
An Efficient Algorithm for Generalized Minimum
Spanning Tree Problem

He Jiang
School of Software

Dalian University of Technology
Dalian, 116621 China

jianghe@dlut.edu.cn

Yudong Chen
School of Software

Dalian University of Technology
Dalian, 116621 China

chenyudong@mail.dlut.edu.cn

ABSTRACT
The Generalized Minimum Spanning Tree problem (GMST) has
attracted much attention during the last few years. Since it is in-
tractable, many heuristic algorithms have been proposed to solve
large GMST instances. Motivated by the effectiveness and effi-
ciency of the muscle (the union of all optimal solutions) for solv-
ing other NP-hard problems, we investigate how to incorporate
the muscle into heuristic design for GMST. Firstly, we demon-
strate that it’s NP-hard to obtain the muscle for GMST. Then we
show that the muscle can be well approximated by the principle
and subordinate candidate sets, which can be calculated on a re-
duced version of GMST. Therefore, a Dynamic cAndidate set
based Search Algorithm (DASA) is presented in this paper for
GMST. In contrast to existing heuristics, DASA employs those
candidate sets to initialize and optimize solutions. During the
search process, those candidate sets are dynamically adjusted to
include in new features provided by good solutions. Since those
candidate sets cover almost all optimal solutions, the search space
of DASA can be dramatically reduced so that elite solutions can
be easily found in a short time. Extensive experiments demon-
strate that our new algorithm slightly outperforms existing heuris-
tic algorithms in terms of solution quality.

Categories and Subject Descriptors
 I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search-Heuristic methods.

General Terms
Algorithms

Keywords
Local Search, Generalized Minimum Spanning Tree, Candidate
Set

1. 0BINTRODUCTION
The Generalized Minimum Spanning Tree problem (GMST)

was firstly introduced by Myung et al. [1]. As an extension of the
classical Minimum Spanning Tree problem (MST), GMST was
shown to be a NP-hard problem [1] arising in telecommunication,
design of backbones in large communication networks, energy
distribution, and agricultural irrigation.

According to the computational complexity theory, there is no
algorithm to solve NP-hard problems to optimality in polynomial
time unless P=NP. As a result, exact algorithms are only applica-
ble to small instances. Therefore, many heuristic algorithms have
been proposed for GMST to achieve near optimal solutions in
reasonable time. Feremans [2] proposed a Tabu Search algorithm
for GMST in 2001. Pop [3] presented a Simulated Annealing
heuristic (SA) based on the global edge-change neighborhood.
Ghosh [4] developed a series of heuristic algorithms for GMST,
including Tabu Search based on recency memory (TS1), Tabu
Search based on recency and frequency memory (TS2), Variable
Neighborhood Descent Search, Reduced VNS, and VNS with
Steepest and a Variable Neighborhood Decomposition Search
(VNDS). In those four variants of the VNS, 1-swap and 2-swap
were used as neighborhoods. Golden et al. [5] presented a Local-
Search Heuristic (LSH) based on the 1-swap neighborhood. Fur-
thermore, they also proposed a Genetic Algorithm (GA) which
took LSH as the mutation operator. Another Tabu Search was
developed recently by Wang et al. [6]. Temel et al. [7] presented
an attribute based Tabu Search employing new neighborhood
called ()cN s . Hu et al. [8] devised a VNS with the global edges
exchange neighborhood designed by Pop [3] and the restricted
nodes exchange neighborhood provided by Ghosh [4]. Moreover,
by employing an additional neighborhood type based on the small
enough parts of a candidate solution via Mixed Integer Program-
ming (MIP), Hu et al. proposed a new VNS for the GMST [9].

As an efficient tool for heuristic algorithm design, the muscle
was firstly introduced by Jiang et al. [10] for the Three-Index
Assignment Problem (AP3). The muscle is defined as the union of
all optimal solutions. In [10], an Approximate Muscle guided
Global Optimization (AMGO) was proposed to solve the AP3.
Experimental results demonstrated that the new conception could
dramatically improve the effectiveness for heuristic algorithm.

Motivated by the success of the muscle in AP3, we investigate
how to employ this tool for GMST as follows. Firstly, we demon-
strate that it’s NP-hard to obtain the muscle for GMST. The key
idea behind the proof is to map any GMST instance to a biased
GMST instance with a unique optimal solution. Therefore, finding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
GECCO’10, July 7-11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07...$10.00.

