
Neurocomputing 99 (2013) 124–133
Contents lists available at SciVerse ScienceDirect
Neurocomputing
0925-23

http://d

n Corr

E-m

ren@ma

xwu@u

URL
journal homepage: www.elsevier.com/locate/neucom
Extracting elite pairwise constraints for clustering
He Jiang a,n, Zhilei Ren a, Jifeng Xuan a, Xindong Wu b

a School of Software, Dalian University of Technology, Dalian, LiaoNing 116621, China
b Computer Science Department, University of Vermont, Burlington Vermont 05403, United States
a r t i c l e i n f o

Article history:

Received 3 November 2011

Received in revised form

3 April 2012

Accepted 3 June 2012
Communicated by D. Tao
constraints, including elite must-link (EML) and elite cannot-link (ECL) constraints. In contrast to
Available online 11 July 2012

Keywords:

Semi-supervised

Elite pairwise constraints

Clustering
12/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.neucom.2012.06.013

esponding author.

ail addresses: hejiang@ieee.org, jianghe@dlut.

il.dlut.edu.cn (Z. Ren), xuan@mail.dlut.edu.cn

vm.edu (X. Wu).

: http://oscar-lab.org/people/~jxuan/ (J. Xuan
a b s t r a c t

Semi-supervised clustering under pairwise constraints (i.e. must-links and cannot-links) has been a hot

topic in the data mining community in recent years. Since pairwise constraints provided by distinct

domain experts may conflict with each other, a lot of research work has been conducted to evaluate the

effects of noise imposing on semi-supervised clustering. In this paper, we introduce elite pairwise

traditional constraints, both EML and ECL constraints are required to be satisfied in every optimal

partition (i.e. a partition with the minimum criterion function). Therefore, no conflict will be caused by

those new constraints. First, we prove that it is NP-hard to obtain EML or ECL constraints. Then, a

heuristic method named Limit Crossing is proposed to achieve a fraction of those new constraints.

In practice, this new method can always retrieve a lot of EML or ECL constraints. To evaluate the

effectiveness of Limit Crossing, multi-partition based and distance based methods are also proposed in

this paper to generate faux elite pairwise constraints. Extensive experiments have been conducted on

both UCI and synthetic data sets using a semi-supervised clustering algorithm named COP-KMedoids.

Experimental results demonstrate that COP-KMedoids under EML and ECL constraints generated by

Limit Crossing can outperform those under either faux constraints or no constraints.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is a well-known unsupervised learning technique
in data mining with numerous applications, including pattern
recognition, web mining, textual document analysis, and bioin-
formatics [1,2]. The goal of clustering is to partition a data set into
k clusters such that data instances are more similar in the same
cluster, while more dissimilar in distinct clusters. During the
clustering process, removing outliers may also be conducted [5].
In recent years, semi-supervised clustering has become a hot
topic attracting intensive efforts from the data mining community
[11]. In contrast to traditional (unsupervised) clustering, semi-
supervised clustering conducts the clustering process under the
guidance of some supervisory information. Among the super-
visory information, pairwise constraints (i.e. must-links (ML) and
cannot-links (CL)) [3,4,6–8] are most widely used in semi-super-
vised clustering. A ML mðxi,xj) indicates that instances xi and xj

must be assigned to the same cluster, while a CL cðxi,xjÞ indicates
that instances xi and xj must be assigned to distinct clusters.
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Clustering algorithms using pairwise constraints fall into two
categories, i.e., distance based and constraint based methods. The
distance based methods [9,10,30,28,29] train their distance func-
tions from pairwise constraints either before or during the
clustering process. In addition, some related work of distance
based methods can also be found in cross-domain applications
[27] and dimension reduction [19,24]. The constraint based
methods [4,7] use pairwise constraints to modify the cluster
assignment stage during the clustering process so that constraints
could be satisfied as many as possible. Most research efforts in
this area assumed that those pairwise constraints were available a
priori by consulting domain experts [12]. However, those pair-
wise constraints acquired by consulting are not always correct. At
the meantime, some pairwise constraints provided by different
experts may conflict with each other. Therefore, it is essential to
verify those pairwise constraints before clustering. In the litera-
ture, many papers [7,10,13–16] have investigated how to evaluate
the effects of noise onpairwise constraints and proposed a few
methods to detect those noisy constraints.

In this paper, we introduce new concepts of elite pairwise
constraints, i.e. elite must-links (EML) and elite cannot-links
(ECL). An EML emðxi,xjÞ indicates that instances xi and xj should
appear together in every optimal partition (an optimal partition
is one with the minimum criterion function). Similarly, an ECL
ecðxi,xjÞ requires that instances xi and xj be assigned to distinct

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.06.013
dx.doi.org/10.1016/j.neucom.2012.06.013
dx.doi.org/10.1016/j.neucom.2012.06.013
mailto:hejiang@ieee.org
mailto:jianghe@dlut.edu.cn
mailto:ren@mail.dlut.edu.cn
mailto:xuan@mail.dlut.edu.cn
mailto:xwu@uvm.edu
http://oscar-lab.org/people/~jxuan/
dx.doi.org/10.1016/j.neucom.2012.06.013


1
2

3

45

1
2

3

45

1
2

3

45

1
2

3

45

1
2

3

45 6

1
2

3

45 6

6 6 6 6

1
2

3

45 6

1
2

3

45 6

Fig. 1. Examples of pairwise constraints and elite pairwise constraints.
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clusters in every optimal partition. In contrast to traditional
pairwise constraints, EML and ECL constraints can always provide
beneficial guidance for clustering. For example, Fig. 1 shows a
clustering problem on a data set with 16 instances and the goal is
to partition all instances into two clusters such that the sum of
the dissimilarity measures of all instances from their closest
centroids is minimized. There are only two optimal partitions as
shown in Fig. 1(a) and (b), respectively. Fig. 1(a) presents ML
mð1;3Þ and mð2;3Þ by solid lines. Fig. 1(b) presents ML mð1;4Þ and
mð4;5Þ. Obviously, when mð1;3Þ and mð2;3Þ are used together in
semi-supervised clustering, the optimal partition in Fig. 1(a) is
likely to be found. Similarly, when mð1;4Þ and mð4;5Þ are
employed in semi-supervised clustering, the optimal partition in
Fig. 1(b) is also apt to be found. However, if all these four ML
constraints are simultaneously satisfied (see Fig. 1(c)), no optimal
partition can be achieved! This example shows that the combina-
tion of ML constraints from distinct domain experts may lead to
no optimal partition, even when such constraints are helpful if
separately used. On the other hand, ML mð2;3Þ and mð4;5Þ are also
EML constraints. Since both mð2;3Þ and mð4;5Þ can be satisfied in
any optimal solution (see Fig. 1(d)), they can always lead the
clustering process towards good partitions. This example implies
that EML constraints could be more helpful than ML constraints in
semi-supervised clustering. A similar observation can also be
found for ECL constraints. In Fig. 1(e), two CL constraints cð1;4Þ
and cð1;6Þ are given. Fig. 1(f) presents CL cð4;6Þ and cð3;4Þ.
However, when those four CL constraints are employed together,
no optimal partition can be found (see Fig. 1(g)). Among those
four CL constraints, both cð1;6Þ and cð3;4Þ are ECL constraints.
When cð1;6Þ and cð3;4Þ are satisfied, all those optimal partitions
are apt to be found.

