
Nazar N, Hu Y, Jiang H. Summarizing software artifacts: A literature review. JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY 31(5): 883–909 Sept. 2016. DOI 10.1007/s11390-016-1671-1

Summarizing Software Artifacts: A Literature Review

Najam Nazar 1, Yan Hu 1, Member, CCF, ACM, and He Jiang 1,2,∗, Member, CCF, ACM

1Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software

Dalian University of Technology, Dalian 116621, China
2State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China

E-mail: najamnazar@mail.dlut.edu.cn; {huyan, jianghe}@dlut.edu.cn

Received November 20, 2015; revised July 30, 2016.

Abstract This paper presents a literature review in the field of summarizing software artifacts, focusing on bug reports,

source code, mailing lists and developer discussions artifacts. From Jan. 2010 to Apr. 2016, numerous summarization

techniques, approaches, and tools have been proposed to satisfy the ongoing demand of improving software performance

and quality and facilitating developers in understanding the problems at hand. Since aforementioned artifacts contain both

structured and unstructured data at the same time, researchers have applied different machine learning and data mining

techniques to generate summaries. Therefore, this paper first intends to provide a general perspective on the state of the art,

describing the type of artifacts, approaches for summarization, as well as the common portions of experimental procedures

shared among these artifacts. Moreover, we discuss the applications of summarization, i.e., what tasks at hand have been

achieved through summarization. Next, this paper presents tools that are generated for summarization tasks or employed

during summarization tasks. In addition, we present different summarization evaluation methods employed in selected

studies as well as other important factors that are used for the evaluation of generated summaries such as adequacy and

quality. Moreover, we briefly present modern communication channels and complementarities with commonalities among

different software artifacts. Finally, some thoughts about the challenges applicable to the existing studies in general as well

as future research directions are also discussed. The survey of existing studies will allow future researchers to have a wide

and useful background knowledge on the main and important aspects of this research field.

Keywords mining software repositories, mining software engineering data, machine learning, summarizing software

artifacts, summarizing source code

1 Introduction

During software maintenance, developers aim to im-

prove the quality of information captured in different

forms of software artifacts such as requirement docu-

ments, bug reports, source code. These software arti-

facts may contain excessive information, which is dif-

ficult to comprehend. A developer often ends up with

glancing or skimming through the details of an arti-

fact to retrieve the desired information, which in turn

is tedious and time-consuming. Consequently, summa-

rization systems are proposed based on a set of diverse

techniques including data mining and machine learning.

Summarization aims to obtain a reductive transforma-

tion from a source text to a summary text through diffe-

rent techniques[1]. This summarization task is essential

for developers as it helps in saving time, resources, and

efficiently managing the information contained in arti-

facts. It also assists developers in finding the specific

information they sought for in an artifact rapidly[1].

Summarization systems have experienced a great

development and in recent years, a wide variety of
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techniques (ranging from simple text retrieval to com-

plex heuristics), and paradigms have been proposed

to tackle summarization tasks. However, producing

an automatic summary is a challenging task. For in-

stance, Murphy[2] in her Ph.D. dissertation, addressed

the structural summarization of source code based on

software reflection and lexical source model extraction,

which are complex processes. Her techniques set stan-

dards for studies afterwards and are complemented by

future studies, e.g.,[3-4]. Summarization also aims to

achieve different objectives. For instance, Rastkar et

al.[5] investigated if generating automatic summaries of

bug reports could help in detecting duplicate bug re-

ports. Another important aspect of summarization is

its evaluation. This is very challenging because it is un-

clear what type of information a summary should con-

tain. Moreover, summarization is a subjective process

and there does not exist the best summary for a given

task. In general, statistical methods such as precision,

recall, and F -score are employed to evaluate the effec-

tiveness of generated summaries along with the human

evaluation. However, issues such as redundancy, consis-

tency, sentences ordering, conciseness, adequacy, while

constructing summaries, have made this field more dif-

ficult.

In this paper, we perform a literature review of the

state-of-the-art studies in software artifact summariza-

tion, focusing on bug reports, source code, mailing lists

and developer discussions artifacts. It is not a compre-

hensive review of all systems and techniques that have

been developed since the advent of this research area,

because we only target the latest ongoing trend from

Jan. 2010 to Apr. 2016. Therefore, the first dimen-

sion of this paper is to provide a general overview of

existing software artifact summarization techniques or

systems, which can be of great help for developers dur-

ing software maintenance. We also discuss the appli-

cations of summarization, i.e., what tasks are achieved

through the summarization process (the second dimen-

sion). The third dimension details tools that have been

employed while developing summarization systems or

generated as a result of summarization task. The fourth

dimension concerns the evaluation of generated sum-

maries. The last dimension collects and distributes

studies over the recent years that are selected for re-

view. It also defines the information sources and the

methodology for collecting studies. Finally, we discuss

some important challenges pertaining to bug reports,

source code, mailing lists, and developer discussions

summarization techniques in order to facilitate future

researchers in understanding this field thoroughly.

The structure of the paper is organized as follows.

Section 2 provides an unabridged overview of software

artifact summarization, discussing types of artifacts,

how summarization systems are built and the exist-

ing approaches for generating summaries. Section 3

discusses the applications of summarizing software ar-

tifacts with respect to the selected studies. Summa-

rization tools are listed in Section 4 and Section 5 dis-

tinguishes different summary evaluation methods em-

ployed in selected studies. Section 6 provides the list

of information sources and distribution of selected stu-

dies along with the methodology of selecting studies

used in this review. In Section 7, we present mod-

ern communication channels, discuss complementari-

ties and commonalities among different artifacts, and

provide challenges concerning software artifact summa-

rization along with the future directions. Section 8 con-

cludes our paper.

2 Summarizing Software Artifacts: An

Overview

In this section, we first provide an overview of soft-

ware artifact summarization, starting from the common

types of software artifacts (Subsection 2.1), moving to

the steps for summarization process (Subsection 2.2)

and ending at the brief overview of existing approaches

(Subsection 2.3). The existing approaches employed in

selected studies are categorized based on data mining

and machine learning approaches.

2.1 Types of Software Artifacts

There are many different types of software artifacts.

However, for this survey, we select bug reports, source

code, mailing lists and developer discussions artifacts

only. Other software artifacts, such as chat logs, exe-

cution logs, requirement documents, are not discussed

in the survey as they are out of the scope of this pa-

per. In the subsections below we briefly describe these

artifacts.

2.1.1 Bug Reports

A bug tracking system maintains information about

software bugs in the form of bug reports. It contains

the information about the creation and the resolution

of bugs, feature enhancements, and other maintenance

tasks. A typical bug report contains the title of a prob-

lem, bug fields providing metainformation about the
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bug report, a description in natural language text writ-

ten by a reporter, and the comments by other users

and developers. It also contains source code snip-

pets, patches for corrections, enumerations, and stack

traces[6]. In bug report summarization, a bug report

is considered as a natural language text where diffe-

rent contributors discuss problems in a conversational

way. Therefore, components such as code snippets and

stack traces are generally ignored during bug report

summarization. However, these components may help

in improving the goodness or usefulness of the gener-

ated summaries. Popular bug database systems include

Bugzilla 1○ and JIRA 2○. Fig.1 exhibits a typical bug

report, bug #174533 extracted from the Eclipse bug

repository 3○.

Fig.1. Example of a typical bug report (bug #174533) from the
Eclipse bug repository.

2.1.2 Source Code

A source code artifact is an executable specifica-

tion of a software system’s behaviour. It consists of a

number of files written in one or more programming

languages and grouped into logical entities called pack-

ages or modules. It is a mixed artifact that contains

both structured (e.g., semantics, syntax) and unstruc-

tured (e.g., comments, identifiers) data. It also carries

the information for communicating with both humans

and compilers. The unstructured portion of source code

has shown to help developers with various tasks at

hand, e.g., program comprehension. However, creat-

ing a source code summary is often considered to be

difficult because of the complex nature of source code.

Fig.2 illustrates an example of source code taken from

the NetBeansWiki, “Can I dynamically change the con-

tents of the System Filesystem at runtime?” 4○

Fig.2. Example of a code fragment taken from the NetBeans
Official FAQ.

2.1.3 Mailing Lists

Mailing lists usually constitute a set of time-

stamped email messages. These messages consist of a

header (that includes the sender, receiver(s), and time

stamp), a message body (i.e., the text content of the

email), and a set of attachments (additional documents

sent with the email). Sometimes mailing lists aim to

suggest different software engineering tasks such as the

documentation of a source code. Bacchelli et al.[7] clas-

sified email contents into five levels, namely, text, junk,

code fragment, patch, and stack trace. Apache mailing

list 5○ is a popular online mailing bundle for developers’

1○bugzilla.mozilla.org/, Jan. 2016.
2○www.atlassian.com/software/jira, Jan. 2016.
3○bugs.eclipse.org/bugs/show bug.cgi?id=174533, Jan. 2016.
4○wiki.netbeans.org/DevFaqDynamicSystemFilesystem, Jan. 2016.
5○wiki.apache.org/lucene-java/MailingListArchives, Jan. 2016.



886 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

emails. Fig.3 provides an example of email communi-

cations from Apache Lucene mail archive 6○.

Fig.3. Example of an email conversation from Apache Lucene
mail archive.

2.1.4 Developer Discussions

Developer discussions (also called developer forums)

are the online place to post questions and share com-

ments with fellow engineers, developers, novice users,

and general public that are related to the same special-

ized field. These forums are used to discuss a variety

of development topics related to a given software, pro-

gramming problem, feature request, or project manage-

ment discussion[8]. These forums are heterogeneous ar-

tifacts that contain natural language text, code, XML

configurations, images and many other things. Stack

Overflow 7○ and Apple Developers Forum 8○ are pop-

ular developer forums. Fig.4 provides an example of

developer communications on a heterogeneous artifact,

i.e., StackOverflow 9○.

Fig.4. Example of a Stack Overflow discussion.

2.2 Typical Summarization Process

A typical summarization task can be fragmented

into following steps, namely, corpus creation, normal-

ization, experimentation based on either machine learn-

ing or data mining methods (sometimes it is called in-

dexing), and evaluation of results. Generally, in a su-

pervised learning approach, annotation process is re-

quired to compare and evaluate generated summaries.

These steps are discussed in the following subsections.

