
Automated Patching for Unreproducible Builds
Zhilei Ren

Key Laboratory for Ubiquitous
Network and Service Software of
Liaoning Province; School of
Software, Dalian University of

Technology
Dalian, China

zren@dlut.edu.cn

Shiwei Sun
School of Software, Dalian University

of Technology
Dalian, China

21917046@mail.dlut.edu.cn

Jifeng Xuan
School of Computer Science, Wuhan

University
Wuhan, China

jxuan@whu.edu.cn

Xiaochen Li
University of Luxembourg

Luxembourg
School of Software, Dalian University

of Technology
Dalian, China

xiaochen.li@uni.lu

Zhide Zhou
School of Software, Dalian University

of Technology
Dalian, China

cszide@gmail.com

He Jiang∗
School of Software, Dalian University

of Technology
Dalian, China

jianghe@dlut.edu.cn

ABSTRACT

Software reproducibility plays an essential role in establishing trust
between source code and the built artifacts, by comparing com-
pilation outputs acquired from independent users. Although the
testing for unreproducible builds could be automated, fixing unre-
producible build issues poses a set of challenges within the repro-
ducible builds practice, among which we consider the localization
granularity and the historical knowledge utilization as the most
significant ones. To tackle these challenges, we propose a novel
approach RepFix that combines tracing-based fine-grained localiza-
tion with history-based patch generation mechanisms.

On the one hand, to tackle the localization granularity challenge,
we adopt system-level dynamic tracing to capture both the system
call traces and user-space function call information. By integrating
the kernel probes and user-space probes, we could determine the
location of each executed build command more accurately. On the
other hand, to tackle the historical knowledge utilization challenge,
we design a similarity based relevant patch retrieving mechanism,
and generate patches by applying the edit operations of the ex-
isting patches. With the abundant patches accumulated by the
reproducible builds practice, we could generate patches to fix the
unreproducible builds automatically.

To evaluate the usefulness of RepFix, extensive experiments are
conducted over a dataset with 116 real-world packages. Based on
RepFix, we successfully fix the unreproducible build issues for 64
packages. Moreover, we apply RepFix to the Arch Linux packages,
∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510102

and successfully fix four packages. Two patches have been accepted
by the repository, and there is one package for which the patch is
pushed and accepted by its upstream repository, so that the fixing
could be helpful for other downstream repositories.

CCS CONCEPTS

• Software and its engineering→Maintaining software; Soft-
ware testing and debugging.

KEYWORDS

reproducible builds, dynamic tracing, automated patch generation
ACM Reference Format:

Zhilei Ren, Shiwei Sun, Jifeng Xuan, Xiaochen Li, Zhide Zhou, and He
Jiang. 2022. Automated Patching for Unreproducible Builds. In 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3510003.3510102

1 INTRODUCTION

As a set of emerging software engineering practices, reproducible
builds have attracted rapidly growing interests from both academia
and industry. The motivation behind reproducible builds is to allow
any user to verify that no vulnerabilities or backdoors have been in-
troduced during the compilation process. Through validation, local-
ization, and repairing tasks, the reproducible builds aim at building
bit-for-bit identical compiled packages, to bridge the gap between
source to binary code with an independently-verifiable path[28].
For example, the well-known malware XcodeGhost, which affected
more than 4,000 packages, could be detected by independent re-
compiling applications from multiple build environments[18]. By
guaranteeing identical built artifacts are always generated from a
given source package, diverse third party users could come to a
consensus on the build result, so that inconsistent built artifacts
immediately trigger alarms for further investigation.

Within the reproducible builds practice, fixing unreproducible
build issues is an important meanwhile challenging task. Currently,

https://doi.org/10.1145/3510003.3510102
https://doi.org/10.1145/3510003.3510102
https://doi.org/10.1145/3510003.3510102


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhilei Ren et al.

various software repositories are conducting the testing, the local-
ization, and the fixing for the package reproducibility issues. For
example, industry-leading companies such as Microsoft, Google,
and Huawei have been focusing on the reproducibility property of
their software product lines[14, 26, 39]. In the open source commu-
nity, GNU/Linux distributions such as Debian, Arch Linux, and Guix
are routinely validating the reproducibility of the packages hosted
by their repositories1. As of February 2022, 92.9% of Debian’s pack-
ages (bookwarm/amd64) and 78.8% of Arch Linux’s packages are
reported to be reproducible2. Also, studies focusing on the localiza-
tion task, i.e., searching for the root causes and problematic files for
unreproducible builds, have been reported in the literature[37, 38].

While the automation of validation and localization has been de-
veloped as emerging techniques, the fixing for the unreproducible
builds is mostly manually conducted, and relies heavily on the de-
velopers’ knowledge and experience. There exist various obstacles
within the automated fixing process for the unreproducible builds,
and we list two major technical challenges as follows.
• Localization granularity challenge. Despite the promis-
ing results achieved [37, 38], the localization for unrepro-
ducible builds could only be realized at the file-level, i.e.,
developers have to manually read the source file reported
by the localization tools, in search of the specific line for
patching. Given that the Makefiles and scripts could be of
tens to hundreds of lines, such fine-grained localization task
could be time-consuming and error-prone.
• Historical knowledge utilization challenge. Currently,
the patches for fixing unreproducible build issues are mostly
manually written by the developers. Meanwhile, for software
distributions like Debian, during the reproducible builds
practices, various patches for fixing the unreproducible build
issues have been accumulated. However, how to leverage the
historical knowledge to fix new unreproducible packages
remains a great challenge.

To tackle the aforementioned challenges, we propose a novel
Reproducible build Fixing (RepFix) approach, which features the
combination of two mechanisms, i.e., the tracing-based fine-grained
localization and the history-based patch generation. On the one
hand, to face the localization granularity challenge, we incorporate
not only kernel-level system call traces, but also user-space appli-
cation traces to establish the linkage between each build command
and its specific invocation location. With the help of these runtime
traces, problematic build commands with their accurate location
could be located. On the other hand, to tackle the historical knowl-
edge utilization challenge, we propose a patch generation approach
guided by the existing patches. For unreproducible packages, we
retrieve their most relevant patches, extract the edit operations
from the retrieved patches, and apply the operations over the prob-
lematic build command obtained from the fine-grained localization.
With the patched source files, we are able to validate the correctness
of the overall approach.

To evaluate RepFix, we take the real-world packages from De-
bian as a case study, to examine whether RepFix is able to gen-
erate valid patches that fix unreproducible build issues. Over the

1https://reproducible-builds.org/projects/
2https://reproducible-builds.org/citests/

116 packages, RepFix is able to successfully fix all the unrepro-
ducible build issues over 33 packages, and partially fix the issues
over another 31 packages. Moreover, to examine the generalization
of RepFix, we apply RepFix over the Arch Linux packages, and
successfully fix the unreproducible build issues for four packages,
of which two patches have been accepted. In particular, there is
one package for which the patch is pushed and accepted by its
upstream repository. We make the details of the patches available
at https://rezilla.bitbucket.io/repfix.

