 0,…,Number do
3 find the bestmove in the move set, M
4 apply the bestmove
5 update the Seqbest
6 update the best problem solution
7 delete the selected bestmove from M.
8 endfor

Journal of Information Technology Research, 4(2), 31-42, April-June 2011 37

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

To show the performance of our HyGrasPr,
we use 12 LLHs in this paper. These LLHs
are obtained in the hyper-heuristic competi-
tion website (http://www.asap.cs.nott.ac.uk/
chesc2011/index.html). A detailed description
of these heuristic is reproduced here for com-
pleteness (Curtois et al., 2010).

• h1, local search heuristic using “hill climb-
ers” with vertical neighborhood operator
(moving shifts vertically between two
employees in the roster);

• h2, local search heuristic using “hill climb-
ers” with horizontal neighborhood opera-
tor (moving shifts horizontally in single
employee’s work pattern in the roster);

• h3, local search heuristic using “hill climb-
ers” with new neighborhood operator
(introducing new shifts or deleting shifts
into the roster);

• h4, local search heuristic, variable depth
search using new moves as links in the
ejection chain;

• h5, local search heuristic, variable depth
search using new moves as links in the
ejection chain and test replacing an entire
work pattern for a single employee as a
link in the chain;

• h6, ruin and recreate heuristic, un-assigning
x = Round(b × 4) + 2 schedules(b is the
intensity of mutation and Round() is the
rounding function). The heuristic first
randomly selects x employee’s schedules
and un-assigning all the shifts in them.
They are rebuilt by first satisfying objec-
tives related to requests to work certain
days or shifts and then by satisfying objec-
tives related to weekends;

• h7, same as h6 but “x = Round(b × Number
of employees in roster)”;

• h8, same as h6 but creating a small perturba-
tion in the solution by using x = 1;

• h9, crossover heuristic, choosing the best x
assignments in each parent and make these
assignments in the offspring;

• h10, crossover heuristic, it creates a new
roster by using all the assignments made in

the parents. It makes those that are common
to both parents first and then alternately
selects an assignment from each parent and
makes it in the offspring unless the cover
objective is already satisfied;

• h11, crossover heuristic, creating the new
roster by making assignments which are
only common to both parents;

• h12, mutation heuristic, randomly mutating
a selected roster.

results

We show the performance of our HyGrasPr in
the experiments. All the experiments are run
on a PC with Intel Core Duo 2.53 GHz and
4GB RAM running on a Microsoft Windows
7 Ultimate.

Before showing the experimental results,
we give some experiments on the parameter
values and performance. We test our algorithm
on 4 typical problem instances (ORTEC02,
Ikegami-3Shift-DATA1, Ikegami-3Shift-DA-
TA1.1, and Ikegami-3Shift-DATA1.2) with
different parameters. The parameter a which
is the probability of choosing RCL in GRASP
is set to 0.3. The parameter N, the length of
LLH sequence is set to 5, 10, 15, and 20, re-
spectively. We limit the time bound to 30
minutes. The results are shown in Table 5.

It is showed that when the parameter a
is fixed to 0.3, the LLH sequence length with
the value 15 gets the best result. In general, for
the length from 5 to 15, the objective function
of solutions is decreasing when the length in-
creases. That is the length with the value 15
may bring better solutions than others. On the
other hand, when the sequence length increas-
es, the running time may increase. Therefore,
the experiment with the length of the value 20
can cost more time than the previous three
experiments. Since we limit the time bound,
the experiment with the length 20 cannot finish
the process of searching. Thus, we choose 15
as the sequence length in the following ex-
periments.

We study the parameter a with the values
among 0.1, 0.3, 0.5, and 0.7. We also limit the

38 Journal of Information Technology Research, 4(2), 31-42, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

time bound to 30 minutes. The results are
showed in Table 6.

In the structure of the construction phase,
the parameter a is a trade-off between greedy
and random. From the results, we can see that
the value 0.3 maybe a good value for the in-
stances in our experiments.

The experiments of adjusting the param-
eters in our HyGrasPr on the nurse rostering
problem above show that a = 0.3 and N = 15
can make our HyGrasPr perform well. Then
we compare our hyper heuristic with an exist-
ing algorithm on the instances.