2.2.1 Corpus Creation and Normalization

A corpus creation of selection is always the first step

while building a summarization system. A corpus de-

fines the collection of documents (a software artifact as

in our case). It can be extracted at different granu-

larities, e.g., a corpus may contain a set of classes or

methods or fragments in the source code, or words, or

sentences, or paragraphs in bug reports. The granular-

ity should be decided up-front according to the needs of

the required task as it influences the results of a given

task significantly. After the corpus is created, a few op-

6○http://mail-archives.apache.org/mod mbox/lucene-java-user/201512.mbox/browser, Jan. 2016.
7○http://stackoverflow.com/, Jan. 2016.
8○developer.apple.com/devforums/, Jan. 2016.
9○This example is taken from the following link: stackoverflow.com/questions/2403632/, Jan. 2016.
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tional steps, often known as pre-processing steps, i.e.,

tokenization, stop word removal or filtering, and stem-

ming are applied to reduce noise. For example, in the

source code, programming language keywords (if, else)

and character related syntax (“&&”) are removed from

the source code.

2.2.2 Experimentation and Summary

After the corpus is created and normalized, different

techniques are applied to produce results (also known

as indexing). These techniques could be machine learn-

ing based such as supervised or unsupervised learn-

ing or data mining based such as IR (information re-

trieval) and NLP (natural language processing). Exist-

ing techniques are explained with more details in Sub-

section 2.3.

Regarding the output, a summary can be extractive,

i.e., a subset of sentences are selected to build a sum-

mary, or abstractive when it substitutes an original text

with a new vocabulary. It is also possible to distinguish

summaries as generic, informative, indicative, and lead.

The generic summaries can serve as the surrogate of

the original text as they may try to represent all rele-

vant facts of a source text[1]. The indicative summaries

are used to indicate what topics are addressed in the

source text; they can give a brief idea of what original

text is about. The informative summaries are intended

to cover the topics in the source text and provide more

detailed information. Lead summaries are based on the

notion that the first term or terms that appear in the

main document, i.e., leading terms, are the most rele-

vant to that document[9]. As abstractive summaries are

difficult to generate, most systems attempt to generate

either indicative or informative summaries, or the com-

bination of different types of summaries in an extractive

manner.

2.2.3 Evaluation of Summaries

Evaluation methods are employed to verify the qual-

ity of the effectiveness of generated summaries. Anno-

tation process is also applied to evaluate summaries.

Annotation is a manual or automated process applied

separately from the experimentation on the selected

corpus for summary comparison or evaluation purposes.

On a given corpus, human annotators are hired to select

candidate sentences for summary creation. The likeli-

hood of a sentence to belong to a summary is the score

of the sentence[10]. For each sentence, the score is 0

when it has not been selected by any annotator, and

maximum, when all annotators have selected sentences

as candidate sentences. Generally, the set of sentences

with a score 2 or more, i.e., positive sentences, or the

manually created summaries by humans, are known as

the gold standard summary (GSS).

2.3 Existing Approaches for Software Artifact
Summarization

Here we intend to investigate the state-of-the-art

studies in summarizing bug reports, source code, mail-

ing lists, and developer discussions. The mining ap-

proaches contain studies based on information retrieval,

natural language processing, stereotype identification,

and program analysis methods. The machine learning

techniques contain supervised, unsupervised and semi-

supervised learning. Bug report summarization studies

have employed machine learning based techniques while

the other three artifacts have utilized both data mining

and machine learning based techniques, or the combina-

tion of both approaches. In the following subsections,

we discuss the state-of-the-art studies related to soft-

ware artifact summarization based on aforementioned

techniques.

2.3.1 Information Retrieval Based Studies

The information retrieval (IR) approaches aim

to find materials of structured or unstructured na-

ture, which satisfy the information need among large

collections[11]. Previously, IR approaches have been

applied to many software engineering problems such

as traceability link recovery, program comprehension

(summary) and software reuse[12]. IR techniques gene-

rally employ the methods based on vector space model

(VSM), latent semantic indexing (LSI), latent Dirichlet

indexing (LDI) or simple tf-idf (term frequency-inverse

document frequency) methods. Several studies in soft-

ware artifact summarization have employed IR meth-

ods. Here, we briefly survey these studies.

VSM represents the query and the artifact in the

corpus as terms or term vectors[13]. Researchers have

proposed many forms of weighting in VSM, but the

most widely recognized weighting method is called tf-

idf. LSI uses singular value decomposition (SVD) to

identify patterns between terms and concepts. It can

additionally extract the conceptual content of a text.

Haiduc et al.[9,14] applied VSM and LSI models to

generate term-based summaries for classes and meth-

ods. They investigated the suitability of several tech-

niques based on text retrieval methods to capture



888 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

source code semantics in a way developers understand.

They further evaluated the impact of their technique on

the quality of summaries via a study of four developers.

Using the same approach, Moreno and Aponte[15] dis-

covered that the length of term-based summaries should

range from 10 to 20 words, 10 words for methods and

20 words for classes, to get the real gist of source code.

Similarly, Rodeghero et al.[16-17] utilized the eye move-

ments and gaze fixations of programmers to identify

keywords and built a tool on these findings using IR

methods.

Rastkar and Murphy[18] presented a multi-

document summarization technique based on IR meth-

ods to describe the motivation behind code change.

In a pilot study, Binkley et al.[19] developed a tool

for generating task-driven summaries using VSM and

suggested that such summaries contain different levels

of details. Bacchelli et al.[13] established benchmarks

for finding traceability links between emails and source

code. This benchmark was based on LSI and VSM

models. They further manually inspected statistically

significant emails for six unrelated software. Panichella

et al.[20] employed VSM as an IR approach to extract

method signatures’ descriptions from bug reports and

mailing lists. They assumed that there was an explicit

traceability link between a source code and an email,

and the extracted method descriptions could help de-

velopers understand and redocument the source code.

Latent Dirichlet allocation (LDA)[21] is an IR model

that fits a generative probabilistic model from the term

occurrences in a corpus of documents[22]. Panichella

et al.[22] proposed a novel approach based on LDA —

GA (genetic algorithm) to adapt, configure, and achieve

acceptable performance across various software engi-

neering tasks, especially source code summarization.

In a couple of more studies, De Lucia et al.[23-24] in-

vestigated the overlap between automatic and human

generated summaries — “to what extent an IR-based

source code labeling would identify relevant words in

the source code, compared to the words a human would

manually select during a program comprehension task”.

They analyzed their technique based on VSMs, LSI,

LDA, and a simple heuristic 10○ — overlapped with those

identified by humans, in the end.

Vassallo et al.[25] proposed an IR-based approach,

CODES, that maps developer discussions on Stack-

Overflow to source code segments in order to generate

summaries of Java systems. They further developed

an Eclipse plugin and tested results on Lucene 11○ and

Hibernate 12○ systems. Similarly, Rahman et al.[26] pro-

posed a mining approach, which recommends insightful

comments about the quality, deficiency, and scope to

improve the source code using LDA. They developed

a recommender-heuristic based technique and utilized

the crowdsourcing knowledge from Stack Overflow dis-

cussions for constructing code comments.

Hierarchial PAM (hPAM) is a topic modelling tech-

nique, which is built on LDA. It connects words and

topics with a directed graph in a bag-of-words repre-

sentation. It is extended over the PAM (Pachinko Al-

location Model) and associated with a distribution of

vocabulary. Eddy et al.[4] replicated the same work

proposed earlier by Haiduc et al.[9] and expanded it us-

ing the HPAM topic modeling algorithm. They further

evaluated and compared the impact of summaries us-

ing 14 developers. They found that the VSM technique

was simpler and more efficient than HPAM for extract-

ing source code keywords.

2.3.2 Natural Language Processing Based Studies

NLP, in general, deals with the natural language

generation of text through artificial intelligence and

computer linguistics. In this subsection, we discuss stu-

dies that have adopted NLP methods in constructing

textual summaries.

Sridhara et al.[3,27] first employed NLP methods to

generate automatic summary comments for Java meth-

ods. Given the signature and body of a method, their

automatic comment generator identifies the content for

the summary and generates descriptive comments that

outline the method’s overall actions. It also provides

the high-level overview of the role of a parameter in

achieving the computational intent of the method. In

another effort[28], the authors presented an automatic

technique for identifying code fragments that imple-

ment high-level abstractions of actions and expressing

them as a natural language description. They identified

code fragments that implement high-level actions. A

high-level action means a high-level abstract algorith-

mic step of a method. Rastkar et al.[29-30] generated

light abstractive natural language summaries of source

code concern — what it is and how it is implemented.

10○Picking terms from class, attribute, and method names only.
11○lucene.apache.org/, Jan. 2016.
12○hibernate.org/, Jan. 2016.
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They used RDF graph 13○, Verb-DO 14○, and SEON java

ontology 15○ for this purpose.

In the same way, Moreno et al.[31-32] produced natu-

ral language summaries by incorporating NLP and class

stereotypes for Java classes. Their summaries focus

on class responsibilities rather than on class relation-

ships. They further extended this study and gener-

ated an Eclipse plugin called JSummarizer. McBurney

and McMillan[33-35] applied PageRank algorithm along

with SWUM (Software Word Usage Model) and natural

language generation system to extract the contextual

meanings hidden behind these classes by measuring the

importance of classes and methods. They argued that

existing documentation generators would be more ef-

fective if they included information from the context of

the methods. In a different study[36], they presented a

topic modeling approach based on HDTM (Hierarchical

Document-Topic Model) algorithm, which selects key-

words and topics as summaries for source code. They

further organized the topics in source code into a hi-

erarchy, with more general topics near the top of the

hierarchy, thus, presenting software’s highest-level func-

tionality before lower-level details.

In another effort Moreno et al.[37] introduced an

automatic release generator, ARENA (Automatic RE-

lease Notes GenerAtor) that extracts changes from

the source code, summarizes and integrates them with

the information from release trackers. Kulkarni and

Varma[38] used natural language lexicons to generate

source code summaries. Wong et al.[39] generated a

tool, AutoComment, aiming at mapping code frag-

ments to their descriptions in developer communica-

tions, relying on the clone detection between source

code and code fragment contained in the discussion,

and then automatically generating comments using

NLP.

Zhang and Hou[40], using natural language process-

ing and sentiment analysis techniques applied on online

forums, investigated how to extract problematic API

features, i.e., features that cause difficulties for API

users and often are discussed in a forum. In particular,

they extracted phrases from online threads and realized

that meaningful problematic features mostly appeared

in the phrases that contain negative sentences or the

neighbors of negative sentences. Meaningful features

are API features that help support teams finding out

the problems users have. It also helps support teams

in improving the API contents effectively. As an ex-

tension to Kamimura and Murphy’s work[41] (discussed

in Subsection 2.3.4), Panichella et al.[42] generated unit

test case summaries using NLP methods, and evaluated

their performance as well as their impact on bug fixing.

Similarly, Li et al.[43] used NLP with static analysis to

automatically document unit test case and generated a

tool UnitTestScribe.

2.3.3 Stereotype Identification Based Studies

Stereotypes are simple abstractions of a class’ or

method’s roles and responsibilities in a system’s design,

e.g., an accessor is a method stereotype that returns

information[44].