217

the muscle of the biased instance is equivalent to finding an opti-
mal solution to the original instance. Secondly, it’s shown that the
muscle can be approximated by those principle and subordinate
candidate sets, which are defined by the lower bounds on a re-
duced version of GMST. Finally, a new algorithm named DASA
is proposed to efficiently solve GMST. DASA consists of two
phases. In the first phase, those candidate sets are generated. The
second phase is a loop composed of several steps. In each loop, an
initial solution is constructed for future improvement. After that, a
local search based on those candidate sets is employed to improve
the initial solution. Then, a path relinking procedure is conducted
to further improve the current solution. During the whole loop,
those candidate sets will be dynamically adjusted to retain new
features provided by new solutions. Experiments on 46 widely
used instances [9] demonstrate that our new algorithm outper-
forms existing heuristic algorithms in terms of solution quality.

2. 1BPRELIMINARIES
In this section, we shall present some related definitions and

notations about GMST.

Given an undirected weighted graph (, ,)G V E w= , where
{1,2, , }V n= L is the node set, E is the edge set, and

:w E R+→ is the edge cost function. The node set V is parti-
tioned into k disjoint nonempty clusters 1 2, , , kC C CL such that

1 2 kC C C V=U ULU and i jC C = ∅I (1 i j k≤ ≠ ≤). A feasible
solution to the GMST instance (denoted by (, ,)GMST V E w) is
defined as a MST on the sub-graph (, ,)s s s sG V E w= , where

{ 1 }s iV v i k= ≤ ≤ contains exactly one node from every cluster,
i.e., i iv C∈ (1 i k≤ ≤), {(,) (,) , , }s i l i l i l sE v v v v E v v V= ∈ ∈ , and

(,) (,)s i l i lw v v w v v= . GMST aims to find a feasible solution whose
cost is minimized. Since a MST can be constructed from the sub-
graph (, ,)s s s sG V E w= in (log)s sE VΟ time [11], most papers
use the set sV to represent the feasible solution rather than the
MST. The cost for the MST derived from (, ,)s s s sG V E w= is
denoted by ()ssol V .

Figure 1 illustrates an example for a GMST instance. There’re
5 clusters in this instance, including {1,2,3,4} , {5,6,7,8,9} ,
{10,11} , {12,13,14} , and {15,16} . For brevity, the edges among
these clusters are not given in Figure 1. A MST generated from
the solution {4, 6, 10, 12, 16} is linked by the black lines.

Given a GMST instance (, ,)GMST V E w , let 1 2{ , , , }q

s s sV V V∗Π = L
be the set of all optimal solutions, where q∗Π = represents the
number of optimal solutions. The muscle of (, ,)GMST V E w is
defined as 1 2(, ,) q

s s smuscle V E w V V V= U ULU . It’s easy to see that

we can dramatically reduce the search space if the muscle is
available.

Given a GMST instance (, ,)GMST V E w , its biased instance is de-
fined as ˆ(, ,)GMST V E w , where ˆ (,) (,) 1 2in jw i j w i j += + for
every (,)i j E∈ (i < j) and ˆ ˆ(,) (,)w i j w j i= (i>j). Obviously, the
biased instance is also a GMST instance and a feasible solution to
the biased instance is also feasible to its original instance. Given a
solution sV to ˆ(, ,)GMST V E w , its cost is denoted by ˆ ()ssol V .

We shall shows that it’s NP-hard to obtain the muscle for
GMST as follows.

Lemma 1. Given a GMST instance (, ,)GMST V E w , if (,)w i j
is nonnegative integer for every (,)i j E∈ , then the biased in-
stance ˆ(, ,)GMST V E w has a unique optimal solution.

Proof. To prove this lemma, we only need to verify that
ˆ ()ssol V ′ ˆ ()ssol V ′′≠ , for any two distinct feasible solutions s sV V′ ′′≠

to the biased instance ˆ(, ,)GMST V E w .
By definition, the cost function of any MST is the total edge

cost to the spanning tree. Since s sV V′ ′′≠ , there must exist one
edge (,)i j∗ ∗ (i j∗ ∗<) which is only contained in ˆ(,)sMST V w′
rather than ˆ(,)sMST V w′′ , where ˆ(,)sMST V w′ and ˆ(,)sMST V w′′ are
the MSTs derived from ˆ(, ,)s s sG V E w′ ′ ′= and ˆ(, ,)s s sG V E w′′ ′′ ′′= ,
respectively. When viewed as a binary string, the i n j∗ ∗∗ + th bit
of the fractional part of ˆ ()ssol V ′ will be 1. However, the same bit
of ˆ ()ssol V ′′ will be 0. Therefore, we have that ˆ ()ssol V ′ ˆ ()ssol V ′′≠
holds.

Thus, this lemma is proved.

Lemma 2. Given a GMST instance (, ,)GMST V E w , if (,)w i j is
nonnegative integer for every (,)i j E∈ , then the unique optimal
solution to the biased instance ˆ(, ,)GMST V E w is also optimal to

(, ,)GMST V E w .