The contributions of this study could be summarized as follows:
• To the best of our knowledge, we are the first to generate
patches for unreproducible builds in an automated paradigm.
• We propose a tracing-based approach that unifies traces from
kernel and user-space to realize fine-grained localization, and
design a history-based patch generation.
• We conduct extensive experiments over the dataset collected
from a set of real-world unreproducible packages, to demon-
strate the effectiveness of RepFix.We also submit four patches
constructed by RepFix to the Arch Linux bug tracking sys-
tem, among which two have been accepted by the maintain-
ers.

The remainder of this paper is organized as follows. In Section 2,
we introduce the background information with a motivating exam-
ple. In Section 3, we discuss the details of the RepFix approach. In
Section 4, extensive experiments are conducted to evaluate RepFix
from various perspectives. Sections 5 – 6 present the discussion, as
well as the related work of this study. Finally, Section 7 concludes
this study, and points out the future research directions.

2 MOTIVATING EXAMPLE

In this section, we introduce the background information with a
motivating example. Take the mylvmbackup package, a MySQL
backup utility (with version 0.15-1) from the Debian repository as
an example[9], we first describe the reproducibility validation work-
flow. The validation process is carried out by building the source
files under controlled, varied build configurations. The altered con-
figurations include build date, timezone information, locale, file
system traversing order, etc3.

If the built artifacts under the two build configurations are bit-
for-bit identical, the package is reported as reproducible. Otherwise,
if there exists any inconsistent artifact between the two builds, the
package is indicated as unreproducible, and we shall continue to
analyze the root cause for the unreproducible build issue, conduct
the localization task, and fix the problematic build commands. With
the reproducibility validation tool chain reprotest4, mylvmbackup
is reported as unreproducible. In Fig. 1, we present the diff log for
the package, which is generated by the in-depth comparison utility
diffoscope5. It is shown that there exists an inconsistent artifact
/usr/bin/mylvmbackup, in which a timestamp is embedded in the
generated file. Consequently, when the package is built at different
time, inconsistent packages will be compiled.

To fix unreproducible build issues, localization has to be first con-
ducted. Currently there exist automatic approaches such as RepLoc

3https://reproducible-builds.org/docs/perimeter/
4https://pypi.org/project/reprotest/
5https://diffoscope.org

https://reproducible-builds.org/projects/
https://reproducible-builds.org/citests/
https://rezilla.bitbucket.io/repfix
https://reproducible-builds.org/docs/perimeter/
https://pypi.org/project/reprotest/
https://diffoscope.org


Automated Patching for Unreproducible Builds ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

"source1": "./usr/bin/mylvmbackup",
"source2": "./usr/bin/mylvmbackup",
unified_diff": "@@ -31,15 +31,15 @@
use Fcntl;

use diagnostics;
use strict;

# Version is set from the Makefile
my $version='0.15';
-my $build_date='2021-08-17';
+my $build_date='2022-09-04';
...

Figure 1: Diff log for mylvmbackup

38 # define some variables
39
40 NAME = mylvmbackup
41 VERSION = 0.15
42 BUILDDATE = $(shell date +%Y-%m-%d)
43 MAN1 = man/$(NAME).1
44 HOOKS := $(wildcard hooks/*.pm)
45 DISTFILES = \
46 ChangeLog \
47 COPYING \
48 CREDITS \
...

Figure 2: Snippet of the /Makefile file formylvmbackup

[37] and RepTrace [38], which aim at retrieving the problematic
files that cause the unreproducible build issues. For the two tools,
RepLoc follows the information retrieval based fault localization
studies[29, 44], and realizes the localization functionality based
on text similarity between inconsistent artifacts and build logs, to
search for the most relevant build scripts to the inconsistent arti-
facts. Meanwhile, besides file-level localization, RepTrace is able
to represent the root cause as the problematic build command and
its process ID (pid). For both the approaches, the /Makefile could
be located. However, the file has to be further manually traversed,
to identify the 42th line that should be patched (see Fig. 2). After
that, the line of the problematic build command should be patched,
by modifying the command, in the hope of fixing the issue.

Ideally, if we could obtain the mapping between each executed
command and its location where the command is invoked, it will
be helpful for fixing the issue. However, obtaining such mapping
relationship is not straightforward. A possible way is to instrument
the Bash interpreter, adding logging statements in the source code.
However, such intrusive approach is hard to generalize to other
applications. Alternatively, another possible way is to leverage the
power of dynamic tracing frameworks such as SystemTap6 and bpf-
trace7. These frameworks allow developers to deeply investigate
the behavior of the kernel and user-space applications, in order to
debugging errors[16, 25], performance issues[19], or understand
system working mechanisms[31]. The main focus of these tools is
to make it easy to capture and manipulate the required data without
modifying the kernel/application source code, which is often re-
quired for instrumentation-based studies[15, 27]. Both SystemTap
6https://sourceware.org/systemtap/
7https://github.com/iovisor/bpftrace

and bpftrace are command line applications that utilize scripts as
input and generates plain text output. The expressiveness of the
domain-specific tracing languages makes it possible to generalize
to other applications. Based on the connection between the traces
from user-space and kernel-space, we could extend the causality
analysis to achieve fine-grained localization.

Besides, since our goal is to generate feasible patches, we in-
tend to design an extensible approach to automate such process.
Currently, the patches are manually constructed, based on the de-
velopers’ experience. Meanwhile, during the reproducible builds
practice, software repositories like Debian have accumulated thou-
sands of patches for fixing unreproducible build issues. Hence, an
automated approach based on the historically fixed patches would
be ideal. However, the cumulated knowledge may not be directly
transferable to new unreproducible packages. For example, to guide
the patch generation, we have to take the grammar of the build
scripts into consideration.

3 PROPOSED APPROACH

In this section, we discuss the design and implementation of the
RepFix framework. In Fig. 3, we first illustrate the components of
the proposed framework. In RepFix, there are two major compo-
nents, i.e., tracing-based fine-grained localization and history-based
patch generation, which aim to tackle the localization granular-
ity challenge and the historical knowledge utilization challenge,
respectively.

Figure 3: The RepFix framework

More specifically, in the fine-grained localization component, we
first invoke the build process under the supervision of the tracing
monitor (step 1). The tracing script defines a set of probes, which
could be attached to both the kernel (kprobes) and user-space ap-
plications (uprobes). With these probes, runtime traces such as the

https://sourceware.org/systemtap/
https://github.com/iovisor/bpftrace


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhilei Ren et al.

parameters, return value, and global/local variables of system calls
and user-space functions could be collected during the build pro-
cess. After the build completes, the localization process is launched,
with the traces, the source files, and the built artifacts as the input
(step 2).

After the localization, history-based patch generation is con-
ducted. We extract the command to patch from the localization
result (step 3), and get the most relevant patches from Debian’s bug
tracking system (step 4). Under the guidance of the retrieved patch,
the command is modified (step 5), and further used to generate the
candidate patch (step 6). With the generated patch, reproducibility
validation should be applied over the patched source files, to evalu-
ate the patch (step 7). Finally, if the validation succeeds, the patch
is returned for deeper investigation.

In the subsequent subsections, we shall discuss the two compo-
nents in more details.