In this paper, we investigate the computational complexity for
EML and ECL constraints and develop a heuristic method to obtain
a part of such constraints.

First, we show that it is NP-hard to obtain either EML or ECL
constraints. The basic idea is as follows. Given a data set, we can
transform it to a new data set with a unique optimal partition.
For this new data set, it can be easily verified that the optimal
partition can be obtained from those EML (or ECL) constraints,
and vice versa. On the other hand, this optimal partition is also
optimal for the original data set. Hence, obtaining the optimal
partition for the original data set is equivalent to calculating EML
(or ECL) constraints for the new data set. Therefore, we can derive
our conclusion regarding the NP-hardness for obtaining the
optimal partition of the original data set.

Second, an effective method named Limit Crossing is proposed
to extract some EML and ECL constraints. According to the
definition, no optimal partition can be achieved if an EML
constraint is violated. Therefore, we can check whether there
exists an EML between instances xi and xj as follows. If every
partition satisfying CL cðxi,xjÞ is worse than an optimal partition of
the original data set, then there exists an EML emðxi,xjÞ. Other-
wise, there is no EML emðxi,xjÞ. Since it is intractable to obtain
those optimal partitions, Limit Crossing employs a relaxed
method in the following way. Given a data set, a lower bound is
calculated for every partition satisfying CL cðxi,xjÞ. Besides, an
upper bound is also computed for the optimal partition of this
data set. Then an EML emðxi,xjÞ can be determined if the lower
bound exceeds the upper bound. Similarly, an ECL constraint can
be determined as well.

To evaluate the effectiveness of Limit Crossing, extensive
experiments have been conducted on both UCI data sets and
synthetic data sets. For comparison, two other methods are
adopted in the experiments for generating faux EML and ECL
constraints. Experimental results demonstrate that a semi-super-
vised clustering algorithm under EML and ECL constraints (gen-
erated by Limit Crossing) can achieve better partitions than those
under no constraints or faux constraints.

This paper is organized as follows. In Section 2, we briefly
summarize the related work of our paper. In Section 3, we provide
some definitions related to clustering, EML, and ECL. The compu-
tational complexity of retrieving elite pairwise constraints is
investigated in Section 4. The Limit Crossing method is proposed
in Section 5 to obtain some EML and ECL constraints. In Section 6,
a semi-supervised K-Medoids algorithm is presented to evaluate
the effectiveness of those EML and ECL constraints. As a compar-
ison, we also calculate two kinds of faux elite pairwise con-
straints. Experimental results on both UCI data sets and synthetic
data sets are then demonstrated. Finally, we conclude this paper
in Section 7.
2. Related work

In the literature, a lot of research work has been conducted on
the computational complexity related to pairwise constraints and
the ways to detect noisy constraints before clustering.

Klein et al. [10] theoretically showed that it is NP-hard to find
feasible partitions under the CL constraints (a full proof can be
found in [7]), while there exists a polynomial time algorithm to
find a feasible partition under the ML constraints.

Some empirical results were presented by Davidson et al. [13]
for the effects of ML and CL constraints imposing on clustering.
According to their paper, an easy–hard phase transition exists for
a semi-supervised clustering algorithm to find a feasible partition
as the number of CL constraints increases. When ML and CL
constraints are used together, an easy–hard–easy phase transition
exhibits to find a feasible partition. In addition, an algorithm was
proposed to generate a subset of ML and CL constraints which was
easy to satisfy in clustering.

Davidson et al. [14] demonstrated that it is NP-hard to repair a
partition violating a set of ML and CL constraints so that every
constraint is satisfied. In addition, given a set of constraints for
which no feasible partition exists, they showed that it is also
NP-hard to identify the minimal subset of constraints to prune so
that a feasible partition exists for the remaining constraints.

Freund et al. [15] investigated the effect of noise on ML and
CL constraints in semi-supervised clustering. After transforming
those constraints to a graph, they introduced several intuitive
noise models. Then they derived a quantification of the effect
which noisy constraints imposed on semi-supervised clustering.
Their results showed that a fraction of noisy constraints can have
the ground truth constraints useless in semi-supervised clustering.

Yip et al. [16] showed that even a small proportion of incorrect
ML and CL constraints could make a semi-supervised clustering
algorithm perform worse than an un-supervised clustering.
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They proposed a heuristic method to detect potentially incorrect
constraints. A semi-automatic approach was also given to have
user manually verify those suspect constraints.

According to the above discussions, it is difficult to determine
a feasible partition under a set of ML and CL constraints [10,13]. In
addition, it is also hard to detect those noisy ML or CL constraints
[14–16]. In contrast to ML and CL constraints, there will be no
conflicts in a set of EML and ECL constraints. Therefore, it is easy
to find a feasible partition under those elite pairwise constraints.
3. Notations

Since there exists no universally agreed upon definition for
traditional clustering, we consider the mostly used one in this
paper as follows.

Given a data set X ¼ fx1,x2, . . . ,xng and the distance function
dðxi,xjÞARþ [ f0g,1 a k-partition is a set C ¼ fC1,C2, . . . ,Ckg consist-
ing of k disjoint clusters, such that:
(I)
1

Mink

tance
Cia|, 8iAf1;2, . . . ,kg,S

(II)
 k

i ¼ 1 Ci ¼ X,

(III)
 Ci \ Cj ¼ |, 8i,jAf1;2, . . . ,kg and ia j.
The aim of clustering is to seek for an optimal k-partition
under some predefined criterion function, which is heavily
dependent on the representing instance types of clusters. Among
those types, the mean (average of the instances in a cluster) and
the medoid (an instance with minimal average distance to all the
instances in a cluster) are two of the mostly used representing
instances in the literature. Since the mean is sensitive to outliers
(or noise) and the computation for the mean is sometimes
unavailable in many real applications [17], we adopt the medoid
for representing every cluster in the following part.

Given a k-partition C ¼ fC1,C2, . . . ,Ckg, the criterion function
[18] is then defined as JðX,CÞ ¼

Pk
i ¼ 1

P
xj ACi

dðxj,miÞ, where miACi

is the medoid for cluster Ci. Under the above definition, the
optimal k-partitions are those ones with minimum criterion
functions. It has been proven that it is NP-hard to obtain the
optimal k-partitions [20]. If there is only one optimal k-partition
for a data set, we say that this data set has a unique optimal
k-partition.