Table	5.	Objective	functions	for	HyGrasPr	with	different	sequence	length	on	4	typical	instances	

Sequence length 5 10 15 20

ORTEC02 335.0 350.0 310.0 335.0

Ikegami-3Shift-DATA1 18.0 11.0 17.0 22.0

Ikegami-3Shift-DATA1.1 23.0 21.0 13.0 21.0

Ikegami-3Shift-DATA1.2 20.0 23.0 18.0 20.0

Table	6.	Objective	functions	for	HyGrasPr	with	different	a on	4	typical	instances	

Value of a 0.1 0.3 0.5 0.7

ORTEC02 365.0 310.0 330.0 380.0

Ikegami-3Shift-DATA1 22.0 17.0 13.0 15.0

Ikegami-3Shift-DATA1.1 20.0 13.0 15.0 31.0

Ikegami-3Shift-DATA1.2 19.0 18.0 21.0 23.0

Table	7.	Results	for	SAHH,	HyGrasPr,	and	HyGrasPr	without	path-relinking	

Problem instance Time(s) SAHH HyGrasPr HyGrasPr without
path-relinking

BCV-3.46.1 17870 3321.0 3307.0 3322.0

BCV-A.12.2 12012 2210.0 2005.0 2340.0

ORTEC02 4972 395 300.0 440.0

Ikegami-3Shift-DATA1 5981 12.0 11.0 21.0

Ikegami-3Shift-DATA1.1 6315 15.0 13.0 25.0

Ikegami-3Shift-DATA1.2 5990 15.0 14.0 36.0

CHILD-A2 43331 1103.0 1108.0 1240.0

ERRVH-A 20022 2165.0 2156.0 2344.0

ERRVH-B 16948 3167.0 3167.0 4093.0

MER-A 38369 9289.0 8934.0 14964.0

Journal of Information Technology Research, 4(2), 31-42, April-June 2011 39

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

We choose 10 typical problem instances
from the nurse rostering problem instances.
We make comparison with the Simulated
Annealing Hyper-Heuristic (SAHH) (Bai,
Blazewicz, Burke, Kendall, & McCollum,
2007) proposed by Bai et al. SAHH is a hyper
heuristic which includes a stochastic heuristic
selection mechanism, a simulated annealing
acceptance criterion, and a short-term memory.
SAHH learns priorities of different low level
heuristics from their historical performance
and starts to select them depending on priori-
ties. Therefore, the heuristics with good per-
formance have higher priorities and are more
likely to be chosen. The simulated annealing
acceptance criterion is used to determine
whether to be applied the selected heuristic.
Information about the acceptance decisions
by the acceptance criterion is then fed back
to the heuristic selection mechanism in order
to make good better decisions in the future. In
(Bai et al., 2007), it was shown that SAHH is
a well performed hyper-heuristic. SAHH can
also be used for the nurse rostering problem.
The number of iterations of SAHH is set to
K = 12000 as described in (Bai et al., 2007).
On each instance, the running time of our Hy-

GrasPr is limited to the used time of SAHH. In
Table 7, we present the results for HyGrasPr,
SAHH and HyGrasPr without Path-relinking.

From the result we can conclude that our
hyper heuristic can outperform the existing
algorithm, SAHH. Among the 10 instances,
HyGrasPr can get 8 better solutions out of 10
instances. We also compare HyGrasPr with
the hyper heuristic implemented by GRASP
without path-relinking. The performance of
HyGrasPr is much better than that of HyGrasPr
without path-relinking. This result shows that
the path-relinking mechanism is very useful
in our framework. In the path-relinking phase,
the process the guidance of the LLH sequence
from the initial one to the guiding one can
provide various LLH sequences as the candi-
date LLH sequences. The performance of
HyGrasPr is also better than that of SAHH.

To show the details of our experiments,
we analyze the solving procedure of two
algorithms, SAHH and HyGrasPr. Figure 1
presents the details of the processes when
solving the instance ORTEC02 using SAHH
and HyGrasPr. The results show that our algo-
rithm HyGrasPr can improve solution step by
step while SAHH provides a jumping curve.

Figure	1.	Solving	procedures	of	SAHH	and	HyGrasPr	on	the	ORTEC02	instance

40 Journal of Information Technology Research, 4(2), 31-42, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

At the same time for both the algorithms, the
solutions in SAHH are not as better as those
in HyGrasPr. Our HyGrasPr provides a much
stronger searching ability.

concluSIon And Future
WorK

In this paper, we propose a Hyper-heuristic using
GRASP with Path-Relinking (HyGrasPr). The
procedure of HyGrasPr consists of three phases,
such as the construction phase, the local search
phase, and the path-relinking phase. To present
the experimental results, we give a case study on
the nurse rostering problem. The results show
that HyGrasPr can achieve better solutions on
8 out of 10 instances than the existing simulate
annealing hyper-heuristic.

