

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 44–52, 2014.
© Springer International Publishing Switzerland 2014

Approximate Muscle Guided Beam Search
for Three-Index Assignment Problem

He Jiang, Shuwei Zhang, Zhilei Ren, Xiaochen Lai, and Yong Piao

Software School, Dalian University of Technology, Dalian, 116621, China
jianghe@dlut.edu.cn

Abstract. As a well-known NP-hard problem, the Three-Index Assignment
Problem (AP3) has attracted lots of research efforts for developing heuristics.
However, existing heuristics either obtain less competitive solutions or con-
sume too much time. In this paper, a new heuristic named Approximate Muscle
guided Beam Search (AMBS) is developed to achieve a good trade-off between
solution quality and running time. By combining the approximate muscle with
beam search, the solution space size can be significantly decreased, thus the
time for searching the solution can be sharply reduced. Extensive experimental
results on the benchmark indicate that the new algorithm is able to obtain solu-
tions with competitive quality and it can be employed on instances with large-
scale. Work of this paper not only proposes a new efficient heuristic, but also
provides a promising method to improve the efficiency of beam search.

Keywords: Combinatorial Optimization, Heuristic, Muscle, Beam Search.

1 Introduction

The Three-Index Assignment Problem (AP3) was first introduced by Pierskalla [1, 2].
It is a NP-hard problem with wide applications, including addressing a rolling mill,
scheduling capital investments, military troop assignment, satellite coverage optimi-
zation [1, 2], scheduling teaching practice[3], and production of printed circuit boards
[4]. It can be viewed as an optimization problem on a 0-1 programming model:

 min
∈ ∈ ∈Ii Jj Kk

ijkijk xc . (1)

subject to

1=

∈ ∈Jj Kk
ijkx , Ii ∈∀ . (2)

1=

∈ ∈Ii Kk
ijkx , Jj ∈∀ . (3)

1=

∈ ∈Ii Jj
ijkx , Kk ∈∀ . (4)

}1,0{∈ijkx , KkJjIi ∈∈∈∀ ,, . (5)

where },...,3,2,1{ nKJI === .
The solution of AP3 can be presented by two permutations:

 Approximate Muscle Guided Beam Search for Three-Index Assignment Problem 45

 min
n

i
iqipic)(),(, , Niqip π∈)(),(. (6)

where Nπ presents the set of all permutations on the integer set N={1,2,…,N}. Here

cijk represents the cost of a triple (i, j, k)∈I×J×K.
Due to its intractability, lots of exact and heuristic algorithms are proposed to solve

it, including Balas and Saltzman [5], Crama and Spieksma[6], Burkard and Rudolf
[7], Pardalos and Pitsoulis[8], Voss [9], Aiex, Resende, Pardalos, and Toraldo[10],
Huang and Lim [11], Jiang, Xuan, and Zhang [12]. Among these algorithms, LSGA
proposed by Huang and Lim [11], and AMGO proposed by Jiang, Xuan, and Zhang
[12] perform better than the other heuristics. LSGA can obtain a solution within quite
a short time, but on difficult instances LSGA might not perform well in terms of the
solution quality, while AMGO can obtain better solutions with high quality, but on
large instances the running time is intolerable. It would be ideal to achieve a good
trade-off between solution quality and running time.

To tackle the challenges in balancing solution quality and running time, we pro-
pose a new heuristic named Approximate Muscle guided Beam Search (AMBS). It
combines two phases. In the first phase, a multi-restart local search algorithm is used
to generate a smaller search space, which we call “approximate muscle”. In the latter
phase, beam search is employed to obtain a high quality solution. By combining the
approximate muscle and beam search, we can obtain solutions with relatively high
quality in a short time. Experimental results on the standard AP3 benchmark indicate
that in terms of solution quality, the solutions obtained by AMBS are better than
LSGA and not worse than the pure beam search, while in terms of running time,
AMBS can deal with large instances that AMGO and the pure beam search cannot.

