
 

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 44–52, 2014. 
© Springer International Publishing Switzerland 2014 

Approximate Muscle Guided Beam Search  
for Three-Index Assignment Problem 

He Jiang, Shuwei Zhang, Zhilei Ren, Xiaochen Lai, and Yong Piao 

Software School, Dalian University of Technology, Dalian, 116621, China 
jianghe@dlut.edu.cn 

Abstract. As a well-known NP-hard problem, the Three-Index Assignment 
Problem (AP3) has attracted lots of research efforts for developing heuristics. 
However, existing heuristics either obtain less competitive solutions or con-
sume too much time. In this paper, a new heuristic named Approximate Muscle 
guided Beam Search (AMBS) is developed to achieve a good trade-off between 
solution quality and running time. By combining the approximate muscle with 
beam search, the solution space size can be significantly decreased, thus the 
time for searching the solution can be sharply reduced. Extensive experimental 
results on the benchmark indicate that the new algorithm is able to obtain solu-
tions with competitive quality and it can be employed on instances with large-
scale. Work of this paper not only proposes a new efficient heuristic, but also 
provides a promising method to improve the efficiency of beam search. 
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1 Introduction 

The Three-Index Assignment Problem (AP3) was first introduced by Pierskalla [1, 2]. 
It is a NP-hard problem with wide applications, including addressing a rolling mill, 
scheduling capital investments, military troop assignment, satellite coverage optimi-
zation [1, 2], scheduling teaching practice[3], and production of printed circuit boards 
[4]. It can be viewed as an optimization problem on a 0-1 programming model:  
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where },...,3,2,1{ nKJI === . 
The solution of AP3 can be presented by two permutations: 
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where Nπ  presents the set of all permutations on the integer set N={1,2,…,N}. Here 

cijk represents the cost of a triple (i, j, k)∈I×J×K. 
Due to its intractability, lots of exact and heuristic algorithms are proposed to solve 

it, including Balas and Saltzman [5], Crama and Spieksma[6], Burkard and Rudolf 
[7], Pardalos and Pitsoulis[8], Voss [9], Aiex, Resende, Pardalos, and Toraldo[10], 
Huang and Lim [11], Jiang, Xuan, and Zhang [12]. Among these algorithms, LSGA 
proposed by Huang and Lim [11], and AMGO proposed by Jiang, Xuan, and Zhang 
[12] perform better than the other heuristics. LSGA can obtain a solution within quite 
a short time, but on difficult instances LSGA might not perform well in terms of the 
solution quality, while AMGO can obtain better solutions with high quality, but on 
large instances the running time is intolerable. It would be ideal to achieve a good 
trade-off between solution quality and running time. 

To tackle the challenges in balancing solution quality and running time, we pro-
pose a new heuristic named Approximate Muscle guided Beam Search (AMBS). It 
combines two phases. In the first phase, a multi-restart local search algorithm is used 
to generate a smaller search space, which we call “approximate muscle”. In the latter 
phase, beam search is employed to obtain a high quality solution. By combining the 
approximate muscle and beam search, we can obtain solutions with relatively high 
quality in a short time. Experimental results on the standard AP3 benchmark indicate 
that in terms of solution quality, the solutions obtained by AMBS are better than 
LSGA and not worse than the pure beam search, while in terms of running time, 
AMBS can deal with large instances that AMGO and the pure beam search cannot. 

The rest of this paper is organized as follow. In Section 2, a review of the muscle 
and beam search is given. In section 3, the framework of AMBS is proposed. Experi-
ment results are reported in Section 4. In Section 5, the conclusion is presented. 

2 Muscle and Beam Search 

In this section, we present the two concepts the muscle and beam search. For each 
concept, we first briefly review its related work and then present its details. 

2.1 Muscle 

The proposition of the concept muscle is inspired by the backbone. The backbone 
means the shared common parts of optimal solutions for an instance. It is an important 
tool for NP-hard problem. In contrast to the backbone, the muscle is the union of 
optimal solutions. It was first proposed by Jiang, Xuan, and Zhang in 2008 [12]. 
Some efficient algorithms have been proposed using the muscle. For example, Jiang 
and Chen developed an algorithm for solving the Generalized Minimum Spanning 
Tree problem with the muscle [13]. Obviously, if the muscle could be obtained, the 
search space for an instance would be decreased sharply. However, Jiang has proved 
that there is no polynomial time algorithm to obtain the muscle for AP3 problem [12]. 
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Now that the muscle cannot be obtained directly, there are some other ways to ap-
proximate it. Experiments conducted by Jiang indicate that the probability that the 
union of local optima contains the optimal solution increases with the growth of the 
number of local optimum, while the size increases slower [12]. Hence, the union of 
local optima can approximate the muscle, it can be named the approximate muscle. 