Proof. By Lemma 1, given a GMST instance (, ,)GMST V E w ,
there exists a unique optimal solution (denoted by sV ∗) to the
biased instance ˆ(, ,)GMST V E w . Obviously, sV ∗ is also a feasible
solution to (, ,)GMST V E w .

Assuming Lemma 2 is false, there exists at least one solution

sV ′ such that () ()s ssol V sol V ∗′ < . We verify that a contradiction
will be found in the following proof.

According to the assumption that (,) {0}w i j Z +∈ U for
(,)i j E∈ , we have that ()ssol V Z′ ∈ and ()ssol V Z∗ ∈ . Since

() ()s ssol V sol V ∗′ < , we have that () () 1s ssol V sol V∗ ′− ≥ . On the
other hand, we have

(,)
ˆ0 () () 1 2 1i n j

s s i j E
sol V sol V ∗ +

∈
′ ′< − < <∑ .

Similarly, we have ˆ0 () () 1s ssol V sol V∗ ∗< − < . Thus, it implies
that

ˆ ()ssol V ∗ ˆ ()ssol V ′−
ˆ() () (() ())s s s ssol V sol V sol V sol V∗ ∗ ∗′= − + − ˆ(() ())s ssol V sol V′ ′− −

ˆ1 (() ())s ssol V sol V∗ ∗≥ + − ˆ(() ())s ssol V sol V′ ′− − 1 1 0> − =

However, it contradicts with the fact that sV ∗ is optimal to the
biased instance ˆ(, ,)GMST V E w . Thus, this lemma is proved.

13

12

10

4

3

2

11

1

14

15 16

8
6

5 9

1C

4C

5C

3C

2C

6

6

5 3 7

Figure 1. An Example of GMST

218

Theorem 1. There exists no polynomial time algorithm to ob-
tain the muscle of GMST unless P NP= .

Proof. Otherwise, there must be a polynomial time algorithm
(denoted by Η) which can obtain the muscle of GMST. A con-
tradiction will be found in the following proof by constructing a
polynomial time algorithm to solve GMST.

Given any GMST instance (, ,)GMST V E w , without loss of gen-
erality, we shall assume that (,)w i j is nonnegative integer for
every (,)i j E∈ , otherwise we can rescale every edge weight by
multiplying a large number. Therefore, an optimal solution to the
instance (, ,)GMST V E w can always be found as follows.

Firstly, the biased instance ˆ(, ,)GMST V E w can be constructed
in 2()nΟ time. Secondly, since the biased instance is also a
GMST instance, its muscle can be found by Η in polynomial
time (denoted by ()Ο •). By Lemma 1, the muscle is the unique
optimal solution to ˆ(, ,)GMST V E w . Meanwhile, by Lemma 2,
the muscle is also optimal to (, ,)GMST V E w . Therefore, we can
always solve GMST in 2() ()nΟ • + Ο running time. Obviously, it
contradicts with the fact that GMST is NP-hard. Thus, this theo-
rem is proved.

3. 2BCANDIDATE SETS
In this section, we shall discuss how to approximate the muscle.

Given a node iv C∈ (1 i k≤ ≤), a v -graph (, ,)v v v vG V E w= is
defined as follows. Every cluster jC (1≤j≤k) is reduced to a node

jc . Let { |1 }v jV c j k= ≤ ≤ , let {(,) |1 , , }v j lE c c j l k j l= ≤ ≤ ≠ .
For every edge (,)j lc c (, ,j l j i l i≠ ≠ ≠), the edge cost (,)v j lw c c
is defined as the minimum cost of edges between cluster jC and

lC , i.e., (,) min (,)v j l p qw c c w v v= , where p jv C∈ and q lv C∈ .
For every edge (,)i jc c (j i≠), its cost (,)v i jw c c is defined as the
minimum cost of edges between node v and the nodes in jC on

(, ,)G V E w= . After the v -graph is constructed, the lower bound
(denoted by ()LB v) for v is defined as the cost of the MST on

(, ,)v v v vG V E w= .The MST can be obtained in (log)v vE VΟ
time [11].

Given a cluster iC , we sort the nodes in cluster iC by their
lower bounds in ascending order. The principle candidate set (de-
noted by ()iPCS C) for iC is defined as the set of those nodes
ranked from 1st to | | *iC r⎡ ⎤⎢ ⎥ th, where r (0 1r≤ ≤) is the princi-
ple candidate set ratio. The union of all the principle candidate
sets is denoted by ()PCS V , i.e., 1() ()i k iPCS V PCS C≤ ≤= U .