3.1 Tracing-Based Fine-Grained Localization

In the tracing-based localization component, we build the source
files twice to obtain the built artifacts. In particular, to gain deep
observability of the build process, a trace monitor is employed to
capture both the system call information and the user-space process
runtime information. In this study, we adopt SystemTap to realize
the tracing functionality, due to its expressiveness and efficiency.
An advantage of using SystemTap in our approach lies in its ability
to capture both kernel-space and user-space traces. Hence, after
the build process, we could not only capture what build commands
have been executed as in the existing studies [36, 38], but also where
these commands are invoked.

On the one hand, for the system call traces, kprobes are defined in
the script, which are translated and compiled into kernel modules.
On the other hand, with the help of DWARF (Debugging With
Attributed Record Formats)8 debug information, uprobes could
also be defined. In this study, we consider the user-space runtime
traces of two types of build scripts, i.e., Bash and Make from the
GNU project. The reasons we consider these two types of scripts
are as follows. First, both Bash and Make are among the most
popular build tools, which are widely used in the open source
community [21, 35]. Second, both the tools are highly dynamic. For
instance, according to the maintainer of GNU Make, there is no
official grammar for Make, since Makefiles could be highly context-
dependant [40]. Hence, it is difficult to implement static analysis
for these build tools, especially for those scenarios where multiple
build tools are involved. As a result, it is reasonable to take Bash
and Make as the case study, to investigate the feasibility of realizing
localization at line-level.

For Bash, the runtime traces could be obtained by probing the
make_child user-space function. Each time a command in a Bash
script is invoked, the make_child function will be called, and the
return value of the function indicates the pid of the executed com-
mand. Moreover, the source file and line number of the command
could be extracted from global variables shell_script_filename
and currently_executing_command. By attaching probes to the
make_child function of the Bash executable, we are able to bridge

8http://www.dwarfstd.org

Algorithm 1: Tracing-based Fine-grained Localization
Input: Source files 𝑠𝑟𝑐 , Build configuration 𝑐𝑜𝑛𝑓
Output: Localization result 𝑟𝑒𝑠

1 begin

2 for i ∈ {1, 2} do
3 𝑘𝑡𝑟𝑎𝑐𝑒𝑖 , 𝑢𝑡𝑟𝑎𝑐𝑒𝑖 ← build(𝑠𝑟𝑐 , 𝑐𝑜𝑛𝑓𝑖 )
4 end

5 𝑝𝑖𝑑_𝑙𝑖𝑠𝑡 ← RepTrace (𝑘𝑡𝑟𝑎𝑐𝑒)
6 𝑙𝑚𝑎𝑝 ← location-map(𝑢𝑡𝑟𝑎𝑐𝑒)
7 𝑟𝑒𝑠 ← 𝑙𝑖𝑠𝑡 ()
8 for 𝑝𝑖𝑑 ∈ 𝑝𝑖𝑑_𝑙𝑖𝑠𝑡 do
9 𝑟𝑒𝑠 ← append(𝑟𝑒𝑠 , 𝑙𝑚𝑎𝑝 [𝑝𝑖𝑑 ])

10 end

11 return 𝑟𝑒𝑠

12 end

the gap between the pid of each command and its correspond-
ing location. Similarly, for Make, the runtime traces could be ex-
tracted from two user-space functions, i.e., start_waiting_job
and job_next_command. For both functions, the parameter refers to
an instance of struct child, which encapsulates the fields such as
filenm and lineno. Besides, we also attach probes to the function
lookup_variable, to capture the locations of variable definitions
in Makefiles. With such information, we are able to complete the lo-
calization task, by establish linkages between the pid obtained from
RepTrace and the line-level location for patch. It is interesting that
being a byproduct in RepTrace, the pid plays an essential role in
connecting the high-level localization based on system call tracing
and the low-level, fine-grained localization based on user-space
function call tracing.

In Algo. 1, we present the pseudo code of the tracing-based fine-
grained localization. The localization is based on the system-call
based localization as in RepTrace. First, we build the source files
twice with varied configurations (lines 1–4). Meanwhile, we apply
SystemTap to capture the traces from kernel and the build tools
(Bash and Make), which are indicated as the 𝑘𝑡𝑟𝑎𝑐𝑒 and the 𝑢𝑡𝑟𝑎𝑐𝑒 .
On the one hand, with 𝑘𝑡𝑟𝑎𝑐𝑒 , we are able to apply RepTrace to
locate the problematic build command, with their corresponding
pid (line 5). On the other hand, based on 𝑢𝑡𝑟𝑎𝑐𝑒 , we could construct
a key-value structure 𝑙𝑚𝑎𝑝 (line 6), with which we are able to query
the location with the pid of the build command. Hence, we could
transfer the results of RepTrace into the location for patching
(lines 7–10).
Running Example: Consider the mylvmbackup package intro-
duced in Section 2, Fig. 4 illustrates the overall workflow of the
localization procedure. First, the kprobes and uprobes are attached
to the kernel and the build tools, i.e., Bash and Make, respectively
(step 1). Then, when the build process starts, 𝑢𝑡𝑟𝑎𝑐𝑒 and 𝑘𝑡𝑟𝑎𝑐𝑒

traces are collected (step 2). From 𝑢𝑡𝑟𝑎𝑐𝑒 , we could construct the
location mapping (step 3). Meanwhile, based on 𝑘𝑡𝑟𝑎𝑐𝑒 , we could
conduct the system call tracing based localization as in RepTrace.

To make the discussion self-contained, we briefly explain how
the localization works as in RepTrace. RepTrace relies on the
dependency graph, which is constructed by applying differential
analysis over the system call traces between the two rounds of
build (step 4). For example, the dependency 209174→ 209175 is

http://www.dwarfstd.org


Automated Patching for Unreproducible Builds ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 4: Illustration for the Tracing-based Fine-grained Lo-

calization Component

established in that the process with pid 209175 (the date command)
writes different content (see the last line of 𝑘𝑡𝑟𝑎𝑐𝑒) between builds,
and the content is written through a pipe (pipe:[1059276]) to
the process with pid 209174 (the make build command). The other
dependencies could be detected in a similar way. After traversing
all the related traces, we could obtain the dependency graph. From
the dependency graph, we could observe that the root cause for the
unreproducible build is the date command, which is propagated to
the inconsistent artifact via the sed, sh, and install commands.
Furthermore, with the location mapping, we could decide the prob-
lematic date command is invoked at line 42 of the /Makefile (step
5).

3.2 History-Based Patch Generation

After the fine-grained localization, we proceed to generate the
patch to solve the unreproducible build issues. The essential idea
of the patch generation process is to utilize the existing patches
accumulated by the software repositories. For example, after 8 years

Algorithm 2: PatchGen
Input: Source files src, Localization result res, Build configuration

conf, Number of evaluations k
Output: Patch patch

1 begin

2 patches← Load-Patches()
3 templates← ∅
4 for each p ∈ patches do
5 t← Initialize-Template(p)
6 templates← templates ∪{𝑡 }
7 end

8 for location ∈ res do
9 cmd ← Extract-Command(location, src)

10 𝑡𝑚𝑎𝑥 ← argmax
𝑡∈templates

(Similarity(𝑡, cmd))

11 operations← Edit-Distance(𝑡𝑚𝑎𝑥 )
12 patched-cmd ← Apply-Operation(cmd, operations)
13 patch← Diff(cmd, patched-cmd, src)
14 status← Evaluate(patch, src, conf )
15 if status = reproducible then
16 return patch
17 end

18 k← k −1
19 if k ≤ 0 then
20 return empty-patch
21 end

22 end

23 end

-DATETIME := $(shell date +%Y-%m-%d)
+DATETIME := $(shell date -u -d '@${SOURCE_DATE_EPOCH}' +%Y-%m-%d)

Figure 5: Snippet of template formylvmbackup

of the reproducible builds practices lead by Debian, there exists
thousands of patches for solving the unreproducible build issues[8].