The rest of this paper is organized as follow. In Section 2, a review of the muscle
and beam search is given. In section 3, the framework of AMBS is proposed. Experi-
ment results are reported in Section 4. In Section 5, the conclusion is presented.

2 Muscle and Beam Search

In this section, we present the two concepts the muscle and beam search. For each
concept, we first briefly review its related work and then present its details.

2.1 Muscle

The proposition of the concept muscle is inspired by the backbone. The backbone
means the shared common parts of optimal solutions for an instance. It is an important
tool for NP-hard problem. In contrast to the backbone, the muscle is the union of
optimal solutions. It was first proposed by Jiang, Xuan, and Zhang in 2008 [12].
Some efficient algorithms have been proposed using the muscle. For example, Jiang
and Chen developed an algorithm for solving the Generalized Minimum Spanning
Tree problem with the muscle [13]. Obviously, if the muscle could be obtained, the
search space for an instance would be decreased sharply. However, Jiang has proved
that there is no polynomial time algorithm to obtain the muscle for AP3 problem [12].

46 H. Jiang et al.

Now that the muscle cannot be obtained directly, there are some other ways to ap-
proximate it. Experiments conducted by Jiang indicate that the probability that the
union of local optima contains the optimal solution increases with the growth of the
number of local optimum, while the size increases slower [12]. Hence, the union of
local optima can approximate the muscle, it can be named the approximate muscle.

2.2 Beam Search

Beam search is a widely-used heuristic algorithm. For example, Cazenave combined
Nested Monte-Carlo Search with beam search to enhance Nested Monte-Carlo Search
[14], López-Ibáñez and Blum combined beam search with ant colony optimization to
solve the travelling salesman problem with time windows [15].

Beam search can be viewed as an adaptation of branch-and-bound search. The
standard version of beam search builds its search tree using breadth-first search. At
each level of the search tree, a heuristic algorithm is employed to estimate all the
successors, and then a predetermined number of best nodes are stored, while the oth-
ers are pruned off permanently. This number is called the beam width. By varying the
beam width, beam search varies from greedy search (the beam width equals to 1) to a
complete breadth-first search (no limit to the beam width). By limiting the beam
width, the complexity of the search becomes polynomial. In this way, beam search
can find a solution with relatively high quality within practical time. We call the stan-
dard version of beam search as the pure beam search, to distinguish it with AMBS.

3 Approximate Muscle Guided Beam Search for AP3

In this section, we introduce the detail of AMBS. We will first present the framework
of our algorithm, then we will show the details in the following subsections.

3.1 AMBS for AP3

The algorithm is shown in Algorithm 1. The instance AP3(I,J,K,c), the number of
sampling k, and the beam width width are the inputs. The output is the solution s*. A
instance is stored in a 3-dimesional array, and the solutions is stored in two arrays.

Two phases are in the algorithm. In the beginning of the search phase, the order of
search level is sorted ascending by the number of triples. When calculating the lower
bound of each branch, more time will be consumed when the branch is at the higher
level. Thus, after the sorting, fewer nodes are in the higher level, and searching time is
reduced. More details about building the search tree is introduced in section 3.3.

In the following subsections, we will discuss the details of two phases, respectively.

3.2 Approximate Muscle for AP3

In the first phase, we use the union of local optima to approximate the muscle. The detail
is shown in Algorithm 2. The inputs are an AP3 instance and the number of sampling.

 Approximate Muscle Guided Beam Search for Three-Index Assignment Problem 47

The output includes the approximate muscle musclea _ , and the best solution s is

obtained. The approximate muscle is stored in a 3-dimensional array, where the cost is
the same value as the instance if it is sampled, or infinite if not.

The approximate muscle is initialized as an empty set first. Then k local optima are
obtained to make up the approximate muscle. A random solution is generated, then a
local search algorithm is applied to obtain a local optimum. The local search algo-
rithm we use here is the Hungarian local search proposed by Huang and Lim [11].
The best local optimum is recorded.