Given a data set X ¼ fx1,x2, . . . ,xng, if instances xi and xj always
appear together in one cluster for every optimal partition, then
we say there is an EML constraint (denoted by emðxi,xjÞ). The set
of all EML constraints is denoted by EM(X). Similarly, we can
define ECL as follows. If instances xi and xj always appear in
distinct clusters for every optimal partition, then there is an ECL
constraint (denoted by ecðxi,xjÞ). The set of all ECL constraints is
denoted by EC(X).
4. Intractability of elite pairwise constraints

In this section, we will prove that it is NP-hard to obtain either
EM(X) or EC(X). Given a data set X ¼ fx1,x2, . . . ,xng, we will assume
that the distance function dðxi,xjÞAZþ [ f0g in the following proof.
Otherwise, for the data set with floating instance distances, we
can simply rescale the distances to nonnegative integers by
multiplying a sufficiently large number. The optimal k-partitions
for the data set with rescaled distance function are identical to the
original data set.
There exist many distance measures [20] in the literature, including

owski distance, Euclidean distance, Cosine similarity, and City-block dis-

. For brevity, we use a general format as dðxi ,xjÞARþ [ f0g.
Given a data set X, its biased data set is defined as bX ¼
fx1,x2, . . . ,xng with the distance function bdðxi,xjÞ ¼ dðxi,xjÞþ1=
2i�nþ j for any 1r io jrn and bdðxi,xjÞ ¼

bdðxj,xiÞ for 1r jo irn.
Given a k-partition C ¼ fC1,C2, . . . ,Ckg for bX , its criterion function
is calculated as JðbX ,CÞ ¼

Pk
i ¼ 1

P
xj ACi

bdðxj,miÞ.

Lemma 1. Given a data set X ¼ fx1,x2, . . . ,xng with the distance

function dðxi,xjÞAZþ [ f0gð1r ia jrnÞ, there exists a unique opti-

mal k-partition for its biased data set bX .

Proof. To prove Lemma 1, we just need to show that JðbX ,C1
Þa

JðbX ,C2
Þ for any two distinct k-partitions C1,C2. Since C1aC2, there

must exist a cluster C1
in AC1 and a cluster C2

jn AC2 such that
C1

in \ C2
jn a| and C1

in aC2
jn . It implies that C1

in \ðC
1
in \ C2

jn Þa| or
C2

jn \ðC
1
in \ C2

jn Þa|. We only consider the case that C1
in \ðC

1
in \ C2

jn Þa|
in the following proof (the proof for the other case that C2

jn \ðC
1
in \

C2
jn Þa| can be done in a similar way). Therefore, there must exist

an instance xi0AC1
in \ðC

1
in \ C2

jn Þ. We now consider the medoid
(denoted by xj0 ) of the cluster C1

in as follows.

Case 1: xj0AC1
in \ C2

jn

Since xi0=2C2
jn , we have that xi0 and xj0 must belong to distinct

clusters in k-partition C2. When encoded in binary string, the

minði0,j0Þ � nþmaxði0,j0Þth bit of the fraction part of JðbX ,C1
Þ equals

to 1. However, the same bit of JðbX ,C2
Þ will be zero. Therefore, we

have that JðbX ,C1
Þa JðbX ,C2

Þ holds.

Case 2: xj0AC1
in \ðC

1
in \ C2

jn Þ

Since C1
in \ C2

jn a|, there must exist an instance xi00AC1
in \ C2

jn . In a

similar way to Case 1, the minði00,j0Þ � nþmaxði00,j0Þ th bit of the

fraction part of JðbX ,C1
Þ equals to 1, while the same bit of JðbX ,C2

Þ is

zero. We have that JðbX ,C1
Þa JðbX ,C2

Þ too.

Thus, this lemma is proven. &

Lemma 2. Given a data set X ¼ fx1,x2, . . . ,xng with the distance

function dðxi,xjÞAZþ [ f0gð1r ia jrnÞ, the unique optimal k-parti-

tion for its biased data set bX is also optimal for X.

Proof. Otherwise, there must exist a k-partition (denoted by C)

for X such that JðX,CÞo JðX,Cn
Þ, where Cn is the unique optimal

k-partition for its biased data set bX (Cn is also a k-partition for the

data set X). Since the distance function dðxi,xjÞAZþ [ f0g ð1r ia

jrnÞ, we have that JðX,CÞ�JðX,Cn
Þr�1. Given any cluster CiAC,

let JðX,CiÞ ¼
P

xj ACi
dðxj,xin Þ, where xin is the medoid of Ci for X.

Let JðbX ,CiÞ ¼
P

xj ACi

bdðxj,xi0 Þ ¼
P

xj ACi
ðdðxj,xi0 Þþ1=2minðj,i0 Þ�nþmaxðj,i0 Þ

Þ,

where xi0 is the medoid of Ci for bX . Let di ¼
P

xj ACi
1=

2minðj,i0 Þ�nþmaxðj,i0 Þ, it is easy to verify that 0odio1. Hence

JðbX , CiÞo
P

xj ACi
dðxj,xi0 Þþ1. Then, we can derive that JðbX ,CiÞ ¼

JðX,CiÞþdi, otherwise:

Case 1:
P

xj ACi
dðxj,xi0 Þo JðX,CiÞ

Then the medoid of Ci for X should be xi0 rather than xin . A

contradiction is met.

Case 2:
P

xj ACi
dðxj,xi0 Þ4 JðX,CiÞ

According to the distance function definition, we have thatP
xj ACi

dðxj,xi0 ÞZ JðX,CiÞþ1. Therefore, the medoid of Ci for bX
should be xin rather than xi0 . A contradiction is met.

Hence, we have that JðbX ,CÞ ¼ JðX,CÞþ
P

Ci ACdi. On the other

hand, we have that
P

Ci ACdio
P

1r jo lrn1=2j�nþ lo1. Therefore,

we have that 0o JðbX ,CÞ�JðX,CÞo1 holds. In a similar way, it can

be proven that 0o JðbX ,Cn
Þ�JðX,Cn

Þo1. Therefore, we have the

following inequality:

JðbX ,CÞ�JðbX ,Cn
Þ ¼ JðX,CÞ�JðX,Cn

ÞþðJðbX ,CÞ�JðX,CÞÞ�ðJðbX ,Cn
Þ�JðX,Cn

ÞÞ

r�1þðJðbX ,CÞ�JðX,CÞÞ�ðJðbX ,Cn
Þ�JðX,Cn

ÞÞo0
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It implies that the unique optimal k-partition for bX should be C

rather than Cn. It contradicts with the assumption that Cn is the
Table 1
Check-Links algorithm.

Check-Links (data set)

1. let EMðXÞ ¼ |, ECðXÞ ¼ |
2. for every pair of instances xi ,xj AX do

if JoptðXÞo Jopt�ðxi ,xj Þ
ðXÞ, then add emðxi ,xjÞ to EM(X);

else if JoptðXÞo Joptþðxi ,xj Þ
ðXÞ, then add ecðxi ,xjÞ to EC(X);

3. return EMðXÞ,ECðXÞ.
optimal k-partition for bX .

Thus this lemma is proven. &

Lemma 3. Given a data set X ¼ fx1,x2, . . . ,xng with the distance

function dðxi,xjÞAZþ [ f0gð1r ia jrnÞ, the unique optimal k-parti-

tion for its biased data set bX can be obtained from EMðbX Þ (or ECðbX Þ)
in polynomial time.