Given an unreproducible package, we intend to retrieve the most
relevant patches, and examine the possibility of transplanting the
patch to solve the unreproducible build issue. More specifically,
the patch generation process is described in Algo. 2. The algorithm
takes the source files, the localization result, the build configuration,
and the maximum number of evaluations as inputs, and generate
patches that are potentially able to solve the unreproducible build
issues of the package. First, we load the patches, which are obtained
from Debian’s bug tracking system (lines 1–3). For each patch, we
extract the commands, and instantiate a template (lines 4–7). Each
template consists of a command pair, i.e., the source and destination
commands, that describe the modification to the source command.

After that, we initiate the patch generation process (lines 8–
22). For each location reported by the localization component, we
extract the command to be patched from the source files. Then, we
could retrieve the most relevant template 𝑡𝑚𝑎𝑥 , with respect to the
text similarity between the command to patch and the templates’
text. In this study, we consider the n-gram based Cosine similarity



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhilei Ren et al.

Figure 6: Illustration for command patching

--- mylvmbackup-0.15.orig/Makefile
+++ mylvmbackup-0.15/Makefile
@@ -39,7 +39,7 @@

NAME = mylvmbackup
VERSION = 0.15
-BUILDDATE = $(shell date +%Y-%m-%d)
+BUILDDATE = $(shell date -u -d '@${SOURCE_DATE_EPOCH}' +%Y-%m-%d)
MAN1 = man/$(NAME).1
HOOKS := $(wildcard hooks/*.pm)
DISTFILES = \

Figure 7: Patch formylvmbackup

between command texts9. With the retrieved template, we tokenize
the extracted commands, calculate the edit operations between
the source and the destination commands of 𝑡𝑚𝑎𝑥 , and apply the
operations to generate the patch10 (lines 12–13). In this study, we
tokenize the extracted commands with respect to the grammar of
Make and Bash, based on the following two considerations. On the
one hand, we do not directly treat the patches as plain text, in that
text based edit operations may not be precise enough. On the other
hand, due to the inherent complexity of the grammars for Bash and
Make, it is very challenging to parse the patches properly [40].

To validate the generated patch, we evaluate the patch by build-
ing the patched source files twice with the configurations, and
calculating the checksums of the built artifacts (lines 14–17). If the
build is reproducible, the generated patch is returned. Otherwise,
the iteration continues with other locations for patching, until the
maximum number of evaluations is reached. In this study, RepFix
adopts two criteria to determine if the reproducibility of the patched
source files: (1) no artifacts are missing (e.g., caused by incorrect
build command), and (2) bit-for-bit identical artifacts are generated
between the two rounds of build during validation. Besides, we
should note that, during the experiments, manual check for the
patches are required, in that plausible patches might be generated,
e.g., patches with malformed build commands that fail to compile,
but with bit-for-bit identical artifacts obtained.
Running Example: Consider the mylvmbackup package we in-
troduce in Section 2 again, we first illustrate the relevant patch
for the package, as shown in Fig. 5. Then, we tokenize the patch,
to obtain the edit operations between the source and the desti-
nation command in the patch, i.e., from the date command to
SOURCE_DATE_EPOCH [11]. According to the reproducibility valida-
tion tool chain, when building packages, the build time is assigned

9https://pypi.org/project/strsimpy. In our preliminary experiments, we observe that
RepFix is not sensitive to the choice of similarity.
10https://pypi.org/project/python-Levenshtein/

-BUILDDATE = $(shell date +%Y-%m-%d)
+BUILDDATE = $(shell date +%u -Y-%m-%d)

Figure 8: Snippet of a plausible patch formylvmbackup

to an environment variable $SOURCE_DATE_EPOCH, which could be
exported when validating the subsequent builds. Hence, replacing
the date command to $SOURCE_DATE_EPOCH could keep the out-
put identical, once the environment variable is set with the same
value. Besides, “-u” indicates Coordinated Universal Time, which
suppresses the influence of timezone. By applying the patch shown
in Fig. 6, the mylvmbackup package could be reproducibly built. As
a comparison, Fig. 8 presents an example of a plausible patch, in
which the patched command (date +%u -Y-%m-%d) is malformed.
Under such circumstance, date +%u -Y-%m-%d generates empty
output, and identical artifact /usr/bin/mylvmbackup is obtained
with unexpected content, due to the incorrect patch.

4 EXPERIMENTS

To evaluate the proposed RepFix framework from various perspec-
tives, extensive experiments are conducted. More specifically, we
consider the following four research questions (RQs):

• RQ1: Is RepFix effective in fixing unreproducible builds for
real-world packages?
• RQ2: How effectively can the tracing-based fine-grained
localization and the history-based patch generation mecha-
nisms improve the overall solution quality?
• RQ3: How efficient is each component of RepFix?
• RQ4: Is RepFix able to be applied to other unreproducible
build packages that have not been previously fixed?

Among these RQs, RQ1 evaluates RepFix’s ability to accurately
generate valid patches, to resolve the unreproducible build issues.
RQ2 concentrates on the contribution of each component of RepFix.
By comparing each component with its variant, we could gain more
insights into the reason why RepFix works. RQ3 investigates the
overhead caused by each component of RepFix. Finally, RQ4 focuses
on the generalization of RepFix.

RepFix is implemented in Python 3.9. In particular, the local-
ization component is realized following RepTrace in Java 1.8, in
which the tracing tool is switched from strace to SystemTap. For
the patch generation component, the build command processing
is based on bashlex11, and the parameter 𝑘 is set with 20. All the
experiments are conducted on an Intel NUC (i7-8809G@3.10GHz
CPU, 32GB RAM), running Debian (bullseye/amd64).

For the real-world unreproducible packages, we consider the
dataset as in RepTrace [38]. There are initially 180 packages in
the dataset. However, due to the upgrade of the build tool chain, 7
packages could be reproducibly built, and 57 packages could not
be built due to broken dependencies. As a result, the dataset in our
experiments contains 116 packages that cannot be reproducibly
built. Besides, the patches are obtained from Debian’s bug tracking

11https://pypi.org/project/bashlex/

https://pypi.org/project/strsimpy
https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/bashlex/


Automated Patching for Unreproducible Builds ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

system12. After filtering out the patches not recognized by bashlex,
we obtain 1,658 templates13.