3.3 Beam Search for AP3

In the second phase, we use beam search to find a better solution. Before the introduc-
tion of beam search for AP3, we will first present how we build the breadth-first
search tree. An instance of AP3 can be represented as a three-dimensional matrix.
First, the matrix is divided into n layers. For example, an instance with the size of 4
is divided into 4 layers. Select a layer to be level 1 of the search tree. Then another
layer is selected to build next level. Since one triple has been determined in level 1,
there are 9 successors, and 144 nodes in all in level 2. In this way, the tree is built. If
using the muscle to build the tree, only the triples in the muscle are considered.

Algorithm 2. GenerateAM (Generate Approximate Muscle)
Input: AP3instance),,,(3 cKJIAP , k
Output: musclea _ , solution 's
Begin

(1) ∅=musclea _
(2) for 1=counter to k do
(3) for 1=i to n do iip =][, iiq =][;
(4) for 1=i to n do
(5) let j1 , j2 be two random integers between 1 and n ;
(6) swap][ip and][1jp ; swap][iq and][2jq ;

 (7) let }1|])[],[,{(niiqipis ≤≤= ;
(8) obtain a local optimum locals by applying the local search to s ;

(9) localsmucleamusclea __ = ;

(10) if)'()(scsc local < then localss ='
End

Algorithm 1. AMBS for AP3
Input: AP3instance),,,(3 cKJIAP , k , width
Output: solution s*
Begin

//the sampling phase
(1) obtain the approximate muscle musclea _ and a solution 's as the upper bound

with)),,,,(3(kcKJIAPGenerateAM ;
//the search phase
(2) sort the search order of the approximate muscle and get the order ;
(3) obtain the solution s* with),',,_(orderswidthmuscleaBS ;
End

48 H. Jiang et al.

The detail of beam search for AP3 is presented in Algorithm 3. The inputs are the
approximate muscle a_muscle, the beam width width, the best local solution s’, and
the search order order. The output is the solution s* of this AP3 instance.

In the algorithm, a candidate represents a branch to be searched. When the search
comes to a certain level, the lower bounds of all the successors are generated. The
arrays fp and fq are used to record the determined triples to guarantee the con-
straints. Then the lower bounds are calculated. The lower bound includes three parts:
the sum of the triples' cost in the candidate, the cost of the triple relevant to the suc-
cessor, and lower bound of the sub-problem. The sub-problem is the approximate
muscle without the layers containing the determined triples. The lower bound calcu-
lating method is proposed by Kim et al. [16]. In the end, at most width successors
with smaller lower bound than the cost of s’ are kept to be the new candidates. After
searching, a local search algorithm is employed to the remaining candidates. Then the
best (including s’) is chosen to be the solution s*. Since the approximate muscle is
stored in the same way as an instance, beam search algorithm can be used to solve
AP3 problem independently.

4 Experimental Result

In this section, we first show the parameter tuning result. Then we present the results
of our algorithm on the benchmark. The codes are implemented with C++ under win-
dows 7 using visual studio 2010 on a computer with Intel Core i3-M330 2.13G. The
time in the tables is measured in seconds.

4.1 Parameter Tuning

Two parameters are used in AMBS, the number of sampling and the beam width. We
determine the number of sampling as 1000, the same value in AMGO [12]. As for the

Algorithm 3. BS (Beam Search)
Input: musclea _ , width , solution 's , order
Output: solution s*

Begin
(1) for every level based on order in the search tree do
(2) for every candidate do
(3) for every triple ∈),,(kji candidate do truekfqtruejfp ==][,][;
(4) for every triple muscleakjlevelorder _),],[(∈ do
(5) if falsejfp =][and falsekfq =][then
(6) generate the sub-problem; calculate the lower bounds;
(7) sort the bounds of all candidate;
(8) for 1=i to width do
(9) if lower bound of the branch <)'(sc then
(10) this branch belongs to the new candidates;
(11) else break;
(12) employ the local search algorithm on every candidate and choose the best to be

the solution s*
End

 Approximate Muscle Guided Beam Search for Three-Index Assignment Problem 49

beam width, we test different beam widths {100, 200, 300, 400} on 4*5 instances
from Balas and Saltzman Dataset (see Section 4.2) and 6 instances from Crama and
Spieksma Dataset (see Section 4.3).