We found four studies[31-32,45-46] that employ stereo-

type identification in conjunction with different heuris-

tics to produce human readable summaries for source

code artifacts. As described in Subsection 2.3.2,

Moreno et al.[31-32] focused on summaries regarding

class contents and responsibilities, rather than the re-

lationships using stereotypes. Cortés-Coy et al.[46] pre-

sented an approach designed to generate commit mes-

sages automatically from code change sets. They iden-

tified method stereotypes developed by Moreno and

Marcus[47] and inserted them in pre-defined templates

to generate commit messages. Abid et al.[45] generated

template-based summaries 16○ of C++ methods using

stereotype identification, where required roles (stereo-

type) are extracted from the method’s signature and

inserted into the sentence with a pre-defined format.

2.3.4 Program Analysis Based Studies

Nielson[49] defined program analysis as a process

of automatically analyzing (statically or dynamically)

the behaviour of computer programs in the context of

properties such as correctness and robustness. Program

analysis focuses on two major areas: program optimiza-

tion and program correctness. The former focuses on

improving the program’s performance while reducing

the resource usage. The latter focuses on ensuring what

the program does and what it is supposed to do.

Buse and Weimer[48] designed an automatic tech-

nique, DeltaDoc, to describe source code modifica-

tions using symbolic execution and summarization tech-

13○Resource Description Graph. It represents triple (subject, predicate, and object) in the form of a graph.
14○Verb-DO makes direct object verb based pairs for a given artifact (a class, method, or document).
15○SEON is a Java ontology schema which represents facts by subject, predicate and object triples.
16○www.sdml.info/method summarization/, Jan. 2016.
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niques. The documentation describes the effect of a

change in the runtime behaviour of a program, in-

cluding the conditions under which program behaviour

changed and what the new behaviour was. It sum-

marizes the runtime conditions necessary for control

flow to reach the changed statements, the effect of the

change on functional behaviour and program state, and

what the program used to do under these conditions.

At a high-level it produces structured and hierarchical

documentation of the form: When calling A(),If X,do

Y Instead of Z.

Kamimura and Murphy[41] generated template-

based unit test cases summaries using static program

analysis. They determined how unique a particular

method invocation was relative to other test cases, and

identified the focus of the test case. It helps in improv-

ing human’s ability to quickly comprehend unit test

cases so that appropriate decisions could be made about

where to place effort when dealing with large unit test

suites.

Table 1 lists studies that employ IR, NLP, SI and

PA based methods.

Table 1. Summary of Studies Utilizing IR, NLP, SI and PA Techniques

Author Artifact Method Corpus Summary Type

Haiduc et al.[9,14] C + M IR → VSM, LSI ATunes, Art of Illusions Lead, extractive, light
abstractive

Rastkar et al.[29-30] CC PA → RDF, SEON + NLP
→ Verb-Do

JHotDraw, Drupal, Jex,
JFreeChart

Abstractive

Sridhara et al.[3,27] M NLP → AST, CFG, SWUM Megamek, SweetHome3D,
JHotDraw, Jajuk, JBidWatcher

Abstractive

Eddy et al.[4] C + M IR → VSM, LSI, hPAM ATunes, Art of Illusions Extractive

Moreno and Aponte[15] C + M IR → VSM, LSI ATunes Extractive, abstractive

Moreno et al.[31-32] C NLP + SI ATunes, AgroUML Indicative, abstractive,
generic

Buse and Weimer[48] CC PA FreeCol, jFreeChart, iText,
Phex, Jabref

Abstractive

Rastkar and Murphy[18] CC IR → SVM Connent Extractive

Binkley et al.[19] C + M IR → VSM JEdit Abstractive

McBurney and McMillan[33-35] M IR → PR, CG + NLP →

SWUM, Verb-DO
NanoXML, Siena, JTopas, Jedit,
Jajuk, JHotDraw

Abstractive

McBurney et al.[36] M NLP → HTDM NanoXML Extractive

Cortés-Coy et al.[46] CC SI + NLP Elastic Search, Spring So-
cial, JFreeChart, Apache Solr,
Apache Felix, and Retrot

Panichella et al.[20] M + BR +
E

IR → VSM Lucene, Eclipse

Kamimura and Murphy[41] UT PA Junit, JFreeChart, CodePro Abstractive

Kulkarni and Varma[38] M IR → VSM + NLP → lexi-
cons, clues

JEdit Extractive

Moreno et al.[37] C + CC NLP + PA 1000 release notes from 58
projects

Abstractive

Rodeghero et al.[16-17] M IR → VSM + manual sum-
maries

NanoXML, Siena, JTopas, Ja-
juk, JEdit, and Jhotdraw

Extractive

Abid et al.[45] M SI HippoDraw Light abstractive

Panichella et al.[22] C IR → LDA-GA JHotDraw, exVantage Extractive

Lucia et al.[23-24] C IR → VSM, LSI, LDA JHotDraw, eXVantage Extractive

Vassallo et al.[25] M + DD IR → VSM Lucene, Hibernate

Rahman et al.[26] C + DD IR → LDA, PageRank Stack OverFlow discussions and
Comments

Wong et al.[39] C + DD NLP + clone detection 23 projects from Stack Overflow
discussions

Zhang and Hou[40] DD NLP + PA Oracle Java API Extractive

Sridhara et al.[28] M + CF NLP → AST, CFG, SWUM Freecol, GanttProject, HsqlDB,
Jajuk, JBidwatcher, JHotDraw,
PlanetaMessenger,
SweetHome3D

Abstractive

Panichella et al.[42] UT NLP → SWUM Math4J, Commons Primitives Light abstractive

Note: C stands for class, M for method, CC for code change, UT for unit test, CF for code fragment, DD for developer discussion,
VSM for vector space model, LSI for latent semantic indexing, NLP for natural language processing, PA for program analysis and SI
for stereotype identification.
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2.3.5 Machine Learning Based Approaches

Machine learning based studies can be categorized

into supervised, unsupervised and semi-supervised

learning. In supervised summarization, the task of se-

lecting important sentences can be represented as a bi-

nary classification problem, where it classifies all sen-

tences into summary and non-summary sentences[10].

A corpus of human annotation of sentences is used to

train a statistical classifier, where sentences are repre-

sented based on the importance[10]. Kupiec et al.[50]

first proposed the use of supervised machine learning

for summarization. They argued that the supervised

learning approach provides freedom to use and combine

any desired number of features. A supervised approach

relies on the availability of a summary corpus, which

is trained and predicted using predefined procedures.

However, building corpus, which is usually large, and

annotated data require substantial amount of manual

effort[51].

Rastkar et al.[52] developed a supervised learning

classifier based on the pre-existing technique[53] for pro-

ducing extractive summaries of bug reports. They

trained a classifier, Bug Report Classifier (BRC), on

a manually created reference set called Gold Set. They

selected 36 bug reports from four open source projects,

Mozilla 17○, Eclipse 18○, KDE 19○ and Gnome 20○. The

authors[5] further performed a task based analysis for

evaluating how summaries helped in detecting duplicate

bugs without degrading the accuracy.

Jiang et al.[54] targeted mining authorization char-

acteristics using bug report summaries. They employed

byte level N -Grams to find the similarity between

Normalized Simplified Profile Interactions (NSPI) and

utilized it for generating summaries of bug reports.

Ying and Robillard[55] developed a supervised source

to source summarization of code fragments. They ex-

tracted 49 syntactic and 5 query features from the 70

code fragments, which were taken from the Eclipse of-

ficial FAQ 21○. By training and testing the data on

these features, they developed a support vector ma-

chine (SVM) and Naive Bayes (NB) models to gener-

ate summaries. Recently, Nazar et al.[56] incorporated

crowdsourcing on a smaller scale with SVM and NB

in a supervised manner. They achieved the precision

of 82% and outperformed the existing classifiers[55] as

well.

Petrosyan et al.[57] investigated the use of text clas-

sification to discover tutorial sections explaining how to

use a given API type using supervised learning. They

considered that a tutorial section explains an API type

if it would help a reader unfamiliar with the correspond-

ing API to decide when or how to use the API type to

complete a programming task. They further considered

API types (classes and interfaces) as the best level of

granularity for finding usage information because a sin-

gle section of an API tutorial usually describes a solu-

tion for a programming task by using a set of methods.

Contrary to supervised techniques, unsupervised

techniques do not require manually annotated corpus,

and training and test sets, and they focus on finding

hidden data in an unlabeled dataset. In an attempt to

produce unsupervised summaries of bug reports, Mani

et al.[58] evaluated the quality of summaries generated

by four well known unsupervised classifiers, namely,

Maximum Marginal Relevance (MMR), Grasshopper,

DivRank and Centroid. They introduced a heuristic

based noise reducer for bug sentences on a corpus of

19 bug reports from IBM DB2 Bind that automati-

cally classifies sentences into questions, investigations,

and code snippets. When using the noise reducer, they

found that each of the four unsupervised algorithms

produced a summary of slightly better quality if com-

pared with the supervised approach[52].

Similarly, Lotufo et al.[51,59], proposed heuristic

and graph based unsupervised bug report summariza-

tion technique. They posed three hypothesis questions

which were “sentence relevance”, “frequency discussion

topics” and “bug report’s titles”. Furthermore, they

compared results with the existing corpus[52] and found

12% improvement. They applied graph-based methods

such as Markov Chain and PageRank for summariz-

ing bug reports. Next, Yeasmin et al.[60] proposed a

prototype that assists developers to review a project’s

bug report by interactively visualizing insightful infor-

mation regarding bug reports. They applied the un-

supervised topic modeling techniques to visualize bug

reports. They found that their approach outperformed

existing unsupervised techniques statistically.

17○www.mozilla.org, Jan. 2016.
18○www.eclipse.org, Jan. 2016.
19○www.kde.org, Jan. 2016.
20○www.gnome.org, Jan. 2016.
21○http://wiki.eclipse.org/index.php/Eclipse, Jan. 2016.
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Fowkes et al.[61] presented a novel unsupervised ap-

proach called TASSAL (Tree-Based Autofolding Soft-

ware Summarization ALgorithm), for summarizing

source code using autofolding. Autofolding is automat-

ically creating a code summary by folding non-essential

code blocks in a source code. Autofolding was pre-

sented as a subtree optimization problem making use of

a scoped topic model. They showed that their formula-

tion outperformed simpler baselines at meeting human

judgments, yielding a 77% accuracy and a 28% error

reduction. In another effort, Sorbo et al.[8] developed

a semi-supervised email content analyzer tool, DECA,

that uses captured language patterns from email con-

versations to generate source code summaries. Their

semi-supervised approach was based on island parsing

and hidden Markov models. Table 2 provides the list of

studies that employ supervised, unsupervised and semi-

supervised machine learning methods.