4.1 Investigation of RQ1

(a) Number of files (b) Number of lines

Figure 9: Statistics of the packages in this study

In Fig. 9(a), we illustrate the statistics of the packages. From the
figure, we could observe that, the number of files for the packages
we fix ranges from less than 100 to over 2,000, with an average
number of 139.47. The large number of files poses great challenges
for the localization task. Furthermore, we have to identify the line
of build command, after the file has been successfully located. In
Fig. 9(b), we present the boxplot depicting the distribution of the
number of lines for the files to be patched. We could observe that for
the majority of the packages, the number of lines ranges within [50,
250]. Moreover, in Fig. 10, we present the proportions of the reasons
for the unreproducible build issues. From the figure, we could ob-
serve that the majority of the unreproducible packages are caused
by timestamp-related issues, e.g., the timestamp in compressed files
and the embedded output of the date command. This phenomenon
conforms with the observation as in the existing literature[28].

Over the 116 packages, RepFix is able to construct valid patches
for the 64 packages, i.e., RepFix is able to fix at least one unre-
producible issue over these packages. Note that there might be
multiple inconsistent artifacts in a single unreproducible package.
Hence, we indicate those packages for which part of but not all
issues are fixed as partial fixes. In this study, there are 33 packages
that are fully reproducible after applying RepFix. Among these
64 fixable or partially fixable packages, 62 of the fixed packages
belong to the timestamps category (41 for compressed-file, and 21
for embedded-date). There are also two packages for which the
unreproducible build issues are caused by file ordering. The reason
is that, in the history-based patch generation, we could not gen-
erate valid patches if there are not similar patches with the same
root causes. Besides, there are no packages from the randomness
category, in that the root causes for these packages mostly lie in
Python or Perl scripts, e.g., non-deterministic hash table traversal,
which could not be handled by RepFix.

For the successful fixes, we are further interested in the impact
of number of templates used by RepFix. As discussed in Section 3,
12https://tests.reproducible-builds.org/debian/index_bugs.html
13Note that since both the dataset and the patches are from Debian, during the patch
generation for each package, we avoid using its corresponding template.

Figure 10: Reasons of unreproducible builds in the dataset

Figure 11: Impact of the maximum evaluation number

during the patch generation procedure, for each localization result,
we consider the most relevant existing patches as the templates. In
Fig. 11, we present the trend of successful patches as the maximum
number of evaluations for each package increases. From the figure,
we could observe that, RepFix is not very sensitive to the maxi-
mum number of evaluations. Even if when only single template
is considered for each package, RepFix is able to fix at least one
unreproducible build issue over 57 packages.
Answer to RQ1: In this RQ, we investigate the effectiveness of
RepFix, over a set of 116 real-world packages. For 64 of the packages,
RepFix is able to at least fix one issue that is responsible for the
unreproducible builds. In particular, RepFix successfully makes 33
packages reproducible.

4.2 Investigation of RQ2

To gain more insights into why RepFix works, in this RQ, we inves-
tigate each component of RepFix with its variant. More specifically,
two comparative approaches are considered.

First, to examine the effectiveness of the tracing-based fine-
grained localization, we consider the text-similarity-based localiza-
tion as the baseline (indicated as Loc(text)).

The comparative line-level localization is intuitively realized
as follows. After obtaining the problematic build command and
the located file to patch with RepTrace, we extract all the lines
from each problematic file, and calculate its cosine-similarity (same
metric as in Section 3.2) with the problematic build command. Then,
the most similar line is returned as the localization result.

To evaluate the effectiveness of RepFix’s localization compo-
nent, we measure the accuracy rate, precision, recall, and Mean

https://tests.reproducible-builds.org/debian/index_bugs.html


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhilei Ren et al.

Figure 12: Comparison for the trend of accuracy rate

Reciprocal Rank (MRR) in identifying the location for patching for
unreproducible builds. The metrics are computed by examining the
ranked line-level location for patching returned by the baseline.
The Top-𝑁 locations in the ranked result list are called the retrieved
list, and are compared with the relevance list to compute the accu-
racy rate, the precision, and the recall, respectively (indicated as
A@N, P@N, and R@N, respectively). In particular, A@N measures
the percentage of packages for which the Top-𝑁 list provides at
least one correct location for patching [43]. Finally, MRR is also
considered as an aggregate metric to evaluate the retrieved result
list[17], which is calculated as:

𝑀𝑅𝑅 =
1
|𝑃 |

|𝑃 |∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

, (1)

where |𝑃 | indicates the number of packages in the dataset, and
𝑟𝑎𝑛𝑘𝑖 refers to the rank position of the first correct location for
patching for the 𝑖th package.

In Tab. 1, we present the comparison between the localization
component of RepFix and the baseline approach. In the table, we
consider the precision, the recall, the accuracy rate for the Top-1,
Top-5, and Top-10 results, as well as the MRR metric. From the
table, it is obvious that the tracing-based localization outperforms
the baseline approach Loc(text) significantly. Over 76 out of the 116
packages, the location reported by RepFix is correct, considering
only the Top-1 results. When we further consider the Top-10 results,
RepFix successfully locates at least one correct location for patching
over 85 packages. To depict the comparison more intuitively, in
Figs. 12–14, we illustrate the trends of accuracy rate, precision,
and recall, for the comparative localization, which is based on text
similarity. From the figures, we could observe that, the results of
the baseline localization approach Loc(text) is not satisfying. The
recall remains the same for retrieved lists with length larger than
6. Even if we consider the Top-10 result, the recall value remains
below 0.4, implying that we could not hit the real location to patch
over all the packages with the baseline approach. These phenomena
confirm the necessity of applying the tracing-based localization.

Second, to examine the history-based patch generation com-
ponent, we are interested in whether the token-based command
patching is more effective than the baseline in which text-based
patching. To achieve this, the baseline adopts the tracing-based

Figure 13: Comparison for the trend of precision

Figure 14: Comparison for the trend of recall

fine-grained localization, and replace the patch generation com-
ponent with text-based modification (indicated as RepFix(text)).
More specifically, during patch generation, the patches are treated
as text, without taking the grammar of Bash and Makefile into con-
sideration. Given a new unreproducible package, we first sort all
the patches according to the tree edit distance between the source
command and the command to patch. For the top ranked patch,
we generate a sequence of edit operations with the popular Lev-
enshtein edit distance [13, 22], and try applying the operations to
the command to patch. Thereafter, we apply the modifications, gen-
erate the patch, and validate the patched source files as in RepFix.
If the validation succeeds, the patch is returned. Over the dataset,
RepFix(text) generates valid patches for 54 packages, which to
some extent demonstrates the importance of the token-based patch
generation. Similar with RQ1, we also present the impact of the
maximum number of evaluations for RepFix(text) in Fig. 15. From
the figure, we could observe that RepFix(text) is not as effective as
RepFix, especially if the maximum number of evaluates is limited.
Answer to RQ2: In this RQ, we focus on why RepFix works. By
comparing the localization of RepFix with Loc(text), we confirm
the effectiveness of the fine-grained localization. Also, RepFix is
able to fix unreproducible issues over 10 more packages than Rep-
Fix(text), which demonstrates the usefulness of the token-based
patch generation.