Table 1 shows the result of our parameter tuning. We run the algorithm 10 times on
each instances of the Balas and Saltzman Dataset with each beam width, while run it
once on Crama and Spieksma Dataset since the result varies little. The value of Balas
and Saltzman Dataset is the average value of each size. The result indicates that the
solution quality and the running time rise with the increase of the beam width. Note
that the running time of 3DA99N1, 3DA198N1 and 3D1299N1 vary little in different
beam widths. This is because the approximate muscle space of each of the instance is
so small. The running time of 3DI198N1 is the longest. When the beam width is 300,
the running time is about 20 minutes. In order to balance the quality of the solution
and the running time, we determine the beam width as 300 in the rest of experiments.

Table 1. Beam Width Tuning

Instance Id Width=100 Width=200 Width=300 Width=400
 Cost Time Cost Time Cost Time Cost Time

BS_14_x 10 0.74 10 1.07 10 1.31 10 1.72
BS_18_x 6.86 2.48 6.66 4.25 6.48 5.97 6.46 7.82
BS_22_x 4.86 6.75 4.62 12.00 4.34 17.13 4.34 22.45
BS_26_x 2.74 15.01 2.34 27.05 2.1 39.16 2.08 51.01
3DA99N1 1608 7.01 1608 7.39 1608 7.24 1608 7.16
3DA198N1 2662 62.05 2662 65.00 2662 63.15 2662 64.34
3DIJ99N1 4797 16.59 4797 18.53 4797 20.33 4797 22.11
3DI198N1 9685 479.66 9684 863.94 9684 1219.82 9684 1566.40
3D1299N1 133 1.70 133 1.75 133 1.73 133 1.73
3D1198N1 286 169.37 286 276.14 286 383.95 286 573.86

4.2 Balas and Saltzman Dataset

This dataset is generated by Balas and Saltzman[5]. It contains 60 instances with size
of 4, 6, 8, ..., 26. For each size, five instances are generated randomly.

Table 2. Balas and Saltzman Dataset (12*5 instances)

n Opt. LSGA AMGO Beam Search AMBS
 Cost Time Cost Time Cost Time Cost Time
4 42.2 42.2 0 42.2 0.01 42.2 0.01 42.2 0.01
6 40.2 40.2 0.01 40.2 0.03 40.2 0.03 40.2 0.03
8 23.8 23.8 0.03 23.8 0.06 23.8 0.06 23.8 0.06

10 19 19 0.37 19 0.11 19 0.14 19 0.11
12 15.6 15.6 0.87 15.6 0.18 15.6 0.62 15.6 0.26
14 10 10 1.73 10 0.26 10 7.62 10 1.31
16 10 10 1.89 10.16 0.52 10 22.74 10 3.32
18 6.4 7.2 2.95 6.4 0.97 6.4 49.65 6.48 5.97
20 4.8 5.2 4.01 4.8 1.67 4.8 98.18 4.88 10.43
22 4 5.6 4.54 4 6.26 4.24 185.70 4.34 17.13
24 1.8 3.2 5.66 1.96 12.16 2.38 313.60 2.28 26.95
26 1.3 3.6 10.78 1 6.62 2.38 526.59 2.1 39.16

50 H. Jiang et al.

Table 2 shows the result on this dataset. The column "Opt." is the optimal solution
reported by Balas and Saltzman[5]. "LSGA" is the result reported in Huang's paper
[11] using a PIII 800MHz PC. "AMGO" is the results of the program implemented
according to Jiang's paper [12]. "Beam Search" is the result of the pure beam search.
"AMBS" is the result of our algorithm. The results of AMGO, the pure beam search
and AMBS are the average cost after running 10 times on each instance. The solutions
of size 26 found by AMGO are 0,0,2,1,2 respectively, the average cost is 1. Because
the average of any five integers cannot be 1.3, it may be a typo in Balas's paper.