Proof. By Lemma 1, the biased data set bX has a unique optimal
k-partition (denoted by Cn), it is easy to verify that there must be
an EML constraint emðxi,xjÞ in EMðbX Þ for any two distinct instances
xi,xj appearing in the same cluster of Cn. Under such observation,
we can obtain Cn from EMðbX Þ by the following steps. First, an
arbitrary instance xA bX is chosen as the first instance for the
cluster C1. Then every instance x0 associated with an EML
constraint emðx,x0Þ is added to the cluster C1. After C1 is con-
structed, bX is updated by deleting all the instances in C1. Then, we
arbitrarily choose another instance from bX to construct C2. In a
similar way, all other clusters can be constructed. Obviously, the
whole construction of Cn from EMðbX Þ can be done in polynomial
time (O(n)).

To show that Cn can be also obtained from ECðbX Þ in polynomial

time, we just need to acquire EMðbX Þ from ECðbX Þ in polynomial

time. It can be easily done by generating an EML constraint

emðxi,xjÞ for every pair of instances xi,xj without an ECL constraint

ecðxi,xjÞ.

Thus lemma is proven. &

Theorem 1. It is NP-hard to obtain the set of EML constraints.

Proof. Otherwise, there exist an algorithm (denoted by A) which
can obtain the set of EML constraints in polynomial time. Given
any arbitrary data set X ¼ fx1,x2, . . . ,xng with the distance function
dðxi,xjÞAZþ [ f0gð1r ia jrnÞ, we shall show its optimal k-parti-
tion can be achieved in the following way. First, we can easily
construct its biased data set bX in Oðn2Þ running time. According to
the assumption, the set of EML constraints EMðbX Þ for bX can be
obtained by A in polynomial time (denoted by P(n)). By Lemma 3,
the unique optimal k-partition (denoted by Cn) for bX can be
calculated from EMðbX Þ in O(n) running time. On the other hand, Cn

is also optimal for X (by Lemma 2). Therefore, we can obtain an
optimal k-partition for X in Oðn2ÞþPðnÞþOðnÞ running time. It
contradicts with the fact that the clustering problem is NP-hard.

Thus this theorem is proven. &

Corollary 2. It is NP-hard to obtain the set of ECL constraints.

5. Limit Crossing method

By Theorem 1 and Corollary 2, there exists no algorithm
guaranteeing to obtain EM(X) or EC(X) in polynomial time under
the assumption PaNP [21]. In this section, we will introduce
Limit Crossing algorithm which can always find a fraction of
EM(X) or EC(X) in practice.

5.1. Check-Links algorithm

Given a data set X, let Jopt(X) be the criterion function of
its optimal k-partitions. Given any arbitrary k-partition C, we
have that JoptðXÞr JðX,CÞ holds. Given instances xi,xjAX, let
Jopt�ðxi ,xjÞ

ðXÞ ¼minC Auðxi ,xjÞ
JðX,CÞ, where uðxi,xjÞ is the set of all

k-partitions such that xi and xj appear in distinct clusters. Let
Joptþðxi ,xjÞ

ðXÞ ¼minC Atðxi ,xjÞ
JðX,CÞ, where tðxi,xjÞ is the set of all

k-partitions such that xi and xj appear in the same cluster. Then
we can easily verify the following propositions.
Proposition 1. Given any EML constraint emðxi,xjÞAEMðXÞ, we

have that JoptðXÞo Jopt�ðxi ,xjÞ
ðXÞ.

Proposition 2. Given any ECL constraint ecðxi,xjÞAECðXÞ, we have

that JoptðXÞo Joptþðxi ,xjÞ
ðXÞ.

Under the above discussions, the Check-Links algorithm (see
Table 1) is proposed to determine EM(X) or EC(X). It iteratively
compares Jopt(X) with Jopt�ðxi ,xjÞ

ðXÞ or Joptþðxi ,xjÞ
ðXÞ for every pair of

instances xi,xjAX. If Jopt(X) is smaller than Jopt�ðxi ,xjÞ
ðXÞ, we can

claim that there exists an EML constraint emðxi,xjÞ by Proposition 1.
Otherwise, if Jopt(X) is smaller than Joptþðxi ,xjÞ

ðXÞ, there must exist
an ECL constraint ecðxi,xjÞ. Although Check-Links is an exact
algorithm seeking for EM(X) or EC(X), it is intractable in practice
due to the fact that it is NP-hard to compute the value of Jopt(X). In
addition, there is no efficient way to calculate the values of
Jopt�ðxi ,xjÞ

ðXÞ and Joptþðxi ,xjÞ
ðXÞ.

5.2. Limit Crossing

In this subsection, we present Limit Crossing algorithm to
obtain a fraction of EM(X) or EC(X).

5.2.1. Motivation

In contrast to Check-Links, Limit Crossing is a heuristic algo-
rithm which employs upper bound and lower bound functions to
return a part of EM(X) or EC(X). The idea of Limit Crossing is first
proposed by Climer et al. [22] for obtaining the backbone of the
traveling salesman problem (TSP). TSP is a well-known NP-hard
problem in the literature. Given a set of cities and the distance
between every pair of cities, TSP aims to find the shortest tour
which visits every city once and exactly once. According to the
definition, a tour consists of a set of edges between cities. The
backbone is defined as the shared common parts of all optimal
tours for TSP. Obviously, no optimal tour can be found when an
edge belonging to the backbone is forbidden to appear in the
tours. To detect whether an edge belongs to the backbone or not,
Climer et al. introduced a relaxed method which employs an
upper bound and a lower bound function for TSP. Its basic idea is
as follows. Given edge (i,j) between city i and j, if the lower bound
of the length of those tours containing no (i,j) is greater than the
upper bound of optimal tours for the original problem, it can be
claimed that the edge (i,j) belongs to the backbone. Its validity is
straightforward, since it implies that an optimal tour cannot be
obtained unless the edge (i,j) from the backbone is included. Since
Limit Crossing is sometimes time-consuming and sensitive to the
upper bounds, Ren et al. [23] recently develop the Accelerated
Limit Crossing based Multilevel Algorithm (ALCMA). The upper
bound sensitivity is removed by a dynamic pseudo upper bound
mechanism in ALCMA.

5.2.2. Limit Crossing algorithm

We first introduce some related definitions, and then present
our Limit Crossing algorithm (see Table 2). Given a data set X, let
Up(X) be a upper bound of Jopt(X), i.e., UpðXÞZ JoptðXÞ. Given
instances xi,xjAX, let Lr�ðxi ,xjÞðXÞ be a lower bound of Jopt�ðxi ,xjÞ

ðXÞ,
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i.e., Lr�ðxi ,xjÞðXÞr Jopt�ðxi ,xjÞ
ðXÞ, let Lrþðxi ,xjÞðXÞ be a lower bound of

Joptþðxi ,xjÞ
ðXÞ. Therefore, we can derive the following propositions.

Proposition 3. Given a data set X and instances xi,xjAX, if

Lr�ðxi ,xjÞðXÞ4UpðXÞ, then there exists an EML constraint emðxi,xjÞ.