Other efforts, e.g., [13, 62] have discussed summa-

rization techniques to address different problems such

as establishing traceability link recovery between diffe-

rent artifacts such as emails and source code or de-

veloper discussion and source code. McBurney and

McMillan[33] conducted an empirical study examining

the summaries written by authors or readers and au-

tomatic summaries generated by summarization tools.

They used different metrics to examine this hypoth-

esis. Fritz et al.[63] and Kevic et al.[64] utilized eye-

movement tools and human developers to conduct em-

pirical studies for developing models in the context of

change task. In the same way, Ying and Robillard[65]

employed think-aloud verbalization to find decisions of

participants in order to elicit a list of practices for sum-

marization task. These and other applications of soft-

ware artifact summarization are thoroughly discussed

in Section 3.

Table 2. Summary of Studies Utilizing Supervised Learning, Unsupervised Learning and

Semi-Supervised Learning Approaches (from Jan. 2010 to Apr. 2016)

Author Artifact Method Corpus Summary Type

Rastkar et al.[5,52] BR SL → VSM 36 bug reports from Eclipse, Mozilla, KDE,
and Gnome

Extractive

Mani et al.[58] BR UL → MMR, Centroid, GH,
DR

36 bug reports from Study[52] + 19 from IBM
DB2-Bind

Extractive

Lotufo et al.[51,59] BR UL → Markov Chain, PageR-
ank, VSM

55 bug reports from Chrome, Launchpad,
Mozilla and Debian

Extractive

Ying and Robillard[55] CF SL → SVM, NB 70 code fragments from Eclipse Official FAQs Extractive

Jiang et al.[54] BR SL → VSM, N-Grams 96 bug reports from Eclipse, Mozilla, KDE,
and Gnome

Extractive

Yeasmin et al.[60] BR UL → VSM, LDA, PageRank 3 914 bug reports from Eclipse ANT Extractive

Fowkes et al.[61] C UL → TASSAL Storm, easticsearch, spring-framework, libgdx,
bigbluebutton, netty from Github

Extractive

Nazar et al.[56] CF SL → SVM, NB 78 code fragments from Eclipse Official FAQs
+ 49 from Netbeans Official FAQs

Extractive

Sorbo et al.[8] E + M SSL → Hidden Markov Eclipse, Lucene Extractive

Petrosyan et al.[57] C + I + OF SL → MaxEnt Classifier Joda Time, Apache Commons, Java Collec-
tions API, Smack API

Extractive

Note: BR stands for bug report, C for class, M for method, I for interface, E for email, CF for code fragment and OF for online forum.

3 Applications

In this section, we review and classify selected stu-

dies in context of the purpose of generating summary.

What summary is intended for and what is used to

achieve? In the following subsections, we discuss some

important applications of software artifacts summariza-

tion with respect to the selected studies.

3.1 Code Change

A developer working as part of a software develop-

ment team often needs to understand the reason behind

a code change. This information is important when

multiple developers work on the same code and the

changes they individually make may cause a conflict[18].

Such collisions can be avoided if a developer working

on the code knows why the particular code is added,

deleted or modified. Often, a developer can access a

commit message or a bug report with some informa-

tion on the code change. However, this information of-

ten does not provide the exact context of code changes,

for example which business objective or feature is be-

ing implemented. Automatic summary generation of a

code change is a one way to overcome this problem.

Rastkar and Murphy[18] proposed the use of multi-

document summarization technique to generate concise
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descriptions of the motivation behind the code change

based on the information present in the related docu-

ments. They identified a set of sentence-level features

to locate the most relevant sentences in a change set to

be included in a summary.

Cortés-Coy et al.[46] presented an approach, coined

as ChangeScribe 22○, which was designed to generate au-

tomatic commit messages from change sets. It gener-

ated natural language commit messages by taking into

account commit stereotype, the type of changes (e.g.,

files rename, changes done only to property files), as

well as the impact set of the underlying changes.

Similarly, Buse and Weimer[48] designed an auto-

matic technique, DeltaDoc, to describe source code

modifications using symbolic execution and summariza-

tion techniques. DeltaDoc generates textual descrip-

tions of code changes, but when the changeset was very

large (i.e., many files or methods), it describes each

method separately ignoring possible dependencies of

those methods. Primarily, it reduces the human effort

in documenting program changes.

3.2 Duplicate Bug Detection

If two bugs are same, or they have different repro-

ducible steps with same results, or their cause/reason

of defect is same, then such bugs are called duplicate

bugs. A common activity when using a bug repository

is to detect duplicate bug reports stored in the bug

repository. It helps programmers in fixing defects and

other bug triage tasks. However, it is quite challenging

to manually detect duplicate bug reports since there

can be a large number of bug reports in a bug reposi-

tory. Bug report duplicate detection is performed when

a new bug report is filed against a bug repository and

has to be triaged. Early determination of duplicate

bugs can add information about the context of a prob-

lem and can ensure that the same problem does not end

up with being assigned to multiple developers for res-

olution. Developers use different techniques to retrieve

a list of potential duplicates from the bug repository,

including their memory of bugs they know about in the

repository and keyword searches[67-68].

Rastkar et al.[5] evaluated the summaries produced

earlier in their study[52] for duplicate detection. They

evaluated if summaries could help in determining the

duplicate bug during bug triage. They hypothesized

that the concise summaries of original bug reports could

help developers save time in performing duplicate de-

tection tasks without compromising accuracy.

3.3 Bug Report Digestion

Bug digestion means the information developers

are looking for from an artifact can easily be looked

for. Bug reports are not created with this intent in

mind and rather they are the result of the collabora-

tion between different reporters, developers, and users’

communications. Therefore, it is uneasy to read and

comprehend bug reports. Based on this information,

Lotufo et al.[51,59] proposed a PageRank based summa-

rization technique that focuses on if the bug reports

could be digestible, providing a deeper understanding

of the information exchange in bug reports and uti-

lizing that information for generating general purpose

bug report summarizer. Using 52 bug reports from

Chrome, Launchpad 23○, Mozilla, and Debian 24○ open

source projects, they evaluated results statistically and

qualitatively, achieving 12% improvement over state-of-

the-art supervised summarizers.

3.4 Summary Visualization

Visualization is the use of a computer-based inte-

ractive visual representation of data to amplify cogni-

tion. Charts, graphs, and maps are some examples of

visualized data. Only one effort in software artifact

summarization, proposed by Yeasmin et al.[60], pro-

duced an interactive visualization of bug reports using

extractive summaries and their relationship between

different bug reports. One of the main objectives of

their proposed visualization prototype was to provide

insightful information to developers through software

bug reports over time. Their visualization prototype

generates and shows the topic evolution of each topic

automatically, retrieves all software bug reports associ-

ated with a given topic along with their bug report IDs

and titles, provides searching option by keywords asso-

ciated with a topic, and visualizes an extractive sum-

mary of each bug report. Furthermore, they produced

a set of keyword clouds layout to show the evolution

of summary contents over time. Visualizing software

artifact information could be a promising research area

in future.

22○www.cs.wm.edu/semeru/data/SCAM14-ChangeScribe/, Jan. 2016.
23○launchpad.net/, Jan. 2016.
24○www.debian.org/, Jan. 2016.
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3.5 Traceability Link Recovery

Establishing a link between two artifacts is a non-

trivial problem especially when the artifacts are com-

municative, e.g., emails and source code or bug re-

ports and source code. Bacchelli et al.[13] devised a

set of lightweight methods to establish the link be-

tween emails and source code. They further defined

the benchmark for recovering traceability links and its

utilization for summarization. Similarly, Aponte and

Marcus[62] utilized text summarization techniques to

address traceability link recovery problem. They con-

ducted a pilot study that proposed a hybrid summa-

rization technique that combines textual and structural

information to summarize source code. They proposed

generating concise descriptions of short methods (ten

lines) and offered developers with the tool providing

candidate link analysis. These concise summaries could

help developers in making proper decisions.

3.6 Document Generation

Programmers rely on documentation to understand

the source code or an API or a user manual. Docu-

ment generator is a tool that generates software docu-

mentation such as JavaDocs 25○. It can be a complete

document that precisely summarizes the contents of an

artifact or a template that requires a set of words to

be inserted at appropriate places in pre-defined sen-

tences, intending to make meaningful sentences. We

have found four studies that targeted generating docu-

ments for source code summaries.

Kamimura and Murphy[41] generated textual sum-

maries of test cases using pre-defined templates. First,

all operation invocations were described using a “calls

<methodname>on <objectname>” format. Next, they

outputted all verification invocations using templates

for various verification operations, such as “checks the

<methodname>of <object>is equal to <value>”. Sim-

ilarly, Abid et al.[45] constructed pre-defined templates

for summarizing C++ methods using stereotype iden-

tification and static analysis. Their short method de-

scriptions follow <method>is a <stereotype>[that col-

laborates with the <obj>] format. The text in “[ ]”

is a pre-defined text while the text in “<>” is iden-

tified through stereotype identification and inserted in

the sentence.

McBurney and McMillan[33] developed a documen-

tation generation technique, which focuses on generat-

ing documentation for a given set of source code us-

ing NLP methods. They argued that summarization

techniques mainly stitched together words to generate

summaries, but lacked the real context of a source code.

Thus, they presented a page rank based technique that

generates a summary document, same as the official

JavaDoc, but more contextual in nature. Therefore,

the summary is presented in a way that readers can

understand it[69]. Recently, Sorbo et al.[8] developed

an intention mining tool that captures linguistic pat-

tern from emails to define email contents and utilized

it for re-documenting Lucene and Eclipse source code.

3.7 Source-to-Source Summaries

Source-to-source summarization deals with select-

ing important code lines from the given code fragment.

A code fragment is a partial program that serves the

purpose of demonstrating the usage of an API[55]. The

code fragment summary is a shorter code fragment con-

sisting of informative lines only in the context of a given

task. According to Ying and Robillard[55] current re-

search in software engineering has mostly focused on the

retrieval accuracy aspect of code fragments, or develop-

ing a tool for summarization, or devising new methods

for generating summaries, but little on the presenta-

tion aspect of code examples, e.g., how code examples

should be presented in a result page? Source-to-source

summarization is one way to improve the presentation

of code examples.

Ying and Robillard[55] conducted two studies re-

lated to source code fragment summarization and their

practices. In the first study[55] they used SVM and NB

classifiers to find the feasibility of generating source-to-

source summaries of code fragments. They extracted

syntactic and query features, and trained them to

achieve desirable task. In another study[65] they con-

ducted experiments to discover how and why source

code could be summarized. They elicited a list of prac-

tices, for example none of the participants exclusively

extracted code verbatim for the summaries, motivat-

ing abstractive summarization. Their results provided

a grounded basis for the development of code exam-

ple summarization and presentation technology. Later,

Nazar et al.[56] generated source-to-source summaries

of code fragments by utilizing crowd enlistment on a

small scale to extract code features. They found that

their approach produced statistically better summaries

than the existing study[55]. From generated results they

25○www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html, Jan. 2016.
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inferred that the query based features might statisti-

cally degrade the accuracy of extracting informative

lines from the code fragment.