The result indicates that AMBS can get solutions with higher quality than LSGA.
AMGO generates the best solutions, and the running time is quite short, because it
employs a global search on the approximate muscle and the search space is quite
small. AMBS uses an incomplete search and needs to estimate the lower bound of
each branch, thus, the quality of solutions is a little worse and the running time is
longer than AMGO. Compared with the pure beam search, the running time of AMBS
is about one-tenth of the pure beam search, but the quality is comparable. This is
because that there are much fewer successors in the approximate muscle.

4.3 Crama and Spieksma Dataset

This dataset is generated by Crama and Spieksma[6]. Three types are in the dataset. In
each type, three instances have the size of 33, and three have the size of 66.

Table 2 shows the result on this dataset. AMGO, the pure beam search and AMBS
are executed once since the result varies little. There are some cells with no value,
because the running time is longer than 30 minutes, and we regard it unacceptable.

Table 3. Crama and Spieksma Dataset. (18 instances)

n Instance Id LSGA AMGO Beam Search AMBS
 Cost Time Cost Time Cost Time Cost Time

33 3DA99N1 1608 0.03 1608 7.60 1608 649.74 1608 7.24
33 3DA99N2 1401 0.11 1401 7.11 1401 1733.90 1401 6.52
33 3DA99N3 1604 0.11 1586 7.61 1604 1606.99 1604 7.30
66 3DA198N1 2662 0.55 2662 71.22 - - 2662 63.15
66 3DA198N2 2449 0.27 - - - - 2449 74.20
66 3DA198N3 2758 0.58 - - - - 2758 82.07
33 3DIJ99N1 4797 0.11 - - - - 4797 20.33
33 3DIJ99N2 5067 0.26 - - - - 5067 35.95
33 3DIJ99N3 4287 0.26 - - - - 4287 26.07
66 3DI198N1 9684 4.86 - - - - 9684 1219.82
66 3DI198N2 8944 3.35 - - - - 8944 929.51
66 3DI198N3 9745 3.09 - - - - 9745 767.66
33 3D1299N1 133 0.01 - - 133 3.50 133 1.73
33 3D1299N2 131 0.03 - - 131 1128.17 131 3.94
33 3D1299N3 131 0.02 131 1.98 131 580.97 131 3.31
66 3D1198N1 286 0.15 - - - - 286 383.95
66 3D1198N2 286 0.16 - - - - 286 341.05
66 3D1198N3 282 0.23 - - - - 282 329.67

 Approximate Muscle Guided Beam Search for Three-Index Assignment Problem 51

This result indicates that AMBS is able to run on every instance, and obtain a solu-
tion with high quality, while AMGO and the pure beam search are not able to deal
with a number of instances. The running time of LSGA is quite short with high quali-
ty solution. This is because LSGA is an iterative algorithm and the instances in this
dataset are easy to solve. If the instance is hard to solve, like the large instance in
Balas and Saltzman Dataset, the quality of solutions of LSGA might not be that high.

5 Conclusion

In this paper, we propose a new heuristic named Approximate Muscle guided Beam
Search (AMBS) for AP3 problem. This algorithm combines the approximate muscle
and beam search. In this way, AMBS can achieve a good trade-off between the solu-
tion quality and the running time. Experimental results indicate that the new algorithm
is able to obtain solutions with competitive quality, even on large instances.