Automated Patching for Unreproducible Builds ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Results of RepFix and Loc(text) for the line-level localization task

Approach A@1 A@5 A@10 P@1 P@5 P@10 R@1 R@5 R@10 MRR
RepFix 0.6552 0.7241 0.7328 0.6552 0.2310 0.1198 0.3844 0.5504 0.5691 0.6816
Loc(text) 0.3017 0.4310 0.4397 0.3017 0.1259 0.0655 0.1480 0.3020 0.3114 0.3528

Figure 15: Impact of the maximum evaluation number for

RepFix(text)

4.3 Investigation of RQ3

In this RQ, we investigate the efficiency of RepFix. As mentioned in
Section 3, RepFix leverages SystemTap to realize the runtime trace
collection, which introduces non-negligible time cost during the
build process. Hence, we shall empirically investigate the impact
of the tracing on the build performance. Also, we are interested in
the time elapsed for each main steps of RepFix.

Fig. 16 illustrates the distribution of each component’s time
elapsed over the dataset. In the figure, each boxplot corresponds to
one or more step in Fig. 3, i.e., the boxplots indicate the traced build
(step 1), the localization (step 2), the patching (steps 3–6, in that
these steps are closely related), and the validation (step 7). Besides,
we also present the distribution of the build time without tracing,
to analyze the impact of system call tracing. From the figure, we
observe that the validation is the most time-consuming step, with
an average value of 364.40 seconds. This observation is as expected,
since in the iterative fixing paradigm, validation has to be conducted
for each generated patch. Meanwhile, the other steps tend not to
be very time-consuming. Interestingly, when we compare the build
time with/without tracing, we observe that the average time under
the two circumstances is 18.47 and 9.17 seconds, respectively. Such
phenomenon implies that the tracing time cost is not negligible,
but is acceptable in most cases.
Answer to RQ3: By comparing the time distribution of each main
step of RepFix, we identify that the patch validation is the most
time-consuming step. Also, we confirm that the overhead of the
tracing for both the kernel and the user-space applications is non-
negligible. However, with the promising fine-grained localization
ability, we think the time cost is in general acceptable.

4.4 Investigation of RQ4

Finally, in RQ4, we are interested in applying RepFix over new
unreproducible packages. As a case study, we test RepFix over
real-world Arch Linux packages. The reason for the choice of the
repository is that the Arch Linux community is actively conducting

Figure 16: Time consumed by components of RepFix

the reproducible builds validation and fixing practice. Also, Arch
Linux is a rapidly evolving GNU/Linux distribution, where we could
receive efficient feedback from the developers and maintainers.

The package fixing procedure is carried out as follows. First, the
package status is obtained from the status page of Arch Linux’s
continuous integration testing system14. Then, we download the
source packages for the packages that are unreproducible with Arch
Linux’s build source management tool asp15. After that, we filter
out the packages that use build systems other than Bash and Make,
since currently RepFix does not handle build systems like Cargo
and Bazel.

In total, there are four packages for which RepFix is able to
resolve the unreproducible issues. We submitted the patches in the
form of bug reports to Arch Linux’s bug tracking system [3–6]. All
the bug reports have been assigned, and two of the patches have
been accepted.

--- when-1.1.40.orig/Makefile
+++ when-1.1.40/Makefile
@@ -49,7 +49,7 @@ install: when.1

install -m 755 temp $(DESTDIR)$(bindir)/when
# ... 755=u:rwx,go:rx
rm temp

- gzip -9 <when.1 >when.1.gz
+ gzip -9n <when.1 >when.1.gz

- test -d $(DESTDIR)$(MANDIR) || mkdir -p $(DESTDIR)$(MANDIR)
install -m 644 when.1.gz $(DESTDIR)$(MANDIR)
rm -f when.1.gz

Figure 17: Patch for when

In particular, within the packages for which RepFix successfully
generated patches, the package when16 was an interesting case.
The package (with version 1.1.40-2) was unreproducible due to the
misuse of gzip argument, i.e., gzip by default keeps its timestamp in

14https://tests.reproducible-builds.org/archlinux/state_FTBR.html.
15https://github.com/archlinux/asp
16https://archlinux.org/packages/community/any/when/

https://tests.reproducible-builds.org/archlinux/state_FTBR.html
https://github.com/archlinux/asp
https://archlinux.org/packages/community/any/when/


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhilei Ren et al.

the compressed file, unless the -n argument is used [7]. After vali-
dating the patch shown in Fig. 17 locally, we submitted the patch
with a bug report [3]. However, the patch was not immediately
accepted. Instead, the maintainer suggested reporting the patch
upstream. The reason, as stated by the documentation17, was that
fixing the issue upstream might help other downstream reposito-
ries as well. Following the suggestion, we opened an issue at the
package’s repository at GitHub18. Also, we explained to the author
why the patch should be applied. Finally, the patch was accepted,
which was then pushed to Arch Linux’s repository later, and the
bug report was closed.
Answer to RQ4: RepFix is able to effectively solve unreproducible
build issues for real-world packages. Four patches are submitted to
the Arch Linux repository, and two patches have been accepted.

5 DISCUSSION

5.1 Extensibility of RepFix

RepFix could be potentially extended from two aspects.
First, in this study, we demonstrate the flexibility of RepFix with

two types of build scripts, i.e., Bash and Make. To support more
types of build systems, the user-space tracing is necessary. In most
build systems, it is common that build tools are responsible for
maintaining the relationship between build command, location
information, as well as build processes when invoked. Hence, it
would be feasible to design SystemTap probes to capture such data
structures, to construct the location mapping for RepFix. Once such
connection is established, the corresponding build system could be
supported. Furthermore, for other operating systems, such as BSD
distributions andWindows, there also exist system-levelmonitoring
facilities such as DTrace [2] and Event Tracing for Windows (ETW)
[1], with which fine-grained localization could be realized.

Second, in this study, we rely on the existing patches to construct
new patches for new unreproducible build issues. A more effective
way might be summarizing a set of template-based formal rules, to
guide the generation of patches. In such paradigm, we might be able
to improve the generalization of RepFix over new repositories, since
with summarized rules, we are able to take more domain-specific
knowledge into consideration.

5.2 Threats to Validity

In our evaluation, there are two major threats to the validity.
First, during the patch generation component, after a candidate

patch is generated, the validation step is conducted, to evaluate
whether the patch is valid. It is possible that the patched source files
could be reproducibly built, yet the functionality is not the same as
in the original version[32]. For example, if the patched command
fails to be compiled, and generates nothing, the built package might
be reproducible, but the patch is not acceptable. To mitigate this
threat, we introduce a constraint in patch validation, checking the
existence of all the built artifacts. Moreover, we manually check
the patches that pass the validation.

Second, another threat arises within the dynamic tracing frame-
work. In this study, we employ SystemTap to collect traces from

17https://wiki.archlinux.org/index.php/Bug_reporting_guidelines
18https://github.com/bcrowell/when/issues/22

both kernel and user-space applications. At heavy workload, Sys-
temTap may skip certain probes, so that the traces might be incom-
plete. To avoid such circumference, we make sure that no multiple
builds are executed simultaneously. Also, sufficient buffer is as-
signed to SystemTap. In our experiment, no missing probes are
discovered. A possible approach to preventing this issue is to im-
plement the dynamic tracing tool from scratch based on the ptrace
system call [10] as in strace [12] and DetTrace [36].