3.8 Tool Development

In order to facilitate developers, researchers tar-

geted building summarization tools. Eight studies

from surveyed papers explicitly developed summariza-

tion tools.

Rodeghero et al.[16-17] built a novel summarization

tool based on the eye-tracking (eye movement and gaze

features) results obtained from humans (developers).

They argued that little evidence existed about the

statements and keywords that the programmers deemed

important while summarizing source code. Therefore,

they conducted an eye-tracking study of 10 developers,

in which they read java source code and wrote sum-

maries. Later, they applied the findings in building a

novel summarization tool. Kevic et al.[64] developed an

eclipse plugin iTrace for measuring eye interactions by

combining user interaction monitoring with very fine

granular eye-tracking data that is automatically linked

to the underlying source code entities in the IDE.

Later, McBurney and McMillan[33] developed a

source code summarization tool, Sumslice 26○ that fo-

cuses primarily on the interaction of methods. Method

interaction intends to describe how methods communi-

cate with each other — the dependencies of the method,

and any other method. It uses SWUM to identify key-

words and parts of speech messages. SWUM is a soft-

ware word usage model introduced by Hill et al.[70] and

it is used for representing program statements as sets of

nouns, verbs, and prepositional phrases. SWUM works

by making assumptions about different Java naming

conventions and using these assumptions to interpret

different program statements. In another effort[34], they

developed a tool Sumalyze for detecting the simila-

rity between the source code summaries and the source

code.

JSummarizer[31] is an Eclipse plug-in for automat-

ically generating natural language summaries of Java

classes. It automatically infers design intents of classes

through stereotype identification. Stereotypes are sim-

ple abstractions of a class’s role and responsibility in a

system’s design[44]. Accessors (getter methods), muta-

tors (setter methods), constructors, and collaborators

are some of the examples of method stereotypes.

In other efforts, Aponte and Marcus[62] built a tool

for the candidate analysis of source code, Vassallo et

al.[25] and Cortés-Coy et al.[46] built eclipse plugins

CODES and ChangeScribe for mining source code from

developer discussions and generating commit messages

respectively. Sorbo et al.[8] developed a tool for the in-

tention mining of emails and utilized it for source code

documentation.

3.9 Authorship Characteristics

Jiang et al.[54] leveraged the authorship characteris-

tics to facilitate the well-known task in software mainte-

nance, i.e., bug report summarization. They presented

a framework called Authorship Characteristics Based

Summarization (ACS). The reasoning of ACS is that,

given a new bug report initialized by contributor A, a

classifier trained over annotated bug reports by A is

highly likely to perform better than a classifier trained

over annotated bug reports by other contributors.

3.10 Eye-Tracking Interactions

Rodeghero et al.[16-17] first conducted an eye-

tracking study, focusing on eye movements and gaze

features of 10 software developers. They asked devel-

opers to read Java source code and wrote summaries.

Their eye and gaze movements were recorded to gain

insight about what methods or classes they felt were

important. They further extended it to build a novel

tool and compared the results with human summaries.

Kevic et al.[64] argued that most empirical studies

on change tasks were limited to small snippets or they

had small granularity. Therefore, they hired 12 pro-

fessional and 10 student developers to perform three

change tasks and found that developers only looked

at a few lines of methods — related to the data flow

of variables in the method. Tracing developers’ in-

teractions may help in developing improved tools for

software summarization task. Similarly, Fritz et al.[63]

through an exploratory study with 12 developers com-

pleting change tasks in three open source systems, iden-

tified important characteristics of these context models

and how they were created.

3.11 Task-Based Summarization

A preliminary investigation regarding usefulness

and goodness of summaries, specific to a given task,

was conducted by Binkley et al.[19] They emphasized on

task specific manual summaries that help in developing

26○www3.nd.edu/∼pmcburne/summaries/, Jan. 2016.
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automatic task specific summarization tools. The par-

ticipants manually produced two different summaries

of few classes, one aiming at reuse and the other aim-

ing at testing. The study suggested that such sum-

maries contained different levels of details. This study

was conducted at 2013 ICSE workshop NaturaLiSE 27○

and lessons learned from investigations supported the

notion that the task played a significant role, and thus

should be considered by researchers for building and ac-

cessing automatic software summarization tools (Sub-

section 2.3.1).

Similarly, McBurney andMcMillan[34] conducted an

empirical study, aimed at measuring the similarity be-

tween source code and source code summaries. They

focused on the usefulness of summaries in a task-driven

manner using a tool Sumalyze 28○.

Other studies focused on autofolding[61], developer

facilitation[5,52], summarizing developer activity[71] and

method signature utilization from bug reports and mail-

ing list[20]. More details are provided in the cited pa-

pers. Table 3 provides the list of studies with regard to

the intended tasks (grouped).

Table 3. List of Studies Grouped with Task and Purpose (Applications)

Category Task Author

Visualization Summary visualization of bug reports Yeasmin et al.[60]

Document generation Template based source code summaries Abid et al.[45]

Natural Language based documentation McBurney and McMillan[33-35]

Source to source Code examples summaries Ying and Robillard[55]

How and why code examples can be summarized? Ying and Robillard[65]

Code example summaries with crowdsourcing based features Nazar et al.[56]

Duplicate bug detection Detecting duplicate bug reports using bug report summaries Rastkar et al.[5]

Code change Summary of a code change using multi-document summariza-
tion technique

Rastkar and Murphy[18]

ChangeScribe: generates commit messages Cortés-Coy et al.[46]

DeltaDoc: textual description of code change Buse and Weimer[48]

Tool development Summarization tool based on eye-movements of developers Rodeghero et al.[16-17]

Eclipse plugin: JSummarizer Moreno et al.[31]

Sumslice: source code summarization tool McBurney and McMillan[33-35]

Sumalyze McBurney and McMillan[69]

Tool for candidate link analysis Aponto and Marcus[62]

Eclipse plugin: CODES-mining source code descriptions from
developers discussions

Vassallo et al.[25]

Eclipse plugin: iTrace-incorporating implicit eye tracking Kevic et al.[64]

Eclipse plugin: ChangeScribe Cortés-Coy et al.[46]

Framework for summarizing code concerns Rastkar et al.[29-30]

Authorship characteristics Leveraged the authorship characteristics to facilitate bug re-
port summarization

Jiang et al.[54]

Bug report digestion Readability, time reduction, extraction of important informa-
tion from bug reports

Lotufo et al.[51,59]

Autofolding Automatic autofolding of source code in an IDE Fowkes et al.[61]

Eye-tracking interaction Eye-tracking interactions to develop summarization tools Rodeghero et al.[16-17]

What are software developers doing during a change task? Kevic et al.[64]

Code context models Fritz et al.[63]

Task-based summarization Study on developing task-specific summaries Binkley et al.[19]

Similarity between source code and source code summaries McBurney and McMillan[69]

4 Tools

In this section we provide a brief overview of tools

that are incorporated during summarizing software ar-

tifacts in selected studies. These tools are either pro-

duced as a result of summarization task or used for

performing a summarization task. A summarization

tool can facilitate a software developer in achieving the

desired task quickly and effectively.

We only found one tool, BC3 annotation tool for

annotating bug reports used by Rastkar et al.[52] This

framework allows researchers to annotate emails or

other conversations. It is developed at the University

of British Columbia and based on Ruby on Rails and

27○dibt.unimol.it/naturalise/, Jan. 2016.
28○www3.nd.edu/∼pmcburne/sumalyze/, Jan. 2016.
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MySQL database. Two classification tools, LibSVM[72]

and LibLinear[73] are used for SVM and linear classifi-

cations in software artifact summarization. Ying and

Robillard[55], Rastkar and Murphy[18], and Nazar et

al.[56] employed LibSVM for the supervised classifica-

tion of source code summaries. Whereas Rastkar et

al.[5,52] employed LibLinear for the linear classification

of bug reports.

Following Eclipse plugins, namely, Jex, JayFX,

JStereotype, JSummarizer, ChangeScribe and iTrace

were developed as summarization tools. Rastkar et

al.[30] utilized JayFX, an Eclipse plug-in that extracts

various relations (such as method calls) from a pro-

gram. Jex is a tool for analyzing exception flow in Java

programs for summarizing code concerns. Both tools

are developed by the Department of Computer Science,

University of British Columbia. Moreno et al.[32] at

Wayne State University 29○, developed two eclipse plug-

ins namely JStereotype and JSummarizer, which were

used for identifying code stereotypes and generating

summaries respectively. ChangeScribe is an Eclipse

plugin for generating commit messages. It is developed

by the SEMERU group 30○ at The College of William and

Mary. UnitTestScribe is also developed by the same

group for generating unit test case documents.

Sumslice is a document generation tool developed

by McBurney and McMillan[33-35] at the University

of Notre Dame. They developed another tool using

Python 31○ programming language, Sumalyze[69], for re-

alizing the similarity between source code and source

code summaries. iTrace 32○ is an eye tracking plugin de-

veloped by Kevic et al.[64] at SERESL Lab Youngstown

State University 33○. Stanford NLP Parser is utilized

in the studies of Mani et al.[58], Panichella et al.[20]

and Zhang and Hou[40]. It is developed by the Stan-

ford University NLP Group 34○ for parsing grammatical

structures of sentences. Panichella et al.[42] developed a

tool, TestDescriber, that generates user test case sum-

maries.

Table 4 provides a list of tools regarding software

artifact summarization, including their brief descrip-

tion, authors, and URLs for accessing them. We believe

that these tools can be useful for future researchers,

especially junior researchers who are interested in re-

implementing existing studies or developing new or

novel summarization systems. This list provides tools

which are publicly available. Commercial tools are not

listed in this table.

5 Evaluation Methods for Software Artifact

Summarization

Evaluation of automatic summaries is not a

straightforward process. It is difficult to judge the

usefulness of summary in a given context as summa-

rization is a subjective and non-deterministic process.

There are different methods that can be taken into ac-

count for evaluating summaries[1]. In general, methods

for evaluating summaries can be broadly classified into

two categories: intrinsic or extrinsic[75]. Intrinsic refers

to methods that evaluate the quality of the summary

produced, usually through comparisons to a gold stan-

dard. This is in contrast to extrinsic evaluation where

the evaluation measures the impact of the summary on

task performance such as the task-based evaluations[76].

In existing studies, several methods have been ap-

plied for evaluating summaries. These methods focus

on the amount of information, quality, context, and

content factors reflected in the summaries. Evaluation

also depends on the intention or purpose for which it

is tested. For instance, Panichella et al.[20] evaluated

summaries using humans with the intention of assess-

ing the quality of summaries — qualitative evaluation.