It is easy to verify the validity of Proposition 3. Since UpðXÞZ

JoptðXÞ and Lr�ðxi ,xjÞðXÞr Jopt�ðxi ,xjÞ
ðXÞ, then we have JoptðXÞo Jopt�ðxi ,xjÞ

ðXÞ holds if Lr�ðxi ,xjÞðXÞ4UpðXÞ. In a similar way, we have Proposi-
tion 4 for determining an ECL constraint.

Proposition 4. Given a data set X and instances xi,xjAX, if

Lrþðxi ,xjÞðXÞ4UpðXÞ, then there exists an ECL constraint ecðxi,xjÞ.

By Propositions 3 and 4, we can find some elite pairwise
constraints by comparing the upper bound and lower bounds
related to every pair of instances. In such a way, the computation
can be avoided for the values of Jopt(X), Jopt�ðxi ,xjÞ

ðXÞ, and
Joptþðxi ,xjÞ

ðXÞ, which is usually intractable in practice. Although
this relaxed method cannot guarantee to find all the elite pairwise
constraints due to the tightness of the lower bounds and the
upper bound, it is shown to be effective by experimental results
with respect to the NP-hardness for obtaining EM(X) or EC(X) (see
Theorem 4 and Corollary 5).

Based on the above discussion, our new algorithm Limit
Crossing is presented in Table 2. After generating an upper bound
Up(X) and initializing EM(X) and EC(X), the new algorithm checks
every pair of instances iteratively as follows. First, it checks
whether a new EML constraint can be implied by EM(X) (Step
3.1). If succeeded, this new EML constraint is added to EM(X).
Otherwise, the new algorithm continues to check whether an ECL
constraint can be directly inferred by EM(X) and EC(X) (see Step
3.2). If succeeded, the ECL set EC(X) will be updated. Otherwise,
the algorithm applies Propositions 3 and 4 to determine whether
there is an EML or ECL constraint (see Steps 3.3 and 3.4). The
running time complexity of Limit Crossing can be analyzed as
follows. Let f(n) be the running time for computing Up(X) of X (any
existing clustering algorithm can be adopted for computing a
k-partition as the upper bound). Let g(n) and h(n) be the running
time for computing lower bound Lr�ðxi ,xjÞðXÞ and Lrþðxi ,xjÞðXÞ,
respectively. Both Check-EM and Check-EC can be conducted in
O(n) running time. Since there are totally ðn2�nÞ=2 pairs of
instances, the worst-case running time of Limit Crossing is
f ðnÞþðn2�nÞð2OðnÞþgðnÞþhðnÞÞ=2.

5.2.3. Upper bound and lower bound

In Limit Crossing algorithm, an upper bound and a lower
bound are required for applying Propositions 3 and 4. According
Table 2
Limit Crossing algorithm.

Limit Crossing (data set X)

1. calculate the upper bound (denoted by Up(X)) of X

2. let EMðXÞ ¼ |, ECðXÞ ¼ |
3. for every pair of instances xi ,xj AX do

3.1 if Check-EM(xi, xj, EM(X)) is true, then add emðxi ,xjÞ to EM(X)

3.2 else if Check-EC(xi, xj, EM(X), EC(X)) is true, then add ecðxi ,xjÞ to EC(X)

3.3 else if Lr�ðxi ,xj Þ
ðXÞ4UpðXÞ, then add emðxi ,xjÞ to EM(X)

3.4 else if Lrþðxi ,xjÞðXÞ4UpðXÞ, then add ecðxi ,xjÞ to EC(X)

4. return EM(X), EC(X).

Check-EM (instances xi,xj , EML set EM(X))

1. if (xl AX s.t emðxi ,xlÞAEMðXÞ and emðxj ,xlÞAEMðXÞ, then return true;

2. return false;

Check-EC(instances xi ,xj ,EML set EM(X), ECL set EC(X))

1. if (xl AX s.t. emðxi ,xlÞAEMðXÞ and ecðxl ,xjÞAECðXÞ, then return true;

2. if (xl AX s.t. emðxj ,xlÞAEMðXÞ and ecðxl ,xiÞAECðXÞ, then return true;

3. return false.
to the definition of Jopt(X), an upper bound can be given by the
criterion function of a k-partition generated by an existing
clustering algorithm. We will show that the lower bounds can
be obtained by the relaxation of the integer programming
formulations for clustering. Our clustering problem can be for-
mulated as follows [18]:

min
Xn

s ¼ 1

Xn

r ¼ 1

dðxr ,xsÞwrs

s:t:
Xn

s ¼ 1

wrs ¼ 1, rAf1;2, . . . ,ng ð1Þ

Xn

s ¼ 1

ys ¼ k ð2Þ

wrsrys, r,sAf1;2, . . . ,ng ð3Þ

wrs,ysAf0;1g, r,sAf1;2, . . . ,ng ð4Þ

where a k-partition to the clustering problem is defined by an
allocation matrix Wn�n and a vector Y indicating which instances
are chosen as the medoids. Constraints (1) and (3) ensure that
each instance xr is allocated to only one medoid xs. Constraint
(2) determines the exact number of k medoids to be chosen and
constraint (4) gives the integer conditions. Aiming to calculate the
lower bound Lr�ðxi ,xjÞðXÞ, we should impose extra constraints on
the integer programming formulations above as follows. Accord-
ing to the definition of Jopt�ðxi ,xjÞ

ðXÞ, instances xi and xj are required
to appear in distinct clusters. When incorporated into the integer
programming formulations, this requirement turns to two con-
straints, i.e., the following constraints:

wil1 ¼wjl2
¼ yl1

¼ yl2
¼ 1, l1o l2,l1,l2Af1;2, . . . ,ng ð5Þ

wil1 ¼wjl2
¼ yl1

¼ yl2
¼ 1, l14 l2,l1,l2Af1;2, . . . ,ng ð6Þ

We have that Jopt�ðxi ,xjÞ
ðXÞ ¼minfH1,H2g, where H1 ¼min

Pn
s ¼ 1Pn

r ¼ 1 dðxr ,xsÞwrs subject to Constraints (1)–(5), H2 ¼min
Pn

s ¼ 1Pn
r ¼ 1 dðxr ,xsÞwrs subject to Constraints (1)–(4) and Constraint (6).