In future work, we plan to give an empiri-
cal study on the performance of our HyGrasPr.
Since the mechanism behind HyGrasPr is a
little time-consuming, we want to design some
improvement to reduce the running time. An-
other future work is to apply our HyGrasPr to
some other problems. For example, we plan
to give a comparison among the family of the
nurse rostering problem. This work can show
the generalization ability of our work.

AcKnoWledgmentS

Our work is partially supported by the Natural
Science Foundation of China under Grant No.
60805024, the National Research Foundation
for the Doctoral Program of Higher Education
of China under Grant No. 20070141020.

reFerenceS

Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., &
McCollum, B. (2007). A	simulated	annealing	hyper-
heuristic	methodology	for	flexible	decision	support
(Tech. Rep. No. NOTTCS-TR-2007-8). Nottingham,
UK: University of Nottingham, School of Computer
Science and Information Technology.

Bai, R., Burke, E. K., & Kendall, G. (2008). Heu-
ristic, meta-heuristic and hyper-heuristic approaches
for fresh produce inventory control and shelf space
allocation. The	Journal	of	the	Operational	Research	
Society, 59, 1387–1397. doi:.doi:10.1057/palgrave.
jors.2602463

Bai, R., & Kendall, G. (2005). An investigation of
automated planograms using a simulated annealing
based hyper-heuristics. In T. Ibaraki, et al. (Eds.),
Metaheuristics:	Progress	as	a	real	problem	solver (pp.
87–108). Berlin, Germany: Springer. doi:10.1007/0-
387-25383-1_4

Burke, E. K., Causmaecker, P. D., Berghe, G. V.,
& Landeghem, H. V. (2004). The state of the art of
nurse rostering. Journal	of	Scheduling, 7(6), 441–499.
doi:.doi:10.1023/B:JOSH.0000046076.75950.0b

Burke, E. K., Curtois, T., Qu, R., & Vanden-Berghe,
G. (2008). Problem	 model	 for	 nurse	 rostering	
benchmark	instances. Retrieved December 14, 2010,
from http://www.cs.nott.ac.uk/~tec/NRP/papers/
ANROM.pdf

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Oz-
can, E., & Qu, R. (2010). Hyper-heuristics:	a	survey	
of	the	state	of	the	art (Tech. Rep. No. NOTTCS-TR-
SUB-0906241418). Nottingham, UK: University
of Nottingham, School of Computer Science and
Information Technology.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G.,
Ozcan, E., & Woodward, J. R. (2010). A classifica-
tion of hyper-heuristic approaches. In M. Gendreau
& J. Potvin (Eds.), Handbook	 of	 metaheuristics
(2nd ed., pp. 449–468). Berlin, Germany: Springer.
doi:10.1007/978-1-4419-1665-5_15

Burke, E. K., Kendall, G., Newall, J., Hart, E., Ross,
P., & Schulenburg, S. (2003). Hyper-Heuristics: An
emerging direction in modern search technology . In
Glover, F., & Konchenberger, G. (Eds.), Handbook	
of	metaheuristics (pp. 457–474). New York, NY:
Kluwer Academic Publishers.

Burke, E. K., Kendall, G., Silva, D. L., O’Brien, R., &
Soubeiga, E. (2005). An ant algorithm hyperheuristic
for the project presentation scheduling problem. In
Proceedings	of	the	IEEE	Conference	on	Evolution-
ary	Computation (pp. 2263-2270). Washington, DC:
IEEE Computer Society.

Burke, E. K., Kendall, G., & Soubeiga, E. (2003).
A tabu-search hyperheuristic for timetabling and
rostering. Journal	 of	 Heuristics, 9(6), 451–490.
doi:.doi:10.1023/B:HEUR.0000012446.94732.b6

Journal of Information Technology Research, 4(2), 31-42, April-June 2011 41

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Burke, E. K., Li, J., & Qu, R. (2010). A hybrid
model of integer programming and variable neigh-
bourhood search for highly-constrained nurse
rostering problems. European	 Journal	 of	 Opera-
tional	Research, 203(2), 484–493. doi:.doi:10.1016/j.
ejor.2009.07.036

Burke, E. K., McCollum, B., Meisels, A., Petrovic,
S., & Qu, R. (2007). A graph-based hyper-heuristic
for educational timetabling problems. European	
Journal	of	Operational	Research, 176(1), 177–192.
doi:.doi:10.1016/j.ejor.2005.08.012

Croes, G. A. (1958). A method for solving traveling
salesman problem. Operations	Research, 6, 791–812.
doi:.doi:10.1287/opre.6.6.791

Curtois, T., Ochoa, M., Hyde, M., & Vazquez-
Rodriguez, J. A. (2010). A	HyFlex	module	for	the	
personnel	 scheduling	 problem. Nottingham, UK:
University of Nottingham, School of Computer
Science and Information Technology.