In the subsections below, we attempt to distinguish and

provide the details of the types of summary evaluations

employed by the authors of the selected studies.

5.1 Statistical Evaluation Methods

Statistical evaluation involves different information

retrieval metrics such as precision, recall, F -measure,

pyramid precision, ROC-AUROC curve, TPR and

FPR. In some statistical evaluations, these measures

are evaluated against baseline metrics such as random

classifier 35○[55] or an existing classifier[52]. Generally, a

summary content is compared with a human-model, a

reference summary[1], called a gold standard summary.

29○engineering.wayne.edu/cs/, Jan. 2016.
30○www.cs.wm.edu/semeru/, Jan. 2016.
31○www.python.org, Jan. 2016.
32○www.csis.ysu.edu/∼bsharif/itraceMylyn/, Jan. 2016.
33○www.csis.ysu.edu/, Jan. 2016.
34○http://nlp.stanford.edu/, Jan. 2016.
35○In which a coin toss is used to decide which sentences to include in a summary.



898 J. Comput. Sci. & Technol., Sept. 2016, Vol.31, No.5

Table 4. List of Tools Regarding Software Artifact Summarization

Tool Name Description Authors URL

LibLinear A library for linear classification Rastkar et al.
[5,52] www.csie.ntu.edu.tw/∼cjlin/liblinear/

BC3 Annotation
Framework

A tool for bug reports annotation Rastkar et al.
[5,52],

Jiang et al.
[54]

www.cs.ubc.ca/nest/lci/bc3/framework.html

JGibLDA Java implementation of LDA Yeasmin et al.
[60] jgibblda.sourceforge.net/

Sentiment140 Twitter Sentiment API Yeasmin et al.
[60],

Zhang and Hou[40]
help.sentiment140.com/api

Stanford NLP
Parser

A statistical parser by Stanford
University

Mani et al.
[58],

Panichella et al.
[20],

Zhang and Hou[40]

nlp.stanford.edu/software/lex-parser.shtml

JayFX Eclipse Plugin Rastkar et al.
[30] cs.mcgill.ca/∼swevo/jayfx/

Jex Eclipse Plugin Rastkar et al.
[30] cs.mcgill.ca/∼swevo/jex/

Jena Framework for building semantic
web apps

Rastkar et al.
[30] jena.sourceforge.net

srcML XML representation of source code Panichella et al.
[20,45] www.srcml.org/

CODES Source code descriptions from de-
velopers discussions

Panichella et al.
[20],

Vasallo et al.
[25]

www.ing.unisannio.it/spanichella/pages/tools/CODES/
sourceforge.net/p/codesplugin/code/ci/master/tree/

JStereoCode Eclipse Plugin for stereotype iden-
tification

Moreno et al.
[31] www.cs.wayne.edu/∼severe/jstereocode/

JSummarizer Eclipse Plugin for automatic sum-
marization

Moreno et al.
[32] www.cs.wayne.edu/∼severe/jsummarizer

LibSVM A library for SVM classification Ying and Robillard[55],

Rastkar and Murphy[18],

Nazar et al.
[56]

www.csie.ntu.edu.tw/∼cjlin/libsvm/

CFS Code fragment summarizer im-
plementation for SVM and naive
Bayes classifiers

Nazar et al.
[56] oscar-lab.org/CFS/

Sumslice Similarity between source code and
source code summaries

McBurney and

McMillan[33-35]
www3.nd.edu/∼pmcburne/summaries/

CallGraph Static and dynamic call graphs for
Java

McBurney and

McMillan[33]
github.com/gousiosg/java-callgraph

EyeSum Implementation of eye-tracking
study

Rodeghero et al.
[16-17] www3.nd.edu/∼prodeghe/projects/eyesum/

Ogama Tool for capturing gaze movements Rodeghero et al.
[17] www.ogama.net

Sumaylze Tool for text similarity between
source code and source code sum-
maries

McBurney and

McMillan[69]
www3.nd.edu/∼pmcburne/sumalyze/

TASSAL Tool for autofolding Fowkes et al.
[61] github.com/mast-group/tassal

ARENA Complete package for release set Moreno et al.
[37] www.cs.wayne.edu/∼severe/fse2014/

ChangeScribe Eclipse plugin for generating com-
mit messages

Cortés-Coy et al.
[46] github.com/SEMERU-WM/ChangeScribe

DeltaDoc Implementation for source code
change affect

Buse and Weimer[48] code.google.com/archive/p/deltadoc/

iTrace Eye-tracking study implementation Kevic et al.
[64] github.com/YsuSERESL/itrace-gaze-analysis

github.com/YsuSERESL/iTrace

MUCCA Email unified content classification
approach

Bacchelli et al.
[7] mucca.inf.usi.ch/

DECA Development emails content ana-
lyzer

Sorbo et al.
[8] www.ifi.uzh.ch/seal/people/panichella/tools/DECA.ht

AutoComment Automatic comment generation
tool

Wong et al.
[39] asset.uwaterloo.ca/AutoComment/

CloCom Automatic comment generation
tool

Wong et al.
[74] asset.uwaterloo.ca/clocom/

CoreNLP POS Stanford log-linear part-of-speech
tagger

Rahman et al.
[26] nlp.stanford.edu/software/tagger.shtml

NLP Sentiment
Analyzer

Sentiment analysis Rahman et al.
[26] nlp.stanford.edu/sentiment/

CodeInsight CodeInsight: recommending in-
sightful comments for source code
using crowdsourced knowledge

Rahman et al.
[26] github.com/masud-technope/CodeInsight

homepage.usask.ca/∼masud.rahman/codeinsight

Tregex Tregex is a utility for matching pat-
terns in trees

Zhang and Hou[40] nlp.stanford.edu/software/tregex.shtml

Haystack Documentation of online forums Zhang and Hou[40] www.clarkson.edu/∼dhou/projects/haystack2013.zip

Language Tools Style and grammar checker Panichella et al.
[42] github.com/languagetool-org/languagetool

Randoop Automatic test generator of Java Panichella et al.
[42] github.com/randoop/randoop

Javaparser Java 1.8 parser and Abstract Syn-
tax Tree for Java

Panichella et al.
[42] github.com/javaparser/javaparser

TestDescriber Test case summary generator and
evaluator

Panichella et al.
[42] ifi.uzh.ch/seal/people/panichella/tools/TestDescriber.html

TraceLab LDA-GA implementation Panichella et al.
[22] dibt.unimol.it/reports/LDA-GA

github.com/CoEST/TraceLab
coest.org/index.php/tracelab

UnitTestScribe Unit test case document generator Li et al.
[43] cs.wm.edu/semeru/data/ICST16-UnitTestScribe/
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Gold standard summary (GSS) or simply a gold

standard is generated through a human annotation pro-

cedure. In an annotation procedure, human annotators

select a subset of an artifact that is used as a reference

set for evaluating automatic summaries. It is generally

performed prior to the development of summarization

system. For instance, Fowkes et al.[61] hired two expert

Java developers as annotators for performing manual

folding of source code. Rastkar et al.[5,52] hired human

annotators from the same institution for manually cre-

ating a corpus of reference summaries and they trained

their logistic regression classifier on this corpus. Sim-

ilarly, Ying and Robillard[55] and Nazar et al.[56] eval-

uated source-to-source summaries on a set of manually

created source code gold standard summaries.

Since creating golden summaries requires significant

manual effort and should be done by experts, building a

reasonably-sized training set of golden summaries could

be considered as an impediment for such technique[51].

Another problem with annotation is that annotators

often do not agree on the same summary, as summa-

rization is a subjective process, and there is no single

best summary for a given set of data. To mitigate this

problem researchers applied Kappa test also known as

Cohen’s Kappa[77] to measure the level of agreement

between the annotators. All statistical measures em-

ployed in the surveyed papers are briefly discussed be-

low.

5.1.1 Precision and Recall

To evaluate the usefulness of generated summaries,

information retrieval metrics of precision and recall are

used[76]. In general settings, a person is asked to se-

lect the sentences, conveying the real meanings of the

text to be summarized. Next, the sentences selected

automatically by the system are evaluated against the

human selections[76]. However, it varies slightly as per

the settings and requirements of the proposed system.

In information retrieval with a binary classification

problem, precision is the fraction of retrieved instances

that are relevant, while recall is the fraction of relevant

instances that are retrieved. Both precision and recall

are therefore based on an understanding and measure of

relevance. In simple terms, high precision means that

an algorithm returns substantially more relevant results

than irrelevant ones. While high recall means that an

algorithm returns most of the relevant results. In sum-

marization settings, precision and recall are commonly

measured as described in (1) and (2). However, these

notions could be extended to rank different retrieval

situations[11].

precision =
TP

TP + FP
. (1)

Recall is measured as follows:

recall =
TP

TP + FN
. (2)

where,

• TP is the true positives,

• FP stands for false positives, and

• FN denotes the false negatives.

5.1.2 F-Score

As there is always a quality compromise between

precision and recall, being desirable but different fea-

tures, the F -score is used to counter this problem. In

binary classification settings, F -score is generally em-

ployed for testing accuracy. The main problems with

precision and recall for summarization are their inca-

pability of distinguishing between many possible sum-

maries, and content-wise different summaries may get

very similar scores. F -score is a harmonic mean (one

of the several kinds of average) of precision and recall.

(3) shows the formula for measuring F -score

F -score = 2×
precision× recall

precision+ recall
. (3)

5.1.3 Pyramid Precision

Pyramid precision provides normalized evaluation

measure taking into account the multiple annotations

available for each artifact[52]. It was first developed by

Nenkova and Passonneau[78] for analyzing the content

variation[76] and quality of summaries when multiple

annotations were available[52].

Lotufo et al.[51,59] performed statistical evaluation

based on precision, recall, and pyramid precision mea-

sure to evaluate the efficacy of unsupervised summa-

rizer. Furthermore, they compared their results with

the BRC summarizer[52]. Similarly, Rastkar et al.[5,52],

Jiang et al.[54] and Yeasmin et al.[60] performed statis-

tical evaluation using precision, recall, F -score, ROC-

AUROC curve, and FPR-TPR values. Besides, Haiduc

et al.[9,14], Moreno and Aponte[15] and Binkley et al.[19]

additionally employed cosine similarity for statistical

evaluation of summaries. Rahman et al.[26] also uti-

lized recall and precision along with mean reciprocal

rank (MMR) and gold summaries to evaluate the sum-

marization system that produced insightful comments

for source code. McBurney and McMillan[33-35] and
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Rodeghero et al.[16-17] employed Mann-Whitney 36○ and

Wilcoxon Signed Rank tests for evaluating summaries

distributions.

5.2 Criteria-Based Evaluation

Another kind of evaluation performed in selected

studies is criteria-based evaluation. Criteria evalua-

tion is based on certain measures which are related to

the main goal, intent or purpose of the summarization

task. These standards target aspects of accuracy, con-

text, content adequacy, and conciseness of summaries.