To evaluate the effectiveness of the principle candidate sets, we
conducted several experiments on some typical GMST instances
whose optimal solutions are presented in [2]. As shown in Figure
2, along with the growth of the value of r , more and more nodes
in optimal solutions will be contained by ()PCS V . When the
principle candidate ratio r exceeds 0.4, there’re over 80% nodes
in the optimal solutions will be contained by ()PCS V for all the
instances (gr137, kroa150, gr202, and krob200).

In addition to the principle candidate set, we also define the
subordinate candidate set for every node iv C∈ (1 i k≤ ≤). Given
a node iv C∈ (1 i k≤ ≤) and its v -graph (, ,)v v v vG V E w= , let

()A v be the set of nodes adjacent to ic in the MST on
(, ,)v v v vG V E w= . The subordinate candidate set (denoted by

()SCS v) for node v is defined as the set of nodes v V′∈ such
that lv C′∈ , ()lc A v∈ , and (,) (,)v i lw v v w c c′ = . The union of all
the subordinate candidate sets is denoted by ()SCS V , i.e.,

() ()v VSCS V SCS v∈= U .An example is given in Figure 3. Figure 3
(a) shows the 10-graph defined on GMST and its MST plotted by
dashed lines. Figure 3 (b) shows that (10) {16,13}SCS = , since

10 3 4(10,13) (,)w w c c= , 10 3 5(10,16) (,)w w c c= .
Similar to the principle candidate sets, we also evaluated the ef-

fectiveness of the subordinate candidate sets on some typical
GMST instances. As shown in Figure 4 (a), along with the growth
of the value of r , most nodes in optimal solutions will be con-
tained by ()SCS V . Figure 4 (b) shows that the normalized size of

()SCS V increases slowly along with the growth of the value of
r .

In summary, it’s a good way to approximate the muscle with
both principle candidate sets and subordinate candidate sets.

4. 3BDASA
Inspired by the observation that the muscle can be approxi-

mated by those candidate sets (both principle and subordinate
candidate sets), we propose the Dynamic cAndidate set based
Search Algorithm (DASA) for GMST in this section. It can dra-
matically reduce the search space by restricting the search process
in the candidate sets.

The framework of DASA is presented in Algorithm 1. After the
initiation of the best solution, the principle and subordinate candi-
date sets will be generated. Then, a loop is repeated in DASA
until the stopping criterion is met. In this paper, a pre-defined
running time is given as the stopping criterion. The loop mainly

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
principle candidate set ratio

op
tim

al
 so

lu
tio

n
no

de
s i

n
PC

S

gr137

kroa150

gr202

krob200

Figure 2. Optimal Solution Nodes in PCS vs. Principle
Candidate Set Ratio

13

12

10

4

3

2

11

1

14

1516

8
6

5 9

1C

4C

5C

3C

6

5

5
2

7

2C

6

5

7 2
5

7
9

8

6

12
3c

5c

1c

2c

4c

(a) 10-graph G10 (b) Subordinate Candidate of Node 10
Figure 3. Illustration of the Subordinate Candidate Set

219

Algorithm 1: DASA
Input: GMST instance (, ,)GMST V E w , r, jΔ , rΔ

Output: solution *
sV

Begin
(1) let the best solution iteration number *j =0, the best solu-

tion *
sV = ∅ with cost *()ssol V = +∞ , 0j =

(2) generate principle candidate sets with the ratio r and subor-
dinate candidate sets

(3) while the stopping criterion is not met do
//to generate an initial solution

 (3.1) if *()mod 0j j j− Δ = //no improvement in jΔ iterations
 then

(3.1.1) 0 =InitSolution((, ,))sV GMST V E w
(3.1.2) r r r= + Δ //to enlarge the principle candidate sets

else
(3.1.3) shake *

sV by random perturbation to generate 0
sV

(3.2) 0=LS()s sV V //local search

(3.3) *=PathRelinking(,)s s sV V V

(3.4) if ()ssol V < *()ssol V
(3.4.1) adjust the principle candidate set
(3.4.2) *

sV = sV , *j = j
 (3.5) j + +

(4) return *
sV

End

consists of 4 steps. Firstly, an initial solution is constructed for
further improvement (see Step (3.1)). At most times, the initial
solution is generated by randomly perturbing the best solution, so
that the initial solution can retain some components in the best
solution while some new features can also be introduced for fu-
ture improvement. To avoid getting trapped in the neighborhood
of the best solution, a new solution will be constructed from those
candidate sets directly, when no improvement is achieved during
predefined iterations (jΔ iterations in DASA). Secondly, a local
search process is employed to improve the initial solution (see
Step (3.2)). Thirdly, a path relinking process is called to further
improve the current solution (see Step (3.3)). Finally, DASA
checks whether a better solution is obtained. If so, the principle
candidate sets will be adjusted to include new features provided
by this new solution, and the best solution is replaced with the
new solution (see Step (3.4)).