6 RELATEDWORK

There are two topics that are closely related to this study, i.e., the
work related to reproducible builds, and the work related to build
script analysis and repair.

6.1 Reproducible Builds

Software reproducibility is an emerging research topic, that has
attracted great interests. Lamb and Zacchiroli[28] from the De-
bian community make a systemic review of the current state of
the reproducible builds. As of the fixing of unreproducible builds,
currently the existing studies focus on the localization task. In
2018, Ren et al. [37] propose the initial work RepLoc that focuses
on the automated localization for unreproducible builds. In their
study, the localization for unreproducible builds is modeled as an
information retrieval task, and a hybrid framework that combines
heuristic filtering and query expansion is developed, in search of
the problematic files that cause the build to be unreproducible. In
2019, a system-call-tracing-based approach RepTrace is proposed
[38], which features the ability of root cause analysis for unrepro-
ducible builds. With the dependency graph constructed based on
the system call traces, deeper insights could be gained into why
builds are unreproducible.

Besides, there also exist studies that intend to guarantee the
software build process to be reproducible. Navarro Leija et al. [36]
propose the framework DetTrace, a reproducible container ab-
straction for Linux implemented in user space. With DetTrace, the
reproducibility of software build could be ensured by intercepting
all the system calls that may introduce non-determinism. Similarly,
He et al. [24] develop ConstBin, which tries to fix unreproducible
issues during the build process, by capturing and replacing argu-
ments of the execve system calls for suspicious build commands.

For these studies related to reproducible builds, RepLoc and
RepTrace concentrate on the localization task, but are not able to
realize the fixing functionality. Meanwhile, DetTrace and Con-
stBin intend to fix unreproducible issues on-the-fly during the
build process. Despite the promising achievements, the software
reproducibility property could not be realized without the tools,
i.e., the build process has to be conducted under the supervision of
DetTrace or ConstBin. Unlike these approaches, RepFix is able to
generate patches for the packages. Once fixed, no more containers
or tools are required for future builds. Also, the generated patches in
upstream repositories could benefit their downstream repositories.

6.2 Build Script Analysis and Repair

Due to the inherent complexity of build systems, many software
packages suffer from build failures, and great effort has to be made
to fix build scripts. In recent years, there have been a series of

https://wiki.archlinux.org/index.php/Bug_reporting_guidelines
https://github.com/bcrowell/when/issues/22


Automated Patching for Unreproducible Builds ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

studies on the analysis and the repairing of the build scripts. On the
one hand, to effectively analyze build scripts, various techniques
have been applied. For example, SyMake [42] apply static analysis
such as symbolic evaluation to help developers better understand
build scripts. Gazzillo [20] proposes Kmax, to find all configurations
of Linux kernel’s kbuild Makefiles. Besides, there are also dynamic
analysis approaches such as mkcheck [30] and BuildFS [41].

Compared with these studies on build script analysis, a unique
feature of this study lies in its ability to utilize the runtime trace
capturing from both the kernel and the user-space applications,
i.e., Make and Bash. With the modern tracing framework, more
accurate runtime behavior could be captured, with which we are
able to realize fine-grained localization.

On the other hand, to fix build script faults, there have been grow-
ing research interests on the automated repairing of build scripts.
Foyzul and Wang [23] propose the HireBuild framework, which is
an automatic approach to history-driven repair of build scripts. Lou
et al. [33] develop HoBuff, which considers the historical projects,
as well as the present project under test and external resources.
In 2020, Lou et al. [34] systematically investigate more than 1,000
build issues from Stack Overflow, to summarize fix patterns for
different types of failure, with respect to three well-known build
systems, i.e., Maven, Ant, and Gradle.

These studies focus on the fixing of build failures, i.e.,HireBuild
and HoBuff are applied when projects failed to build from source.
In contrast, RepFix is more targeted to the scenario of unrepro-
ducible builds.

7 CONCLUSIONS

In this paper, we propose the initial work RepFix to generate patches
for unreproducible builds in an automated paradigm. The frame-
work features the combination of the tracing-based fine-grained
localization and the history-based patch generation. On the one
hand, with the unified tracing tool SystemTap, the system call
trace induced dependency graph could be associated with the user-
space trace guided line-level localization, and tackle the localization
granularity challenge. On the other hand, by utilizing the existing
patches, we are able to generate valid patches for real-world unre-
producible packages. Furthermore, RepFix successfully fix the unre-
producible build issues of four Arch Linux packages that have not
been previously fixed. The patches are submitted to Arch Linux’s
bug tracking system, and two patches have been accepted.

For future work, we are interested in the possibility of auto-
matically generating fixing rules, from the existing patches that
solve unreproducible builds. Also, an empirical study to gain deeper
insights into the fixed patches is also an interesting direction. Be-
sides, we would like to extend the fixing technique to more software
repositories which have not considered reproducible builds practice.

ACKNOWLEDGEMENTS

Zhilei Ren is also affiliated with Key Laboratory of Safety-Critical
Software (Nanjing University of Aeronautics and Astronautics),
Ministry of Industry and Information Technology. This work is sup-
ported in part by the National Natural Science Foundation of China
under Grants 62132020, 62072068, 62032004, 61872273, 62141221,
and Fundamental Research Funds for the Central Universities (NO.
NJ2020022).

REFERENCES

[1] 2021. About Event Tracing. https://docs.microsoft.com/en-us/windows/win32/
etw/about-event-tracing. Accessed: 2021-09-02.

[2] 2021. DTrace. http://dtrace.org. Accessed: 2021-09-01.
[3] 2021. FS#69535: when. https://bugs.archlinux.org/task/69535. Accessed: 2021-09-

02.
[4] 2021. FS#70302: pythia8. https://bugs.archlinux.org/task/70302. Accessed:

2021-09-02.
[5] 2021. FS#70303: zssh. https://bugs.archlinux.org/task/70303. Accessed: 2021-09-

02.
[6] 2021. FS#71953: dd_rescue. https://bugs.archlinux.org/task/71953. Accessed:

2021-09-02.
[7] 2021. GNU gzip: General file (de)compression. https://www.gnu.org/software/

gzip/manual/gzip.html. Accessed: 2021-04-3.
[8] 2021. History of reproducible builds. https://reproducible-builds.org/docs/

history/. Accessed: 2021-08-30.
[9] 2021. mylvmbackup. https://tracker.debian.org/pkg/mylvmbackup. Accessed:

2022-02-01.
[10] 2021. ptrace(2) Linux manual page. https://man7.org/linux/man-pages/man2/

ptrace.2.html. Accessed: 2021-08-21.
[11] 2021. The SOURCE_DATE_EPOCH specification. https://reproducible-builds.

org/docs/source-date-epoch/. Accessed: 2021-09-02.
[12] 2021. Strace. https://strace.io. Accessed: 2021-04-17.
[13] MuhammadAsaduzzaman, Chanchal K Roy, Kevin A Schneider, andMassimiliano

Di Penta. 2013. Lhdiff: A language-independent hybrid approach for tracking
source code lines. In 2013 IEEE International Conference on Software Maintenance
(ICSM). IEEE, 230–239.