Researchers hired developers or participants from the

same institution or companies to evaluate summaries on

different criteria. For instance, Sridhara et al.[3,27] hired

13 participants to evaluate summaries based on accu-

racy, conciseness, and adequacy criteria. Eight partic-

ipants performed the criteria-based evaluation in [30].

They assessed if summaries are helpful for developers.

Wong et al.[39] also tested summaries based on factors

of accuracy, usefulness, and adequacy.

5.3 Qualitative Evaluation

Evaluation that intends to measure the quality of

generated summaries is called qualitative evaluation.

Panichella et al.[20] conducted qualitative analysis of

generated summaries by calculating false positives and

false negatives. In another study[42], Panichella et

al. measured the quality of summaries on content

adequacy, conciseness, and expressiveness standards.

McBurney et al.[36] employed human participants to

suggest what keywords need to be or need not to be

in automatically generated summaries. Similarly, they

performed a qualitative analysis based on verbosity, ac-

curacy and informativeness of summaries document in

[33].

5.4 Content-Based Evaluation

Some researchers evaluated summaries’ content on

different standards. Moreno et al.[31-32] asked 22 pro-

grammers to evaluate three aspects of summaries re-

lated to the content of the summaries. These aspects

are if the summaries’ contents are expressive or con-

cise (limiting unnecessary information), or adequate

(whether there was a missing information) in most

cases. Buse and Weimer[48] performed a content and

quality-based evaluation focusing primarily on informa-

tive and conciseness of the summaries.

Table 5 provides a list of summary evaluation meth-

ods or metrics employed in the surveyed papers.

6 Collection and Distribution of Studies

This research is undertaken as a systematic litera-

ture review based on certain guidelines we defined.

These guidelines are inspired by the principles proposed

in studies [79-80]. Our guidelines regarding the selec-

tion of studies are mainly composed of two major steps:

1) information sources and 2) the methodology for se-

lecting these sources. In the following subsections, we

discuss these steps.

6.1 Information Sources

It is necessary to define the sources to perform the

selection of the sources where searches for primary stu-

dies will be executed. With this regard, we defined the

following criteria.

• publications in journals and conferences with the

most impact;

• availability of search mechanism using keywords;

• availability on the Web.

Concerning language studies, the obtained primary

studies must be written in English. The sources have

been identified on the basis of the judgment of the au-

thors of this paper. The list of sources includes relevant

conferences and journals in which summarizing software

artifacts research area is widely dealt with. We consi-

dered papers published in the proceedings of different

conferences such as: International Conference on Soft-

ware Engineering (ICSE), International Symposium on

the Foundations of Software Engineering (FSE), Inter-

national Conference on Automated Software Engineer-

ing (ASE), The Working Conference on Reverse En-

gineering (WCRE) and IEEE International Working

Conference on Source Code Analysis and Manipulation.

Moreover, we also considered papers published in high

quality peer reviewed journals, e.g., IEEE Transactions

on Software Engineering, Empirical Software Engineer-

ing. Besides, we considered other online resources, e.g.,

arXiv, CiteSeerX, IEEE, ACM, Google Scholar, as po-

tential sources for information gathering.

Taking into account the defined sources selection

criteria, we got the initial primary list of sources as

shown in Table 6. It should be noted that the list

is huge and only primary sources are mentioned here.

The authors of this paper have evaluated the list of

36○The Mann-Whitney test is non-parametric, and it does not assume that the data are normally distributed.
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Table 5. List of Evaluation Methods Employed w.r.t. Surveyed Studies

Author Evaluation

Haiduc et al.[9,14] Qualitative evaluation based on developers perception + content evaluation

Rastkar et al.[29-30] Criteria-based evaluation based on developers survey

Sridhara et al.[3,27], Cortés-Coy et al.[46] Criteria → accuracy, conciseness, adequacy

Eddy et al.[4] Criteria

Moreno and Aponte[15] Qualitative → usefulness

Moreno et al.[31-32] Criteria → adequacy, conciseness, expressiveness

Buse and Weimer[48] Qualitative

Rastkar et al.[5,18,52] , Kulkarni et al.[38,58], Ying and
Robillard[55], Jiang et al.[54,61], Nazar et al.[56],
Panichella et al.[22], Apnote and Marcus[62],
Zhang and Hou[40]

Statistical + gold standard summary

Binkley et al.[19] Content → readable, responsiveness + statistical → cosine similarity between
human and automated summaries

McBurney and McMillan[33-35] Statistical → Mann-Whitney test + qualitative → informativeness, verbosity,
accuracy

McBurney et al.[36] Qualitative → accuracy

Panichella et al.[20] Qualitative

Kamimura and Murphy[41] Content → relevance, usefulness

Moreno et al.[37] Qualitative → completeness, correctness, importance

Rodeghero et al.[16-17] Criteria based + statistical → Wilcoxon signed rank test, Mann-Whitney

Treude et al.[71] Statistical → Wilcoxon signed rank test, Mann-Whitney

Abid et al.[45] No evaluation

Lotufo et al.[51,59] Statistical + qualitative

Yeasmin et al.[60] Statistic + users comparison with non-visualized and visualized summaries

Wong et al.[39] Criteria → accuracy, adequacy, and usefulness

Rahman et al.[26] Statistical → recall, mean reciprocal rank (MMR) + gold standard summary

Sridhara et al.[28] Human evaluation

Table 6. Primary List of Sources

Source Name Website

01 IEEE Explore Digital Library http://ieeexplore.ieee.org/xpl/conferences.jsp

02 ACM Digital Library http://dl.acm.org

03 Springer Link http://link.springer.com/

04 Science Direct http://sciencedirect.com/

05 Google Scholar http://scholar.google.com

06 Web of Knowledge http://webofknowledge.com/

07 ICSE and related conference proceedings (Jan.
2010∼Apr. 2016)

http://icseconferences.org/proceedings.html

08 IEEE TSE http://computer.org/tse

09 Empirical Software Engineering http://www.springer.com/computer/swe/journal/10664

10 arXiv http://arxiv.org

sources obtained and approved all the elements in this

list. Once the sources have been defined, it is necessary

to describe the processes and the criteria for selecting

studies[80]. We considered the proposals in [79-80] to

define the criteria for the inclusion and exclusion of se-

lected papers in the context of the systematic review.

6.2 Methodology

Our methodology is mainly based on two major

steps namely: keyword search and citation search. Both

steps are explained as following.
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6.2.1 Keyword Selection

As defined in Table 7, we passed the selected key-

words into the sources defined in Table 6 to find selected

papers. The keyword selection process is manual in na-

ture. The selected list is defined manually by reading

the title and abstract of the papers. To further refine

the list, we applied the combination of operators AND

and OR with keywords as search strings, with adap-

tions to the desired search engines. We sorted the ini-

tial list of selected papers through this process. Table 7

lists keywords that were passed in the sources defined

in Table 6 to find the initial list of related studies. In

the end, we evaluated the list of papers obtained and

approved all elements of the list.

Table 7. List of Search Strings

No. Search String

1 Bug reports AND (noise OR bias)

2 Duplicate AND (bug OR code)

3 Duplicate detection AND summarization

4 Code change AND summarization

5 Analysis AND summarization

6 Code fragment AND summarization

7 Traceability AND (bug OR code)

6.2.2 Citation Search

To further support the manual keyword search, we

performed a citation analysis on selected papers us-

ing the same set of keywords and reading them one

by one. After removing duplicates, we evaluated each

paper for inclusion in the set of candidate papers. We

again adopted the same strategy of reading title and

abstract of these papers. The main emphasis was to in-

clude papers unless they were clearly irrelevant. Papers

which all authors agreed to include were included and

any papers which all authors agreed to exclude were ex-

cluded. Any papers for which the inclusion/exclusion

assessment differed among authors were discussed until

either agreement was reached or the paper was pro-

visionally included[79]. Fig.5 illustrates the flowchart

depicting our defined methodology. It mentions two

activities. The goal of the first activity is selecting pri-

mary studies through keyword search while the second

activity focuses on selecting studies through manual ci-

tation search.

Start

Manual Search

Based on

Keywords

Related Discarded

List of

Summarization

Papers

End

Remove

Duplicates
Related Discarded

NO

NO

YES

YES

Find Any

Related Paper
Citation Search from

All Selected Papers

Final List of

Related Papers

Selection of Bug Report+

Source Code +Email+

Developer Discussion

Summarization Papers

NO

NO
YES

NONO
NO

YES

Fig.5. Basic procedure for executing the selection of systematic
review studies.

6.3 Distribution and Trend of Studies over

Publication Channels and Years

Fig.6 shows the distribution of studies over the years

that are considered for review. Most of the studies were

carried out from 2010 onward, and there is a notable in-

crement in 2013, 2014 and 2015 with maximum studies

published in 2014. This recent increase may be a reflec-

tion of growing interest in the field of summarizing bug

reports, source code, emails and developer discussions.
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Fig.6. Stack column chart depicting the trend of studies over
years.

With respect to total studies, i.e., 59 selected for this

review, we see that 42 (71.18%) studies in this review

are regarding source code summarization, whereas, only

seven studies (11.86%) are directly related to bug report

summarization. Ten studies (16.94%) discuss emails
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and developer discussions and their utilization for soft-

ware artifact summarization. Interestingly, there are

only nine papers (15.25%) published in high impact

journals and all remaining papers are conference papers

(84.74%). Table 8 provides the distribution of studies

in conferences and journals.

7 Discussion

Here we discuss modern communication channels,

commonalities and differences of software artifacts dis-

cussed above, and their limitations, challenges and fu-

ture directions.

Table 8. Distribution of Studies, Publication

Channels and Occurrences

Publication Channel Type Number of Papers

ASE Conference 04

CRE Conference 01

FSE Conference 07

ICPC Conference 11

ICSE Conference 12

ICSM Conference 04

ICSME Conference 02

ICST Conference 01

MSR Conference 01

RAISE Conference 01

SCAM Conference 02

TEFSE Conference 01

SANER Conference 01

TAinSM Conference 01

Emp. Soft Engg Journal 03

Front. Comp. Sci. Journal 01

CLEI Journal 01

IEEE-Trans. Journal 03

Sci. China. Inf. Sci. Journal 01

arXiv Database 01

7.1 Modern Communication Channels

Traditional communication channels, i.e., bug re-

ports and mailing lists are discussed in Subsection 2.1.

Here we briefly discuss modern communication chan-

nels, which are IRC chat logs/channels, online forums

and question & answers sites. Online forums and ques-

tion & answer sites are interchangeable terminologies

in an SE paradigm and both are discussed in Subsec-

tion 2.1.4.