4.1 7BInitializing a Solution with Candidate Sets

Obviously, a good initial solution is essential for local search.
In this subsection, we present the algorithm of InitSolution
which is used in Step (3.1) of DASA. The key idea of
InitSolution is to generate a new solution by employing the prin-
ciple candidate sets and the subordinate candidate sets. As shown
in Section 2, these two kinds of candidate sets contain most nodes
appearing in optimal solutions. Therefore, the initial solutions
generated by InitSolution are more likely to converge to optimal
solutions than random ones.

Algorithm 2: InitSolution
Input: GMST instance (, ,)GMST V E w

Output: initial solution 0
sV

Begin
(1) set 1 2{ , , }kC C C C= L , 0

sV = ∅ , Q = ∅

(2) while 0| |sV k< do
if Q = ∅ then
(2.1) randomly choose a cluster C Cξ ∈

(2.2) select the 1st ranked node v from ()PCS Cξ

(2.3) { }Q v= , \C C Cξ= , 0 0 { }s sV V v= U

else // Q ≠ ∅
(2.4) select a node v Q∈
(2.5) \ { }Q Q v=
(2.6) for every ()v SCS v′∈ do

(2.6.1) if C Cη∃ ∈ s.t. ()v PCS Cη′∈ then

{ }Q Q v′= U , \C C Cη= , 0 0 { }s sV V v′= U

(3) return 0
sV

End

 A detailed description of InitSolution is given in Algorithm 2.
Two sets are used in InitSolution to record different kinds of
information. The set Q is employed to record those nodes under
consideration and the set C is to record those unchecked clusters.
The algorithm InitSolution works as follows. Firstly, all the clus-
ters are marked as unchecked by setting 1 2{ , , }kC C C C= L and
the initial solution is also set to empty (see Step (1)). At this step,

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
principle candidate set ratio

th
e

no
rm

al
iz

ed
 s

ca
le

 o
f t

he
 o

pt
im

al
so

lu
tio

n
no

de
s

in
 th

e
SC

S

gr137

kroa150

gr202

krob200

(a)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
principle candidate set ratio

th
e

no
rm

al
iz

e
nu

m
eb

er
 o

f S
C

S

gr137

kroa150

gr202
krob200

(b)

Figure 4. Optimal Solution Nodes in SCS vs. Principle
Candidate Set Ratio

220

there’s no node under consideration, i.e., Q = ∅ . Secondly, a
loop is repeated until the initial solution is successfully con-
structed (see Step (2)). There’re 2 cases in the loop. For the case
that no node exists to be considered in Q (see Step (2.1)-(2.3)),
an unchecked cluster will be randomly chosen and removed from
C . The first ranked node in the principle candidate set of this
chosen cluster will be added to Q for further consideration. At
the mean time, this first ranked node will be also added to the
initial solution. For the other case that Q ≠ ∅ (see Step (2.4)-
(2.6)), a node v in Q will be picked out. After that, every node
v′ in its subordinate candidate set will be checked in the follow-
ing way. If the cluster containing v′ hasn’t been checked and v′
belongs to the principle candidate set of this cluster, the node
v′ will be added to Q for further consideration. In addition, the
node v′ will also be inserted to the initial solution.

4.2 8BShaking by Random Perturbation
In DASA, a new initial solution can also be generated by shak-

ing the best solution. As shown by Boose [12], there exist “big
valley” structures for many combinatorial optimization problems
(e.g. the traveling salesman problem), i.e., a lot of local optimal
solutions cluster together around optimal solutions. Therefore, it’s
a good way to obtain the initial solution by shaking the best solu-
tion.

In this paper, we randomly perturb the best solution for further
local search as follows. Firstly, *t iterationφ= Δ⎡ ⎤⎢ ⎥ clusters are
randomly selected, where iterationΔ is the iterations elapsed
since the best solution is found in DASA, φ is the perturbation
intensity factor between 0 and 1. Secondly, a node in every se-
lected cluster is arbitrarily chosen to replace the existing one in
the best solution. By this strategy, some useful features of the best
solution can be retained in the new initial solution, while many
new nodes are introduced for further improvement. Obviously, the
more iteration elapsed since the best solution is achieved, the
more randomness will be introduced by our shaking strategy.

4.3 9BCandidate Sets Adjustment
In DASA, the principle candidate sets are dynamically adjusted

in two cases.