2.2 Beam Search 

Beam search is a widely-used heuristic algorithm. For example, Cazenave combined 
Nested Monte-Carlo Search with beam search to enhance Nested Monte-Carlo Search 
[14], López-Ibáñez and Blum combined beam search with ant colony optimization to 
solve the travelling salesman problem with time windows [15]. 

Beam search can be viewed as an adaptation of branch-and-bound search. The 
standard version of beam search builds its search tree using breadth-first search. At 
each level of the search tree, a heuristic algorithm is employed to estimate all the 
successors, and then a predetermined number of best nodes are stored, while the oth-
ers are pruned off permanently. This number is called the beam width. By varying the 
beam width, beam search varies from greedy search (the beam width equals to 1) to a 
complete breadth-first search (no limit to the beam width). By limiting the beam 
width, the complexity of the search becomes polynomial. In this way, beam search 
can find a solution with relatively high quality within practical time. We call the stan-
dard version of beam search as the pure beam search, to distinguish it with AMBS. 

3 Approximate Muscle Guided Beam Search for AP3  

In this section, we introduce the detail of AMBS. We will first present the framework 
of our algorithm, then we will show the details in the following subsections.  

3.1 AMBS for AP3 

The algorithm is shown in Algorithm 1. The instance AP3(I,J,K,c), the number of 
sampling k, and the beam width width are the inputs. The output is the solution s*. A 
instance is stored in a 3-dimesional array, and the solutions is stored in two arrays. 

Two phases are in the algorithm. In the beginning of the search phase, the order of 
search level is sorted ascending by the number of triples. When calculating the lower 
bound of each branch, more time will be consumed when the branch is at the higher 
level. Thus, after the sorting, fewer nodes are in the higher level, and searching time is 
reduced. More details about building the search tree is introduced in section 3.3. 

In the following subsections, we will discuss the details of two phases, respectively. 

3.2 Approximate Muscle for AP3 

In the first phase, we use the union of local optima to approximate the muscle. The detail 
is shown in Algorithm 2. The inputs are an AP3 instance and the number of sampling. 
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The output includes the approximate muscle musclea _ , and the best solution s is  

obtained. The approximate muscle is stored in a 3-dimensional array, where the cost is 
the same value as the instance if it is sampled, or infinite if not.  

The approximate muscle is initialized as an empty set first. Then k local optima are 
obtained to make up the approximate muscle. A random solution is generated, then a 
local search algorithm is applied to obtain a local optimum. The local search algo-
rithm we use here is the Hungarian local search proposed by Huang and Lim [11]. 
The best local optimum is recorded. 

3.3 Beam Search for AP3 

In the second phase, we use beam search to find a better solution. Before the introduc-
tion of beam search for AP3, we will first present how we build the breadth-first 
search tree. An instance of AP3 can be represented as a three-dimensional matrix. 
First, the matrix is divided into n  layers. For example, an instance with the size of 4 
is divided into 4 layers. Select a layer to be level 1 of the search tree. Then another 
layer is selected to build next level. Since one triple has been determined in level 1, 
there are 9 successors, and 144 nodes in all in level 2. In this way, the tree is built. If 
using the muscle to build the tree, only the triples in the muscle are considered.  
 

 
 

 

Algorithm 2. GenerateAM (Generate Approximate Muscle)
Input: AP3instance ),,,(3 cKJIAP , k  
Output: musclea _ , solution 's  
Begin 

(1)    ∅=musclea _  
(2)    for 1=counter  to k  do 
(3)        for 1=i to n  do iip =][ , iiq =][ ; 
(4)        for 1=i to n  do 
(5)            let j1 , j2 be two random integers between 1 and n ; 
(6)            swap ][ip  and ][ 1jp ; swap ][iq  and ][ 2jq ; 

 (7)        let }1|])[],[,{( niiqipis ≤≤= ; 
(8)        obtain a local optimum locals  by applying the local search to s ; 

(9)        localsmucleamusclea __ = ; 

(10)       if )'()( scsc local <  then localss ='  
End 

Algorithm 1. AMBS for AP3 
Input: AP3instance ),,,(3 cKJIAP , k , width  
Output: solution s* 
Begin 

//the sampling phase 
(1)    obtain the approximate muscle musclea _  and a solution 's  as the upper bound 

with )),,,,(3( kcKJIAPGenerateAM ; 
//the search phase 
(2)    sort the search order of the approximate muscle and get the order ; 
(3)    obtain the solution s* with ),',,_( orderswidthmuscleaBS ; 
End 
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The detail of beam search for AP3 is presented in Algorithm 3. The inputs are the 
approximate muscle a_muscle, the beam width width, the best local solution s’, and 
the search order order. The output is the solution s* of this AP3 instance.  