Dowsland, K. A., Soubeiga, E., & Burke, E. K. (2007).
A simulated annealing based hyperheuristic for deter-
mining shipper sizes for storage and transportation.
European	Journal	of	Operational	Research, 179(3),
759–774. doi:.doi:10.1016/j.ejor.2005.03.058

Festa, P., Pardalos, P. M., Pitsoulis, L. S., & Resende,
M. G. C. (2006). GRASP with path relinking for the
weighted MAXSAT problem. Journal	of	Experimen-
tal	Algorithmics, 11, 1–16.

Ochoa, G., Qu, R., & Burke, E. K. (2009). Analyz-
ing the landscape of a graph based hyper-heuristic
for timetabling problems. In F. Rothlauf (Ed.), Pro-
ceedings	of	the	11th	Annual	Conference	on	Genetic	
and	Evolutionary	Computation (pp. 341-348). New
York, NY: ACM.

Qu, R., & Burke, E. K. (2009). Hybridizations
within a graph-based hyper-heuristic framework for
university timetabling problems. The	Journal	of	the	
Operational	Research	Society, 60(9), 1273–1285.
doi:.doi:10.1057/jors.2008.102

Remde, S., Cowling, P. I., Dahal, K. P., & Colledge,
N. (2006). Exact/heuristic hybrids using rVNS and
hyperheuristics for workforce scheduling. In C. Cotta
et al. (Eds.), Evolutionary	computation	in	combinato-
rial	optimization (LNCS 4446, pp. 188-197).

Remde, S., Dahal, K. P., Cowling, P. I., & Colledge,
N. (2009). Binary exponential back off for tabu tenure
in hyperheuristics. In C. Cotta et al. (Eds.), Evolu-
tionary	computation	in	combinatorial	optimization
(LNCS 5482, pp. 109-120).

Ren, Z., Jiang, H., Xuan, J., & Luo, Z. (2010). Ant
based hyper heuristics with space reduction: A case
study of the p-Median problem. In R. Schaefer et al.
(Eds.), Proceedings	of	the	Parallel	Problem	Solving	
from	Nature	Conference	(PPSN	XI) (LNCS 6238,
pp. 546-555).

Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy
random adaptive search procedures . In Glover, F.,
& Konchenberger, G. (Eds.), Handbook	 of	meta-
heuristics (pp. 219–251). New York, NY: Kluwer
Academic Publishers.

Ross, P., Marin-Blazquez, J. G., Schulenburg, S.,
& Hart, E. (2003). Learning a procedure that can
solve hard bin-packing problems: A new GA-Based
approach to hyper-heuristics. In E. Cantú-Paz et al.
(Eds.), Proceedings	of	the	Genetic	and	Evolutionary	
Computation	Conference	 (GECCO	 2003) (LNCS
2724, pp. 1295-1306).

Terashima-Marin, H., Moran-Saavedra, A., & Ross,
P. (2005). Forming hyper-heuristics with GAs when
solving 2D-regular cutting stock problems. In Pro-
ceedings	of	the	IEEE	Conference	on	Evolutionary	
Computation (pp. 1104-1110). Washington, DC:
IEEE Computer Society.

42 Journal of Information Technology Research, 4(2), 31-42, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

He	Jiang	is	an	associate	professor	and	Ph.D.	supervisor	of	School	of	Software,	Dalian	University	
of	Technology.	Dr.	Jiang	received	the	B.A.	degree	and	the	Ph.D.	degree	in	computer	science	from	
University	of	Science	&	Technology	of	China,	Hefei,	China	in	1999	and	2005,	respectively.	He	
conducts	active	research	in	various	information	technology	related	areas,	including	evolutionary	
computation,	heuristics,	combinatorial	optimization,	and	data	mining.	

Junying	Qiu	is	a	master	student	of	School	of	Software,	Dalian	University	of	Technology.	He	
received	the	B.A.	degree	in	software	engineering	from	Dalian	University	of	Technology,	Dalian,	
China	in	2009.		His	research	interest	is	hyper-heuristics.	

Jifeng	Xuan	is	a	Ph.D.	candidate	of	School	of	Mathematical	Sciences,	Dalian	University	of	Tech-
nology.	He	received	the	B.A.	degree	in	software	engineering	from	Dalian	University	of	Technol-
ogy,	Dalian,	China	in	2007.	His	research	interests	include	heuristics	and	software	maintenance.