Although it is intractable to exactly calculate either H1 or H2, we
can easily obtain their lower bounds (denoted by LrðH1Þ and
LrðH2Þ, respectively) using the Lagrangian relaxation method [25].
Therefore, we can calculate Lr�ðxi ,xjÞ

by Lr�ðxi ,xjÞ
¼min fLrðH1Þ,

LrðH2Þg.
Similarly, the lower bound Lrþðxi ,xjÞ can also be computed as

follows. In addition to constraints (1)–(4), constraint (7) is needed
to ensure that instances xi and xj always belong to the same
cluster:

wil1 ¼wjl2
¼ yl1

¼ yl2
¼ 1, l1 ¼ l2,l1,l2Af1;2, . . . ,ng ð7Þ

Then, we have that Joptþðxi ,xjÞ
ðXÞ ¼min

Pn
s ¼ 1

Pn
r ¼ 1 dðxr ,xsÞwrs

subject to constraints (1)–(4) and (7). Therefore, Lrþðxi ,xjÞ can be

calculated by the Lagrangian relaxation method.
As shown in [25], Lagrangian relaxation can be solved by a

series of iterations. Each iteration calls an Oðn2Þ subroutine to
optimize Lagrangian multipliers. Therefore, the running time to
calculate Lr�ðxi ,xjÞ or Lrþðxi ,xjÞ will be Oðdn2

Þ, where d is the number
of iterations (in this paper, d is set to be 5000).
6. Experiments

In this section, we will evaluate the effectiveness of those elite
pairwise constraints generated by Limit Crossing algorithm. A
semi-supervised clustering algorithm is used in this evaluation.
For comparison, two kinds of faux pairwise constraints are also
generated. We will evaluate those pairwise constraints in terms of
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the converging speed, the criterion function, the purity, and the
normalized mutual information (NMI).
6.1. Experiments set up

All the algorithms are coded in Cþþ on a PC of intel PIV and 2G
memory running WinXP. In this paper, both UCI and synthetic data
sets are used to evaluate the effectiveness of Limit Crossing algorithm.
(1)
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UCI data sets
We select four data sets from the UCI repository (http://
archive.ics.uci.edu/ml/). The glass data set (see Table 3) con-
sists of 214 data instances with 10 attributes forming six
classes. The soybean data set consists of 47 data instances
with 34 attributes forming four classes. The wine data set
consists of 178 data instances with 13 attributes forming
three classes. The iris data set contains three classes of 50
data instances each and every data instance consists of four
attributes.
(2)
 Synthetic data sets
Every synthetic data set is generated with intrinsic cluster
patterns by the following steps. All data instances are to be
located within a 100�100 2D space. First, k data instances
are generated randomly such that the distance between any
two of them is greater than 100=2

ffiffiffi
k
p

. These data instances
are regarded as the virtual centers of the clusters in the
data generation process. Second, every data instance xi

(i¼ 1;2, . . . ,n) in the data set is randomly assigned to a virtual
cluster and xi is randomly chosen from all the positions within
a distance of 100=4

ffiffiffi
k
p

from this chosen cluster center. By this
data generation procedure, data instances are closer in the
same cluster, while farther in different clusters. Following the
above data generation procedure, two groups of data sets (see
Table 4) are generated. Each group consists of five data sets.
For the data sets in Group1, the number of clusters is set to be
5, while the number of data instances varies between 200 and
1000. In contrast to Group1, every data set in Group2 contains
1000 data instances, while the number of clusters varies from
5 to 25. It should be noted that we use the same data set for
both SynK-5 and SynN-1.
e 3
meters for UCI data sets.

ta set # of Attributes n k

ass 10 214 6

ybean 34 47 4

ine 13 178 3

s 4 150 3

e 4
meters for synthetic data sets.

ta group Data set n k

roup1 SynK-1 200 5

SynK-2 400 5

SynK-3 600 5

SynK-4 800 5

SynK-5 1000 5

roup2 SynN-1 1000 5

SynN-2 1000 10

SynN-3 1000 15

SynN-4 1000 20

SynN-5 1000 25
6.2. Elite pairwise constraints by Limit Crossing

We have run Limit Crossing on both UCI data sets and
synthetic data sets. In the experiments, we use COP-KMedoids
(see Section 6.3) taking no constraints to generate the upper
bound for every data set.

The sixth and seventh columns of Table 5 present the returned
EML and ECL constraints of UCI data sets. Since the data instances
are more likely to be assigned to distinct clusters when k41, we
can find that the number of ECL constraints is far more than that
of EML constraints. The sixth and seventh columns of Table 6
present the results of synthetic data sets. Since SynK-5 is identical
to SynN-1, we just run Limit Crossing once and return the same
sets of EML and ECL constraints for these two data sets. Table 6
shows for Group1 that the number of EML constraints grows as
the number of instances increases in every data set. The number
of ECL constraints follows a similar growth trend. For Group2, the
number of EML constraints sharply decreases along with the
growth of k, while the number of ECL constraints slightly
increases. The trend of the number of EML Constraints can be
explained as follows. According to the generation method of
Group2, there exists a unique optimal k-partition for every data
set in Group2, i.e., all the data instances assigned to a virtual
center form a cluster in the optimal k-partition. Therefore, an EML
constraint emðxi,xjÞ exists for any two distinct data instances xi

and xj in a cluster of the optimal k-partition. For every data set in
Group2, there are 1000=k data instances on average in every
cluster of the optimal k-partition. Therefore, the total number of
EML constraints is kn1000=knð1000=k�1Þ=2¼ 500nð1000=k�1Þ.
Hence, the total number of EML constraints gradually decreases
along with the growth of the value of k. In a similar way, we can
explain why the number of ECL constraints slightly increases.

6.3. Semi-supervised K-medoids

To evaluate the effectiveness of elite pairwise constraints, we
employed such constraints in a semi-supervised clustering algo-
rithm named COP-KMedoids (see Table 7). Similar to the modified
k-means algorithm (COP-KMeans) [4], COP-KMedoids employs
those pairwise constraints to guide the whole clustering process.
Table 5
Pairwise constraints for UCI data sets

Data Set # of emm # of ecm # of emd # of ecd # of em # of ec

Glass 1086 12 477 416 1445 6815 13 004

Iris 1913 6892 221 797 3556 7205

Soybean 104 624 81 241 247 820

Wine 4005 12 613 247 628 5312 10 441

Table 6
Pairwise constraints for synthetic data sets.

Data set # of emm # of ecm # of emd # of ecd # of em # of ec

SynK-1 1741 11 860 304 681 3911 15 989

SynK-2 9359 53 134 562 1429 15 949 63 851

SynK-3 13 413 110 756 905 1716 35 767 143 933

SynK-4 37 267 242 531 1185 2766 63 668 255 932

SynK-5 43 449 361 707 1499 4894 99 622 399 878

SynN-1 43 449 361 707 1499 4894 99 622 399 878

SynN-2 23 415 391 532 1460 2774 50 068 449 432

SynN-3 13 346 407 569 1458 3185 33 092 466 334

SynN-4 12 434 455 142 1441 4746 24 810 474 690

SynN-5 8035 439 436 1608 2902 19 813 479 687

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/


Table 7
COP-KMedoids algorithm.

COP-KMedoids(data set X, Con ¼ , Cona )

1. let m1 ,m2 , . . . ,mk be the initial cluster medoids for cluster C1 ,C2 , . . . ,Ck ,

respectively

2. for each instance xi AX, assign it to the closest cluster medoid mj such that

VIOLATE-CONSTRAINTS(xi, Cj, Con ¼ , Cona ) is false. If no such cluster exists,

fail (return { })

3. for each cluster, update its medoid

4. iterate between (2) and (3) until convergence

5. return fC1 ,C2 , . . . ,Ckg

VIOLATE-CONSTRAINTS(instance x, cluster C0 , Con ¼ , Cona )

1. for each emðx,x ¼ ÞACon ¼ do if x ¼ =2C0 , return true.