In the algorithm, a candidate represents a branch to be searched. When the search 
comes to a certain level, the lower bounds of all the successors are generated. The 
arrays fp  and fq  are used to record the determined triples to guarantee the con-
straints. Then the lower bounds are calculated. The lower bound includes three parts: 
the sum of the triples' cost in the candidate, the cost of the triple relevant to the suc-
cessor, and lower bound of the sub-problem. The sub-problem is the approximate 
muscle without the layers containing the determined triples. The lower bound calcu-
lating method is proposed by Kim et al. [16]. In the end, at most width successors 
with smaller lower bound than the cost of s’ are kept to be the new candidates. After 
searching, a local search algorithm is employed to the remaining candidates. Then the 
best (including s’) is chosen to be the solution s*. Since the approximate muscle is 
stored in the same way as an instance, beam search algorithm can be used to solve 
AP3 problem independently. 

 

 

4 Experimental Result 

In this section, we first show the parameter tuning result. Then we present the results 
of our algorithm on the benchmark. The codes are implemented with C++ under win-
dows 7 using visual studio 2010 on a computer with Intel Core i3-M330 2.13G. The 
time in the tables is measured in seconds. 

4.1 Parameter Tuning 

Two parameters are used in AMBS, the number of sampling and the beam width. We 
determine the number of sampling as 1000, the same value in AMGO [12]. As for the 

Algorithm 3. BS (Beam Search)
Input: musclea _ , width , solution 's , order  
Output: solution s* 

Begin 
(1)   for every level  based on order  in the search tree do 
(2)       for every candidate do 
(3)           for every triple ∈),,( kji candidate do truekfqtruejfp == ][,][ ; 
(4)           for every triple muscleakjlevelorder _),],[( ∈  do 
(5)               if falsejfp =][  and falsekfq =][  then 
(6)                   generate the sub-problem; calculate the lower bounds; 
(7)       sort the bounds of all candidate; 
(8)       for 1=i  to width  do 
(9)           if lower bound of the branch < )'(sc  then 
(10)              this branch belongs to the new candidates; 
(11)          else break; 
(12)  employ the local search algorithm on every candidate and choose the best to be 

the solution s* 
End 
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beam width, we test different beam widths {100, 200, 300, 400} on 4*5 instances 
from Balas and Saltzman Dataset (see Section 4.2) and 6 instances from Crama and 
Spieksma Dataset (see Section 4.3).  

Table 1 shows the result of our parameter tuning. We run the algorithm 10 times on 
each instances of the Balas and Saltzman Dataset with each beam width, while run it 
once on Crama and Spieksma Dataset since the result varies little. The value of Balas 
and Saltzman Dataset is the average value of each size. The result indicates that the 
solution quality and the running time rise with the increase of the beam width. Note 
that the running time of 3DA99N1, 3DA198N1 and 3D1299N1 vary little in different 
beam widths. This is because the approximate muscle space of each of the instance is 
so small. The running time of 3DI198N1 is the longest. When the beam width is 300, 
the running time is about 20 minutes. In order to balance the quality of the solution 
and the running time, we determine the beam width as 300 in the rest of experiments. 

Table 1. Beam Width Tuning 

Instance Id Width=100 Width=200 Width=300 Width=400 
 Cost Time Cost Time Cost Time Cost Time 

BS_14_x 10 0.74 10 1.07 10 1.31 10 1.72 
BS_18_x 6.86 2.48 6.66 4.25 6.48 5.97 6.46 7.82 
BS_22_x 4.86 6.75 4.62 12.00 4.34 17.13 4.34 22.45 
BS_26_x 2.74 15.01 2.34 27.05 2.1 39.16 2.08 51.01 
3DA99N1 1608 7.01 1608 7.39 1608 7.24 1608 7.16 
3DA198N1 2662 62.05 2662 65.00 2662 63.15 2662 64.34 
3DIJ99N1 4797 16.59 4797 18.53 4797 20.33 4797 22.11 
3DI198N1 9685 479.66 9684 863.94 9684 1219.82 9684 1566.40 
3D1299N1 133 1.70 133 1.75 133 1.73 133 1.73 
3D1198N1 286 169.37 286 276.14 286 383.95 286 573.86 

4.2 Balas and Saltzman Dataset 

This dataset is generated by Balas and Saltzman[5]. It contains 60 instances with size 
of 4, 6, 8, ..., 26. For each size, five instances are generated randomly. 