[14] Raymond Chen. 2018. Why are the module timestamps in Windows 10 so non-
sensical? https://devblogs.microsoft.com/oldnewthing/20180103-00/?p=97705.
Accessed: 2021-08-31.

[15] Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, and Jingling Xue. 2019. Detecting
memory errors at runtime with source-level instrumentation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
341–351.

[16] Domenico Cotroneo, Luigi De Simone, and Roberto Natella. 2018. Run-time
detection of protocol bugs in storage I/O device drivers. IEEE Transactions on
Reliability 67, 3 (2018), 847–869.

[17] Nick Craswell. 2009. Mean Reciprocal Rank. In Encyclopedia of Database Systems,
Ling Liu and M. Tamer Özsu (Eds.). Springer US, Boston, MA, 1703–1703.

[18] Jake Edge. 2017. Reproducible builds. https://lwn.net/Articles/719823/. Accessed:
2021-08-27.

[19] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos Stavrou. 2018. On
early detection of application-level resource exhaustion and starvation. Journal
of Systems and Software 137 (2018), 430–447.

[20] Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Makefiles
Statically. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE) (Paderborn, Germany) (ESEC/FSE 2017). ACM, 279–290.

[21] Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021. Unix shell
programming: the next 50 years. In Proceedings of the Workshop on Hot Topics in
Operating Systems. 104–111.

[22] Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Levenshtein Transformer.
Advances in Neural Information Processing Systems 32 (2019), 11181–11191.

[23] Foyzul Hassan and Xiaoyin Wang. 2018. Hirebuild: An automatic approach
to history-driven repair of build scripts. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 1078–1089.

[24] Hongjun He, Jicheng Cao, Lesheng Du, Hao Li, Shilong Wang, and Shengyu
Cheng. 2020. ConstBin: A Tool for Automatic Fixing of Unreproducible Builds. In
2020 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 97–102.

[25] Jingzhu He, Ting Dai, and Xiaohui Gu. 2018. Tscope: Automatic timeout bug iden-
tification for server systems. In 2018 IEEE International Conference on Autonomic
Computing (ICAC). IEEE, 1–10.

[26] Ryan Hurst. 2021. Verifiable design in modern systems. https://security.
googleblog.com/2021/07/verifiable-design-in-modern-systems.html. Accessed:
2021-08-31.

[27] Pascal Jungblut, Roger Kowalewski, and Karl Fürlinger. 2018. Source-to-Source
Instrumentation for Profiling Runtime Behavior of C++ Containers. In 2018 IEEE
20th International Conference on High Performance Computing and Communica-
tions (HPCC). IEEE, 948–953.

[28] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software (2021). https://doi.org/10.
1109/MS.2021.3073045 Early Access.

[29] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of

https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
http://dtrace.org
https://bugs.archlinux.org/task/69535
https://bugs.archlinux.org/task/70302
https://bugs.archlinux.org/task/70303
https://bugs.archlinux.org/task/71953
https://www.gnu.org/software/gzip/manual/gzip.html
https://www.gnu.org/software/gzip/manual/gzip.html
https://reproducible-builds.org/docs/history/
https://reproducible-builds.org/docs/history/
https://tracker.debian.org/pkg/mylvmbackup
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://reproducible-builds.org/docs/source-date-epoch/
https://reproducible-builds.org/docs/source-date-epoch/
https://strace.io
https://devblogs.microsoft.com/oldnewthing/20180103-00/?p=97705
https://lwn.net/Articles/719823/
https://security.googleblog.com/2021/07/verifiable-design-in-modern-systems.html
https://security.googleblog.com/2021/07/verifiable-design-in-modern-systems.html
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MS.2021.3073045


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhilei Ren et al.

the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 169–180.

[30] Nándor Licker and Andrew Rice. 2019. Detecting incorrect build rules. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
1234–1244.

[31] Chang Liu, Zhengong Cai, Bingshen Wang, Zhimin Tang, and Jiaxu Liu. 2020.
A protocol-independent container network observability analysis system based
on eBPF. In 2020 IEEE 26th International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 697–702.

[32] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the efficiency of test suite based program repair: A systematic assessment of
16 automated repair systems for java programs. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (ICSE). 615–627.

[33] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-
driven build failure fixing: how far are we?. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 43–
54.

[34] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. 2020. Un-
derstanding Build Issue Resolution in Practice: Symptoms and Fix Patterns. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)
(Virtual Event, USA). ACM, 617–628.

[35] Douglas H Martin, James R Cordy, Bram Adams, and Giulio Antoniol. 2015.
Make it simple-an empirical analysis of gnu make feature use in open source
projects. In 2015 IEEE 23rd International Conference on Program Comprehension.
IEEE, 207–217.

[36] Omar S Navarro Leija, Kelly Shiptoski, Ryan G Scott, Baojun Wang, Nicholas
Renner, Ryan R Newton, and Joseph Devietti. 2020. Reproducible Containers. In

Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 167–182.

[37] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. 2018. Automated localization
for unreproducible builds. In Proceedings of the 40th International Conference on
Software Engineering (ICSE). 71–81.

[38] Zhilei Ren, Changlin Liu, Xusheng Xiao, He Jiang, and Tao Xie. 2019. Root cause
localization for unreproducible builds via causality analysis over system call
tracing. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 527–538.

[39] Young Shi, Mingzhi Wen, Filipe Roseiro Cogo, Boyuan Chen, and Zhen Ming Jack
Jiang. 2021. An Experience Report on Producing Verifiable Builds for Large-
Scale Commercial Systems. IEEE Transactions on Software Engineering (2021).
https://doi.org/10.1109/TSE.2021.3092692

[40] Paul D. Smith. 2004. Makefile grammar. https://www.mail-archive.com/help-
make@gnu.org/msg02778.html. Accessed: 2021-08-23.

[41] Thodoris Sotiropoulos, Stefanos Chaliasos, Dimitris Mitropoulos, and Diomidis
Spinellis. 2020. A Model for Detecting Faults in Build Specifications. Proc. ACM
Program. Lang. 4, OOPSLA, Article 144 (Nov. 2020), 30 pages.

[42] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
2012. Build code analysis with symbolic evaluation. In 34th International Confer-
ence on Software Engineering (ICSE). IEEE, 650–660.

[43] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files for
bug reports using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 689–699.

[44] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang.
2021. An Empirical Study of Fault Localization Families and Their Combinations.
IEEE Transactions on Software Engineering 47, 2 (2021), 332–347.

https://doi.org/10.1109/TSE.2021.3092692
https://www.mail-archive.com/help-make@gnu.org/msg02778.html
https://www.mail-archive.com/help-make@gnu.org/msg02778.html

	Abstract
	1 Introduction
	2 Motivating Example
	3 Proposed Approach
	3.1 Tracing-Based Fine-Grained Localization
	3.2 History-Based Patch Generation

	4 Experiments
	4.1 Investigation of RQ1
	4.2 Investigation of RQ2
	4.3 Investigation of RQ3
	4.4 Investigation of RQ4

	5 Discussion
	5.1 Extensibility of RepFix
	5.2 Threats to Validity

	6 Related Work
	6.1 Reproducible Builds
	6.2 Build Script Analysis and Repair

	7 Conclusions
	References