2. for each ecðx,xa ÞACona do if xa AC0 , return true.

3. return false
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The algorithm takes in a data set (X), a set of EML constraints
(Con ¼ ), and a set of ECL constraints (Cona ). It returns a
k-partition satisfying all specified constraints. COP-KMedoids
works as follows. First, k random instances are chosen as the
initial medoids for the k-partition. Then, it iteratively assigns
every instance to the closest cluster medoid without violating the
constraints. If a conflict occurs, the algorithm exits without
returning a valid k-partition. Otherwise, the new k medoids are
recalculated for clusters and instances are then assigned to new
medoids. This process continues until converging.

6.4. Faux elite pairwise constraints

For comparison, we also generate two kinds of faux elite
pairwise constraints for every data set as follows.
(1)
COP-KMedoids (U) COP-KMedoids (M)

COP-KMedoids (D) COP-KMedoids (L)
Multi-partition based EML set and ECL set: According to the
definition of the EML set, there exists an EML constraint
emðxi,xjÞ for instances xi,xjAX if they always appear together
in the same cluster of every optimal k-partition. The key idea
is really straightforward for the multi-partition based EML
set. Given multiple k-partitions (generated by a clustering
algorithm), if instances xi and xj always appear in the
same cluster for these k-partitions, then they are also likely
to appear together in the same cluster of every optimal
k-partition. In this paper, we run COP-KMedoids without
constraints (i.e., both Con ¼ and Cona are set to empty) for
10 times to generate 10 k-partitions. Then, we checked for
every pair of instances xi,xj whether they appear together in
the same cluster of these 10 k-partitions. If so, a faux EML
constraint (denoted by emmðxi,xjÞ) is added to the multi-
partition based EML set (denoted by EMm(X)). In a similar
way, we can also obtain the multi-partition based ECL set
(denoted by ECm(X)). If instances xi and xj always belong to
distinct clusters of these 10 k-partitions, a faux ECL constraint
(denoted by ecmðxi,xjÞ) is added to ECm(X). In the calculation,
we expand EMm(X) and ECm(X) by using the transitive closure
for the faux EML constraints. Given emmðxi,xjÞ and emmðxi,xlÞ,
there also exists a faux EML constraint emmðxj,xlÞ. Similarly,
given emmðxi,xjÞ and ecmðxi,xlÞ, we have a faux ECL constraint
ecmðxj,xlÞ.
6ns
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Fig. 2. Number of iterations of COP-KMedoids with different elite pairwise

constraints for UCI data sets.
Distance based EML set and ECL set: This kind of constraints is
based on the observation that instances are closer in the same
cluster, while farther in different clusters. We check every
pair of instances xi,xjAX, if one instance is the nearest
neighbor of the other, then a faux EML constraint (denoted
by emdðxi,xjÞ)is added to the distance based EML set (denoted
by EMd(X)). On the contrary, if one instance is the farthest
neighbor of the other, then a faux ECL constraint (denoted by
ecdðxi,xjÞ) is added to the distance based ECL set (denoted by
ECd(X)). We also expand EMd(X) and ECd(X) using the transi-
tive closure.
Table 5 gives the results for UCI data sets. The second and third
columns of Table 5 present the multi-partition based EML sets
and ECL sets, respectively. Obviously, the number of ECL con-
straints is far more than that of EML constraints. The fourth and
fifth columns demonstrate the distance based EML sets and ECL
sets, respectively. It can be observed that there are more distance
based ECL constraints than distance based EML constraints. We
can also find that far more EML and ECL constraints are generated
by multi-partition based method than by distance based method.

Table 6 gives the results for our synthetic data sets. For
Group1, we can find that the number of multi-partition based
EML constraints sharply increases along with the growth of n (i.e.,
the number of instances in the data set). The number of multi-
partition based ECL constraints follows a similar growth trend. For
Group2, the number of multi-partition based EML constraints
slightly decreases as the cluster number increases, while the
number of multi-partition based ECL constraints follows a nearly
reverse trend. The fourth and fifth columns present the distance
based EML and ECL sets. For Group1, the number of distance
based EML and ECL constraints also gradually increases, when
more instances are contained in a data set. For Group2, the
number of distance based EML constraints slightly varies between
1441 and 1608, while the number of distance based ECL con-
straints varies between 2774 and 4894. Similar to UCI data
sets, far more EML and ECL constraints are generated by multi-
partition based method than by distance based method.

6.5. Experimental results

To evaluate the effectiveness of Limit Crossing method, we
performed COP-KMedoids algorithm taking in those elite pairwise
constraints generated by Limit Crossing method. We have run COP-
KMedoids on every data set for 50 times and averaged the running
time, the number of iterations, the criterion function, the purity, and
the normalized mutual information in every run. Since the results
of the running time demonstrate similar trends like the number of
iterations, we only present the number of iterations in the following
part. For comparison, we have also run COP-KMedoids taking in two
kinds of faux elite pairwise constraints. In addition, we also run an
unsupervised COP-KMedoids taking in no constraints. In every run,
all these algorithms use the same randomly generated initial cluster
medoids. For brevity, we denote COP-KMedoids(L) as COP-KMedoids
taking in elite pairwise constraints by Limit Crossing method,
COP-KMedoids(M) as COP-KMedoids taking in constraints by multi-
partition based method, COP-KMedoids(D) as COP-KMedoids taking
in constraints by distance based method, and COP-KMedoids(U) as
unsupervised COP-KMedoids.
(1)
 Results on UCI data sets: Fig. 2 shows the number of iterations
of COP-KMedoids using different pairwise constraints for UCI



0

1

cr
ite

ri
on

 f
un

ct
io

n

Fig.
pairw

pu
ri

ty

Fig.
data

0
1
2
3
4
5

SynK-1
data set

# 
of

 it
er

at
io

ns

COP-KMedoids (U) COP-KMedoids (M)
COP-KMedoids (D) COP-KMedoids (L)

SynK-2 SynK-3 SynK-4 SynK-5

Fig. 6. Number of iterations of COP-KMedoids with different elite pairwise

constraints for group1 data sets.

0

0.5

1

1.5

SynK-1cr
ite

ri
on

 f
un

ct
io

n

COP-KMedoids (U) COP-KMedoids (M)
COP-KMedoids (D) COP-KMedoids (L)

SynK-2 SynK-3 SynK-4 SynK-5

data set

Fig. 7. Normalized criterion functions of COP-KMedoids with different elite

pairwise constraints for group1 data sets.

0

0.5

1

glass

data set

N
M

I

COP-KMedoids (U) COP-KMedoids (M)

COP-KMedoids (D) COP-KMedoids (L)

iris soybean wine

Fig. 5. Normalized mutual information of COP-KMedoids with different elite

pairwise constraints for UCI data sets.