Table 2. Balas and Saltzman Dataset (12*5 instances) 

n Opt. LSGA AMGO Beam Search AMBS 
  Cost Time Cost Time Cost Time Cost Time 
4 42.2 42.2 0 42.2 0.01 42.2 0.01 42.2 0.01 
6 40.2 40.2 0.01 40.2 0.03 40.2 0.03 40.2 0.03 
8 23.8 23.8 0.03 23.8 0.06 23.8 0.06 23.8 0.06 

10 19 19 0.37 19 0.11 19 0.14 19 0.11 
12 15.6 15.6 0.87 15.6 0.18 15.6 0.62 15.6 0.26 
14 10 10 1.73 10 0.26 10 7.62 10 1.31 
16 10 10 1.89 10.16 0.52 10 22.74 10 3.32 
18 6.4 7.2 2.95 6.4 0.97 6.4 49.65 6.48 5.97 
20 4.8 5.2 4.01 4.8 1.67 4.8 98.18 4.88 10.43 
22 4 5.6 4.54 4 6.26 4.24 185.70 4.34 17.13 
24 1.8 3.2 5.66 1.96 12.16 2.38 313.60 2.28 26.95 
26 1.3 3.6 10.78 1 6.62 2.38 526.59 2.1 39.16 
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Table 2 shows the result on this dataset. The column "Opt." is the optimal solution 
reported by Balas and Saltzman[5]. "LSGA" is the result reported in Huang's paper 
[11] using a PIII 800MHz PC. "AMGO" is the results of the program implemented 
according to Jiang's paper [12]. "Beam Search" is the result of the pure beam search. 
"AMBS" is the result of our algorithm. The results of AMGO, the pure beam search 
and AMBS are the average cost after running 10 times on each instance. The solutions 
of size 26 found by AMGO are 0,0,2,1,2 respectively, the average cost is 1. Because 
the average of any five integers cannot be 1.3, it may be a typo in Balas's paper.  

The result indicates that AMBS can get solutions with higher quality than LSGA. 
AMGO generates the best solutions, and the running time is quite short, because it 
employs a global search on the approximate muscle and the search space is quite 
small. AMBS uses an incomplete search and needs to estimate the lower bound of 
each branch, thus, the quality of solutions is a little worse and the running time is 
longer than AMGO. Compared with the pure beam search, the running time of AMBS 
is about one-tenth of the pure beam search, but the quality is comparable. This is 
because that there are much fewer successors in the approximate muscle. 

4.3 Crama and Spieksma Dataset 

This dataset is generated by Crama and Spieksma[6]. Three types are in the dataset. In 
each type, three instances have the size of 33, and three have the size of 66. 

Table 2 shows the result on this dataset. AMGO, the pure beam search and AMBS 
are executed once since the result varies little. There are some cells with no value, 
because the running time is longer than 30 minutes, and we regard it unacceptable. 

Table 3. Crama and Spieksma Dataset. (18 instances) 

n Instance Id LSGA AMGO Beam Search AMBS 
  Cost Time Cost Time Cost Time Cost Time 

33 3DA99N1 1608 0.03 1608 7.60 1608 649.74 1608 7.24 
33 3DA99N2 1401 0.11 1401 7.11 1401 1733.90 1401 6.52 
33 3DA99N3 1604 0.11 1586 7.61 1604 1606.99 1604 7.30 
66 3DA198N1 2662 0.55 2662 71.22 - - 2662 63.15 
66 3DA198N2 2449 0.27 - - - - 2449 74.20 
66 3DA198N3 2758 0.58 - - - - 2758 82.07 
33 3DIJ99N1 4797 0.11 - - - - 4797 20.33 
33 3DIJ99N2 5067 0.26 - - - - 5067 35.95 
33 3DIJ99N3 4287 0.26 - - - - 4287 26.07 
66 3DI198N1 9684 4.86 - - - - 9684 1219.82 
66 3DI198N2 8944 3.35 - - - - 8944 929.51 
66 3DI198N3 9745 3.09 - - - - 9745 767.66 
33 3D1299N1 133 0.01 - - 133 3.50 133 1.73 
33 3D1299N2 131 0.03 - - 131 1128.17 131 3.94 
33 3D1299N3 131 0.02 131 1.98 131 580.97 131 3.31 
66 3D1198N1 286 0.15 - - - - 286 383.95 
66 3D1198N2 286 0.16 - - - - 286 341.05 
66 3D1198N3 282 0.23 - - - - 282 329.67 
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This result indicates that AMBS is able to run on every instance, and obtain a solu-
tion with high quality, while AMGO and the pure beam search are not able to deal 
with a number of instances. The running time of LSGA is quite short with high quali-
ty solution. This is because LSGA is an iterative algorithm and the instances in this 
dataset are easy to solve. If the instance is hard to solve, like the large instance in 
Balas and Saltzman Dataset, the quality of solutions of LSGA might not be that high. 

5 Conclusion 

In this paper, we propose a new heuristic named Approximate Muscle guided Beam 
Search (AMBS) for AP3 problem. This algorithm combines the approximate muscle 
and beam search. In this way, AMBS can achieve a good trade-off between the solu-
tion quality and the running time. Experimental results indicate that the new algorithm 
is able to obtain solutions with competitive quality, even on large instances. 
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