Acknowledgement. This work was supported in part by the Fundamental Research
Funds for the Central Universities under Grant DUT13RC(3)53, in part by the New
Century Excellent Talents in University under Grant NCET-13-0073, in part by China
Postdoctoral Science Foundation under Grant 2014M551083, and in part by the
National Natural Science Foundation of China under Grant 61175062 and Grant
61370144.

References

1. Pierskalla, W.P.: The tri-substitution method for the three-dimensional assignment prob-
lem. CORS Journal 5, 71–81 (1967)

2. Pierskalla, W.P.: Letter to the Editor—The Multidimensional Assignment Problem. Opera-
tions Research 16, 422–431 (1968)

3. Frieze, A.M., Yadegar, J.: An Algorithm for Solving 3-Dimensional Assignment Problems
with Application to Scheduling a Teaching Practice. The Journal of the Operational Re-
search Society 32, 989–995 (1981)

4. Crama, Y., Kolen, A.W.J., Oerlemans, A.G., Spieksma, F.C.R.: Throughput rate optimiza-
tion in the automated assembly of printed circuit boards. Ann. Oper. Res. 26, 455–480
(1991)

5. Balas, E., Saltzman, M.J.: An Algorithm for the Three-Index Assignment Problem. Opera-
tions Research 39, 150–161 (1991)

6. Crama, Y., Spieksma, F.C.R.: Approximation algorithms for three-dimensional assignment
problems with triangle inequalities. European Journal of Operational Research 60,
273–279 (1992)

7. Burkard, R.E., Rudolf, R., Woeginger, G.J.: Three-dimensional axial assignment problems
with decomposable cost coefficients. Discrete Applied Mathematics 65, 123–139 (1996)

8. Pardalos, P.M., Pitsoulis, L.S.: Nonlinear assignment problems: Algorithms and applica-
tions. Springer (2000)

9. Voss, S.: Heuristics for Nonlinear Assignment Problems. In: Pardalos, P., Pitsoulis, L.
(eds.) Nonlinear Assignment Problems, vol. 7, pp. 175–215. Springer, US (2000)

52 H. Jiang et al.

10. Aiex, R.M., Resende, M.G.C., Pardalos, P.M., Toraldo, G.: GRASP with Path Relinking
for Three-Index Assignment. INFORMS J. on Computing 17, 224–247 (2005)

11. Huang, G., Lim, A.: A hybrid genetic algorithm for the Three-Index Assignment Problem.
European Journal of Operational Research 172, 249–257 (2006)

12. Jiang, H., Xuan, J., Zhang, X.: An approximate muscle guided global optimization algo-
rithm for the Three-Index Assignment Problem. In: IEEE Congress on Evolutionary
Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp.
2404–2410 (2008)

13. Jiang, H., Chen, Y.: An efficient algorithm for generalized minimum spanning tree prob-
lem. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 217–224. ACM, Portland (2010)

14. Cazenave, T.: Monte Carlo Beam Search. IEEE Transactions on Computational Intelli-
gence and AI in Games 4, 68–72 (2012)

15. López-Ibáñez, M., Blum, C.: Beam-ACO for the travelling salesman problem with time
windows. Computers & Operations Research 37, 1570–1583 (2010)

16. Kim, B.-J., Hightower, W.L., Hahn, P.M., Zhu, Y.-R., Sun, L.: Lower bounds for the axial
three-index assignment problem. European Journal of Operational Research 202, 654–668
(2010)

	Approximate Muscle Guided Beam Search for Three-Index Assignment Problem
	1 Introduction
	2 Muscle and Beam Search
	2.1 Muscle
	2.2 Beam Search

	3 Approximate Muscle Guided Beam Search for AP3
	3.1 AMBS for AP3
	3.2 Approximate Muscle for AP3
	3.3 Beam Search for AP3

	4 Experimental Result
	4.1 Parameter Tuning
	4.2 Balas and Saltzman Dataset
	4.3 Crama and Spieksma Dataset

	5 Conclusion
	References