H. Jiang et al. / Neurocomputing 99 (2013) 124–133 131
data sets. Out of these four algorithms, COP-KMedoids(U)
usually needs more iterations towards convergence. COP-
KMedoids(M) usually takes more iterations than COP-
KMedoids(D) and COP-KMedoids(L) except soybean data set.
Besides, COP-KMedoids(L) converges faster than COP-
KMedoids(D) in two data sets, i.e., soybean and wine. Fig. 3
presents the criterion functions of those algorithms for UCI
data sets. The criterion functions of COP-KMedoids(M), COP-
KMedoids(D), and COP-KMedoids(L), are normalized by that
of COP-KMedoids(U), respectively. It can be observed that all
those algorithms achieve similar criterion functions over
every UCI data set. COP-KMedoids(L) can achieve the best
criterion functions, though the criterion function differences
among those four algorithms are unremarkable.
We also compare those algorithms in terms of the purity.
Given a data set X ¼ fx1,x2, . . . ,xng and a k-partition C ¼

fC1,C2, . . . ,Ckg, the purity of C is defined as
Pk

i ¼ 1 9Ci \oi9=n,
where W ¼ fo1,o2, . . . ,okg represents the set of classes. Fig. 4
presents the purity of those algorithms for UCI data sets.
Based on the bars of those algorithms, the differences among
those four algorithms are unremarkable and no solid conclu-
sion can be drawn. The reason lies in the classes for UCI data
sets are not given under the criterion function used in this
paper. Therefore, the classes of UCI data sets cannot guarantee
to be optimal k-partitions. For example, the criterion function
of the classes of glass data set is 993.34, a really poor
k-partition, as compared to the average criterion function
(427.87 in this paper) achieved by COP-KMedoids(L).
In addition, we present the normalized mutual information
(NMI) of those algorithms in Fig. 5. NMI is a good way to trade
off the quality of the clustering against the number of clusters
[26]. Given a data set X ¼ fx1,x2, . . . ,xng, a k-partition C ¼

fC1,C2, . . . ,Ckg, and the set of classes W ¼ fo1,o2, . . . ,okg,
NMI is defined as NMIðW ,CÞ ¼ IðW ;CÞ=ð½HðWÞþHðCÞ�=2Þ,
where IðW ;CÞ is mutual information, H(W) and H(C) are
entropies. Due to the same reason as in Fig. 4, no clear
tendency can be observed.
(2)
 Results on synthetic data sets: Fig. 6 presents the number of
iterations of those algorithms for Group1 data sets. Obviously,
COP-KMedoids(U) and COP-KMedoids(M) need far more
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iterations to converge than COP-KMedoids(D). COP-
KMedoids(L) usually needs least iterations to converge among
these four algorithms, except SynK-2. COP-KMedoids(D) takes
the least iterations to converge on SynK-2.
Fig. 7 gives the results of the normalized criterion functions
for Group1 data sets. It can be found that the criterion
function obtained by COP-KMedoids(U) is the worst among
these four algorithms for every data set in Group1. The
criterion function by COP-KMedoids(M) is slightly better than
that by COP-KMedoids(U), while COP-KMedoids(D) outper-
forms COP-KMedoids(M) on all data sets in Group1 except
SynK-3. Out of these four algorithms, COP-KMedoids(L)
always achieves the best criterion function for every data
set in Group1.
We also compare the purity of every algorithm for Group1
data sets in Fig. 8. It can be observed that the purity of COP-
KMedoids(U) is close to that of COP-KMedoids(M) and COP-
KMedoids(D). Among COP-KMedoids(U), COP-KMedoids(M) and
COP-KMedoids(D), no algorithm remarkably outperforms the
other two algorithms. Out of all the four algorithms, COP-
KMedoids(L) always achieves the highest purity, 100%, in Group1
data sets. In fact, as discussed in Section 6.2, the set of classes of
each data set in Group1 is the unique k-partition. Meanwhile,
COP-KMedoids(L) can achieve the unique k-partition for every
data set in Group1. For example, the criterion function (7790.49)
of the classes of SynK-1 equals to that of the average criterion
function returned by COP-KMedoids(L).
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Fig. 9 presents the comparison results of NMI values for those
algorithms over Group1 data sets. It can be observed that similar
distribution as Fig. 8 can be achieved. Out of all the four
algorithms, COP-KMedoids(L) can always achieve the highest
NMI value on every data set in Group1.

Fig. 10 shows the number of iterations of COP-KMedoids using
different pairwise constraints for Group2 data sets. It can be
found that COP-KMedoids(U) takes more iterations to converge
than other algorithms. In contrast to COP-KMedoids(D) and
COP-KMedoids(L), COP-KMedoids(M) always needs more itera-
tions until converging. Obviously, COP-KMedoids(L) can easily
converge on data sets in Group2. Similar to Fig. 7, the normalized
criterion functions for Group2 data sets are given in Fig. 11.
COP-KMedoids(U), COP-KMedoids(M), and COP-KMedoids(D) are
close to each other on the criterion functions of SynN-2, SynN-3,
and SynN-4. COP-KMedoids(D) achieves better criterion functions
on SynN-1, SynN2, and SynN-5 than both COP-KMedoids(U) and
COP-KMedoids(M). COP-KMedoids(L) always obtains the best
criterion functions among these four algorithms.

Similar to Group1 data sets, we present the purity and NMI of
each algorithm for Group2 data sets in Figs. 12 and 13, respec-
tively. As shown in Fig. 12, no clear difference among COP-
KMedoids(U), COP-KMedoids(M), and COP-KMedoids(D) can be
found in terms of the purity. Out of all the four algorithms, COP-
KMedoids(L) can achieve the highest value of the purity for every
data set in Group2. For Fig. 13, we can draw a similar conclusion
as that for Group1 data sets. Among COP-KMedoids(U), COP-
KMedoids(M) and COP-KMedoids(D), no one can remarkably
outperforms the other two algorithms in terms of NMI. In
contrast, COP-KMedoids(L) is the best one.
7. Conclusions

In this paper, we introduced elite pairwise constraints, includ-
ing elite must-link (EML) and elite cannot-link (ECL) constraints,
which are to be satisfied in every optimal k-partition. In contrast
to traditional must-link and cannot-link constraints, these new
constraints would not conflict with each other. Therefore, any set
of EML and ECL constraints could always guide clustering algo-
rithms towards feasible k-partitions. We have shown that it is
intractable to retrieve EML or ECL constraints. Then, Limit Cross-
ing was proposed to achieve a fraction of such new constraints. As
a heuristic algorithm, Limit Crossing could always find some EML
or ECL constraints in practice. Experimental results on both UCI
and synthetic data sets have demonstrated the effectiveness of
Limit Crossing in semi-supervised clustering.

There are several directions for future research. First, it will be
interesting to find some efficient ways other than Lagrangian
relaxation to calculate the lower bounds in Limit Crossing. In this
paper, we had to calculate the lower bound for every pair of
instances in order to determine an EML or ECL constraint. It will
be very useful if a new method can simultaneously calculate
multiple lower bounds. Second, we can investigate on how to use
Limit Crossing to verify traditional pairwise constraints. Since
EML and ECL constraints can be viewed as a subset of traditional
pairwise constraints. We can possibly verify traditional pairwise
constraints by using Limit Crossing. For example, if we can find an
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EML constraint (by Limit Crossing) from a set of cannot-links, it
can be claimed that those cannot-links are not reliable.
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