For the case that no improvement is achieved in jΔ iteration,
we enlarge the principle candidate set size by setting r r r= + Δ
(see Step (3.1.2) in DASA). This strategy is necessary, because an
optimal solution may include a “bad” node when viewed from a
local perspective. Although small principle candidate sets can
contain most nodes in optimal solutions, a fraction of those nodes
in optimal solution can still be excluded out of the principle can-
didate sets. Therefore, we dynamically enlarge the principle can-
didate sets to cover more potential nodes.

For the case that a better solution is achieved after local search
and path relinking process, the principle candidate sets are ad-
justed to retain elite information from the improved solutions (see
Step (3.4.1) in DASA). It works as follows. Firstly, every node
appearing in both the new better solution and principle candidate
sets is moved to the first ranked positions. If it isn’t contained in
its corresponding principle candidate set, a node in the new better
solution will be inserted to the first ranked position in the princi-
ple candidate set.

4.4 10BLocal Search
After an initial solution is generated, a local search process will

be employed in DASA to further improve it. Algorithm 3 presents
the framework of our local search process. Firstly, a random visit
order VR for clusters will be initialized (see Step (1)). Then the
current solution will be improved by a process named ClusterOp-
timizer, cluster by cluster in VR (see Step (3.2)). When a better
solution is found, the current solution will be replaced with the
new found solution. And then the new current solution will be
further improved using clusters in VR until no improvement can
be achieved.

Algorithm 3: LS
Input: solution 0

sV
Output: solution *

sV
Begin
(1) initialize a random visit order VR for clusters, let * 0

s sV V=
(2) flag = true
(3) while flag = true do

(3.1) flag = false
(3.2) for i = 1 to k do
 (3.2.1) let Cγ be the ith cluster in VR
 (3.2.2) (,)s sV ClusterOptimizer V Cγ

∗=
 (3.2.3) if () ()s ssol V sol V ∗< then

s sV V∗ = , flag = true, break
(4) return *

sV
End

Given a cluster and an initial solution, let v∗ be the cluster’s
node appearing in the solution. The process ClusterOptimizer (see
Algorithm 4) works as follows. For every node v belonging to
the principle candidate set of this cluster, a modified solution is
generated by replacing v∗ with v . If any improvement can be
achieved, the modified solution is returned. Otherwise, a depth
first search named DFS is further employed to improve the modi-
fied solution. If the resulting solution from DFS is better than the
initial solution, this solution from DFS will be returned.

Algorithm 4: ClusterOptimizer
Input: solution 0

sV , cluster iC
Output: solution *

sV
Begin
(1) let v∗ be the cluster iC ’s node appearing in 0

sV , * 0
s sV V=

(2) for every node () \ { }iv PCS C v∗∈ do
(2.1) let 0 \ { } { }s sV V v v∗= U
(2.2) if 0() ()s ssol V sol V< then *

sV = sV , break
else

0=DFS(, , ,{ })s s s iV V V v C′ //depth first search from v

if 0() ()s ssol V sol V′ < then s sV V∗ ′= , break

(3) return *
sV

End

221

DFS (see Algorithm 5) works in a recursive way. A set P is
used to record those visited clusters. Given a node v , the current
solution sV and the initial solution 0

sV , DFS iteratively checks
every node v′ belonging to the subordinate candidate set of
node v . If the cluster (denoted by vC ′ in DFS) containing v′
hasn’t been visited yet, a modified solution sV ′ will be generated
by replacing vC ′ ’s node in sV with v′ . If it is better than the
initial solution 0

sV , the modified solution will be returned. Oth-
erwise, the DFS process will be recursively called by taking in

sV ′ , 0
sV , v′ ,and { }vP C ′U as input. More details can be found in

Algorithm 5.

Algorithm 5: DFS
Input: solution sV , solution 0

sV , node v , visited cluster set P
Output: solution *

sV
Begin
(1) *

s sV V=
(2) for every node ()v SCS v′∈ do

(2.1) let vC ′ be the cluster containing v′ , let v′′ be the vC ′ ’s
node appearing in sV

(2.2) if vC P′ ∉ then //when vC ′ hasn’t been visited before
 (2.2.1) let \ { } { }s sV V v v′ ′′ ′= U
 (2.2.2) if 0() ()s ssol V sol V′ < then *

s sV V ′= , break
 (2.2.3) 0(, , , { })s s s vV DFS V V v P C ′′′ ′ ′= U
 (2.2.4) if 0() ()s ssol V sol V′′ < then *

s sV V ′′= , break
 (2.2.5) if () ()s ssol V sol V ∗′′ < then *

s sV V ′′=
(3) return *

sV

End

4.5 11BPathRelinking
In DASA, a PathRelinking strategy is called to improve the lo-

cal optimal solution. PathRelinking is firstly proposed by Glover
[13] as an intensification strategy to explore trajectories linking
two elite solutions. The key idea behind PathRelinking is to com-
bine basic components of two guiding solutions so that the search
space between them can be explored to discover new better solu-
tions.