On an IRC channel, participants talk about the

project and implementation details in general. The

chat logs contain the record of the instant messaging

conversations between project stakeholders, and typi-

cally contain a series of time-stamped, author-stamped

text messages[81]. QA sites are online forums, where

engineers, developers, and users post different ques-

tions and discuss them. The developer mailing list is

the primary communication channel for an open source

software (OSS) project. Other communication chan-

nels include vulnerability databases, revision control

databases, version control, requirement and design doc-

uments, and execution logs.

7.2 Complementarities and Commonalities

As discussed in Subsection 2.1, bug reports and

mailing lists are conversational data, which constitute

a precious source of information. Both artifacts contain

structured as well as unstructured data. Therefore, the

structured content, i.e., source code, stack trace and

patches can be useful for developers in different soft-

ware engineering tasks, such as program comprehension

and source code re-documentation. Rastkar et al.[52]

first recognized the similarity between email threads

and bug reports, and utilized an existing technique[53]

created for emails and conversations summarization

to produce concise summaries of bug reports. Other

efforts[51,54,58-60] in bug report summarization comple-

mented Rastkar et al.’s work and used it as a bench-

mark for developing or improving summarization sys-

tems.

However, these artifacts differ in structure, purpose

and collaboration, as bug reports concern the creation

and resolution of software bugs and other maintenance

tasks. Whereas, mailing lists constitute a set of time-

stamped messages among a group of people across the

Internet. Collaboration in bug reports develops as

a conversation, similar to email threads: participants

post messages — commonly referred to as comments —

as their contributions. A bug report is, therefore, the

result of the communication that took place in order

to address a bug. Unlike a forum, it is not collabora-

tively constructed with the intention of being easy to

read and comprehend. Since comments have a context

set by their previous comments and useful information

is spread out throughout the thread, to comprehend

a bug report, it is often necessary to read almost the

entire conversation.

Guzzi et al.[82] first defined the taxonomy of mail-

ing lists that include following categories: implementa-

tion, technical infrastructure, project status, social in-

teractions, usage and discarded. Sorbo et al.[8] further
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refined this taxonomy on the basis of the conceptual

framework of discussions of different natures inferred

by the categories across different channels. These cate-

gories are intent, feature request, opinion asking, prob-

lem discovery, solution proposal, information seeking,

and information giving.

7.3 Challenges and Future Directions

All studies related to bug reports and source code

summarization share a common limitation: they treat

every artifact as a purely textual artifact, or they limit

their summarization techniques to a single type of arti-

fact. We discuss limitations and challenges concerning

the summarization software artifact paradigm from the

surveyed studies in subsections below.

7.3.1 Bug Reports and Mailing Lists

As discussed in Subsection 2.1, bug reports and

mailing lists are conversational data, which constitute

a precious source of information. Both artifacts con-

tain structured and unstructured data. Therefore, the

structured content, i.e., source code, stack trace and

patches can be useful for developers in different soft-

ware engineering tasks, such as program comprehension

and source code re-documentation. Rastkar et al.[52]

first recognized the similarity between email threads

and bug reports, and utilized an existing technique[53]

created for emails and conversations summarization to

produce concise summaries of bug reports. Their re-

sults showed that the quality of summaries is dependent

on the training and actual corpus.

Mani et al.[58] evaluated the quality of summaries

generated through four well-known unsupervised algo-

rithms. They selected unsupervised classifiers in order

to eliminate the overhead of creating supervised predic-

tor in [52]. They found, however, that these approaches

are only effective after removing noise from bug reports.

Therefore, they proposed a heuristic-based noise reduc-

tion approach that tries to automatically classify sen-

tences as either a question, an investigative sentence,

or a code snippet. When using this noise reduction

heuristic, they found that each of the four well-known

textual summarizers produced a summary of at least

equal quality compared with the supervised approach.

These efforts along with [51, 54, 59-60] did not con-

sider the structural content of bug reports and emails

for summarization purpose. Therefore, these portions

along with new techniques for noise reduction in text

data can be considered for future research in conversa-

tional software artifacts summarization, in particular,

bug report summarization.

Sridhara et al.[3] generated textual summaries to de-

scribe Java methods. They used a number of heuristics

on a method’s signature and a method’s code to find the

main intent of the code. Haiduc et al.[9], with the same

objectives, used well-known information retrieval meth-

ods to generate term-based summaries of methods and

classes. These term-based summaries do not compose a

grammatically valid phrase but are intended to be the

set of most relevant terms that together should describe

an entity. Other efforts by Eddy et al.[4] and Moreno

and Aponte[15] complemented this study and extended

it by employing hPAM and more human evaluators.

To further develop better and more accurate summaries

McBurney and McMillan[33-35] employed NLP methods

based on SWUM and Verb-DO techniques. However,

they argued that previous studied focused primarily on

the goodness of summaries rather than the usefulness.

Therefore, we believe another limitation regarding gen-

erated summaries is whether software artifact summary

can be useful for a developer or not.

7.3.2 Heterogeneous Artifacts

Heterogeneous artifacts are the combination of both

structured and unstructured information. Commonly

a software artifact is considered or treated homoge-

neously while most of the current approaches in summa-

rization do not take into account the multidimensional

nature of software artifacts. For example, Rastkar et

al.[52] treated bug reports as conversational textual data

and ignored other important elements such as code

snippets while generating summaries. However, soft-

ware artifacts cannot be considered solely as contain-

ers of homogeneous information. The information pro-

vided by software artifacts is rather heterogeneous and

includes complete source code, code snippets, text, and

many other types of information[83]. Stack Overflow

is an example of such artifacts, where discussion con-

tent includes natural language text, source code or code

snippets, XML configurations, images and many other

things.

According to Bacchelli et al.[7]: “Most of the gen-

eral purpose summarization approaches are tested on

well-formed, or sanitized, natural language documents.

When summarizing development emails, however, we

have to deal with natural language text which is of-

ten not well formed and is interleaved with languages

with different syntaxes, such as code fragments, stack
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traces, patches, etc. [...] Currently no summarization

technique takes this aspect into account [...]”.

Though we have found that studies of [25-26, 39,

74] have utilized information from Stack Overflow for

summarization tasks, more efforts need to be invested

in order to make more precise and accurate systems for

both homogeneous and heterogeneous artifacts.

7.3.3 Academic and Industry Cooperation

While the actual challenge in our opinion is that

academic researchers sometimes have limited insight

into the development processes and they depend fully

on assumptions that cannot be verified (and usually

do not hold) in industrial settings. Academic re-

searchers employ open source projects for experimen-

tation. Whereas, in the industry, there are predefined

and refined processes. Therefore, software developers in

the industry have different requirements or perspectives

for a given task from what researchers hypothesize in

academia. For instance, in email artifacts, it is not yet

clear whether emails written in OSS communities are

equivalent to those written in the industry[7]. Can we

generalize findings of summarization learnt from OSS

emails to other settings[7]? Similarly, for source code

summarization, experiments are done on OOS whereas

industrial software may require different settings, fea-

tures, and requirements. Can we generalize the find-

ings regarding source code summarization in OSS to

the source code in industrial settings?

Another issue is the role of participant and cor-

pus size in academic research. Finding proper partic-

ipants for software engineering research is a daunting

task, especially in an academic setting[7]. Generally, re-

searchers use smaller samples or corpus sizes and fewer

annotators for annotating corpus. Could this corre-

spond well in industrial settings? Here corpus size is

often quite large when compared with academic set-

tings. Annotation is mostly done by graduate students

or the participants from the same institute. How can

a non-expert in a specific software project capture the

proper meanings of an artifact? Should we have the

best golden set[7]? Therefore, we believe this area needs

immediate attention and these issues shall be addressed

immediately. Moreover, there is a demand for the devel-

opment of new methods, tools, and approaches, in coop-

eration with industry as the industry requires more ef-

fective and accurate summarization tools and systems.

7.3.4 Summaries Perspective

McBurney and McMillan[69] argued that the source

code summarization approaches have such a key simi-

larity that they influence the reader’s perspective and

ignore the writer’s perspective. Authors are the writers

of the source code and readers seek to understand it.

Therefore, there is a conflict between the authors’ and

readers’ perspective. Authors translate the high-level

concepts into low-level implementation, while readers

must deduce the concepts and behaviours from low-

level details. Hence, readers struggle in understanding

the real meanings behind the source code and inevitably

make mistakes. At the same time, authors who write

the documentation of their source code must choose

which key concepts and details to communicate with

readers via documentation. The concepts and details

described in documentation should be the ones that

authors believe readers would need to know. This chal-

lenge needs to be addressed in future summarization

studies.

7.3.5 Crowdsourcing

Crowdsourcing is one of the emerging Web 2.0 based

phenomena and in recent years has attracted great at-

tention from both practitioners and researchers[84]. It is

used as a platform for connecting people, organizations

and societies in order to increase mutual cooperation

between each other. In 2006, Howe[85] first coined the

term crowdsourcing and based it on the notion that vir-

tually everyone can contribute a valuable information,

or participate in an activity online through an open call.

Academic scholars from different disciplines have exam-

ined various issues and challenges, and applied crowd-

sourcing to resolve such issues and challenges[86]. A

typical crowdsourcing process works in the following

way. An organization identifies tasks and releases them

online to a crowd of outsiders who are interested in per-

forming these tasks. A wide variety of individuals then

offer their services to undertake the tasks individually

or collaboratively. Upon completion, the individuals

submit their work to an organization which later eval-

uates it[85,87].

Crowdsourcing can be employed as a problem solv-

ing model or a mechanism for summarizing software

artifacts, both source code and bug reports. For ex-

ample, crowdsourcing may help in extracting syntac-

tic or query based features for source code. It can

be further extended for corpus creation and annotation

as well as for the summary comparison. Furthermore,
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crowdsourcing can be applied for creating a shared cor-

pus by employing geographically separated researchers.

Recently, Nazar et al.[56] applied crowdsourcing on a

limited scale to extract source code features from code

fragments for a summarization task. However, crowd-

sourcing could be extended on a wider scale for soft-

ware artifact summarization and other mining software

repositories activities.

8 Conclusions

This study conducted a literature review of the state

of the art in summarizing software artifacts. We fo-

cused on what kind of and how summaries are gener-

ated for bug reports, source code, mailing lists and de-

veloper discussion artifacts and discussed data mining

and machine learning methods that were employed to

accomplish summarization task from Jan. 2010 to Apr.

2016. Furthermore, we provided the real-life applica-

tions in the context of what tasks have been achieved

through the summarization of software artifacts. Tools

that are developed for generating summaries, or used

during summarization process were also listed in order

to facilitate junior researchers. The evaluation prob-

lem is unavoidable during review, and consequently, a

special attention was given to the evaluation methods

and measures used in the existing studies. In the end,

we discussed some major challenges in software artifact

summarization that require immediate attention.
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