Our PathRelinking for DASA is presented in Algorithm 6,
which takes in two solutions (denoted by sV , sV ′ , respectively) as
input. The main part of PathRelinking consists of two phases. The
first phase (Step (1)-(2)) constructs a solution from sV to sV ′ , and
the second one (Step (3)-(4)) does from sV ′ to sV . Since these
two phases work in a similar way, we just briefly investigate the
first phase as follows. Firstly, the nodes appearing in sV ′ rather
than sV are collected in the set dV . Both the current solution 0

sV
and the resulting solution 1

sV in the first phase are initialized by
sV . Secondly, a loop is repeated until 0

sV equals to sV ′ . In the
loop (Step (2)), every node in dV will replace its corresponding
node appearing in 0

sV to construct a new solution (denoted by
sV ′′), respectively. Out of those new generated solutions, the best

one will become the new current solution for further iteration
(Step (2.3)). If the new current solution 0

sV is better than 1
sV , it

will become the new resulting solution (Step (2.4)). After such
processes, the set dV is renewed and this loop continues until dV
is empty (i.e., 0

sV equals to sV ′). After these two phases, two
solutions are generated and the better one will be returned.

Algorithm 6: PathRelinking
Input: solution sV , sV ′

Output: solution *
sV

Begin
// relink from sV to sV ′
(1) let \d s sV V V′= , 1

s sV V= , 0
s sV V=

(2) while 0
s sV V ′≠

(2.1) mc = +∞
(2.2) for every dv V∈ do

(2.2.1) let vC be the cluster containing v
(2.2.2) replace the vC ’s node in 0

sV with v to generate a
new solution sV ′′

(2.2.3) if ()ssol V mc′′ < then

s sV V ′′= , ()smc sol V ′′= , v v=
(2.3) 0

s sV V=
(2.4) if 0 1() ()s ssol V sol V< then 1 0

s sV V=
(2.5) \ { }d dV V v=

// relink from sV ′ to sV
(3) let \d s sV V V ′= , 2

s sV V ′= , 0
s sV V ′=

(4) while 0
s sV V≠

(4.1) mc = +∞
(4.2) for every dv V∈ do

(4.2.1) let vC be the cluster containing v
(4.2.2) replace the vC ’s node in 0

sV with v to generate a
new solution sV ′′

(4.2.3) if ()ssol V mc′′ < then

s sV V ′′= , ()smc sol V ′′= , v v=
(4.3) 0

s sV V=
(4.4) if 0 2() ()s ssol V sol V< then 2 0

s sV V=
(4.5) \ { }d dV V v=

(5) if 1 2() ()s ssol V sol V< then * 1
s sV V= else * 2

s sV V=
(6) return *

sV
End

5. 4BEXPERIMENTS AND ANALYSIS
In this section, we demonstrate the effectiveness of DASA by

experimental results over the GMST instances used by Hu et al.
[9]. There’re 4 kinds of instances, including TSPLIB, grouped
Euclidean, random Euclidean, and non-Euclidean. DASA is im-
plemented in C++ on a Pentium D 2.66GHz PC with 1GB RAM
running the Federal Linux 10 operating system. In the experiment,
DASA sets r=0.5, jΔ =10, rΔ =0.2, φ =0.8. For comparison, we
also list the results for TS2 [4], VNDS [4], SA [3], GA [5], and
VNS [9]. All the experimental results for those algorithms are
obtained from [9].

As presented in [9], the results for VNDS and VNS are aver-
aged over 30 runs, and the results for SA are averaged over 10
runs due to its long running time. Since TS2 is deterministic, it’s
run only once in [9]. For every run of TS2, VNDS, and VNS,

222

Table 1. Results on TSPLIB Instances with Geographical Clustering
TSP instances TS2 VNDS SA GA VNS DASA

Names |V| k time ()C T ()C T ()C T std dev ()C T ()C T std dev ()C T std dev
gr137 137 28 150s 329.0 330.0 352 0.00 329.0 329.0 0.00 329.0 0.00

kroa150 150 30 150s 9815.0 9815.0 10885.6 25.63 9815.0 9815.0 0.00 9815.0 0.00
d198 198 40 300s 7062.0 7169.0 7468.7 0.83 7044.0 7044.0 0.00 7044.0 0.00

krob200 200 40 300s 11245.0 11353.0 12532.0 0.00 11244.0 11244.0 0.00 11244.0 0.00
gr202 202 41 300s 242.0 249.0 258.0 0.00 243.0 242.0 0.00 242.0 0.00
ts225 225 45 300s 62366.0 63139.0 67195.1 34.49 62315.0 62268.5 0.51 62268.3 0.48
pr226 226 46 300s 55515.0 55515.0 56286.6 40.89 55515.0 55515.0 0.00 55515.0 0.00
gil262 262 53 300s 942.0 979.0 1022.0 0.00 – 942.3 1.02 942.0 0.00
pr264 264 54 300s 21886.0 22115.0 23445.8 68.27 – 21886.5 1.78 21886.0 0.00
pr299 299 60 450s 20339.0 20578.0 22989.4 11.58 – 20322.6 14.67 20317.4 1.52
lin318 318 64 450s 18521.0 18533.0 20268.0 0.00 – 18506.8 11.58 18513.6 7.82
rd400 400 80 600s 5943.0 6056.0 6440.8 3.40 – 5943.6 9.69 5941.5 9.91
fl417 417 84 600s 7990.0 7984.0 8076.0 0.00 – 7982.0 0.00 7982.7 0.47
gr431 431 87 600s 1034.0 1036.0 1080.5 0.51 – 1033.0 0.18 1033.0 0.00
pr439 439 88 600s 51852.0 52104.0 55694.1 45.88 – 51847.9 40.92 51833.8 36.07

pcb442 442 89 600s 19621.0 19961.0 21515.1 5.15 – 19702.8 52.11 19662.5 39.79

Table 2. Results on Grouped Euclidean, Random Euclidean, and Non-Euclidean Instances
Instances TS2 VNDS SA VNS DASA

Set |V| k |V|/k time ()C T ()C T ()C T std dev ()C T std dev ()C T std dev

 125 25 5 600s 141.1 141.1 152.3 0.52 141.1 0.00 141.1 0.00
Grouped Eucl 125 125 25 5 600s 133.8 133.8 150.9 0.74 133.8 0.00 133.8 0.00

 125 25 5 600s 143.9 145.4 156.8 0.00 141.4 0.00 141.4 0.00

 500 100 5 600s 566.7 577.6 642.3 0.00 567.4 0.57 588.1 2.09
Grouped Eucl 500 500 100 5 600s 578.7 584.3 663.3 1.39 585.0 1.32 573.7 1.17

 500 100 5 600s 581.6 588.3 666.7 1.81 583.7 1.82 581.1 1.94

 600 20 30 600s 85.2 87.5 93.9 0.00 84.6 0.11 84.6 0.00
Grouped Eucl 600 600 20 30 600s 87.9 90.3 99.5 0.28 87.9 0.00 87.9 0.00

 600 20 30 600s 88.6 89.4 99.2 0.17 88.5 0.00 88.5 0.00

 1280 64 20 600s 327.2 329.2 365.1 0.46 315.9 1.91 320.1 3.52
Grouped Eucl 1280 1280 64 20 600s 322.2 322.5 364.4 0.00 318.3 1.78 317.2 2.37

 1280 64 20 600s 332.1 335.5 372.0 0.00 329.4 1.29 329.1 1.99

 250 50 5 600s 2285.1 2504.9 2584.3 23.82 2300.9 40.27 2292.5 23.53
Random Eucl 250 250 50 5 600s 2183.4 2343.3 2486.7 0.00 2201.8 23.30 2244.0 56.49

 250 50 5 600s 2048.4 2263.7 2305.0 16.64 2057.6 31.58 2071.2 55.90

 400 20 20 600s 557.4 725.9 665.1 3.94 615.3 10.80 612.4 7.23
Random Eucl 400 400 20 20 600s 724.3 839.0 662.1 7.85 595.3 0.00 611.5 23.35

 400 20 20 600s 604.5 762.4 643.7 14.54 587.3 0.00 604.9 23.45

 600 20 30 600s 541.6 656.1 491.8 7.83 443.5 0.00 508.3 59.08
Random Eucl 600 600 20 30 600s 540.3 634.0 542.8 25.75 537.0 10.20 550.7 32.03

 600 20 30 600s 627.4 636.5 469.5 2.75 469.0 11.90 530.6 26.81

 200 20 10 600s 71.6 94.7 76.9 0.21 71.6 0.00 71.6 0.07
Non-Eucl 200 200 20 10 600s 41.0 76.6 41.1 0.02 41.0 0.00 41.0 0.00

 200 20 10 600s 52.8 75.3 86.9 5.38 52.8 0.00 52.8 0.13

 500 100 5 600s 143.7 203.2 200.3 4.44 152.5 3.69 140.3 6.79
Non-Eucl 500 500 100 5 600s 132.7 187.3 194.3 1.20 148.6 4.27 144.3 6.76

 500 100 5 600s 162.3 197.4 205.6 0.00 166.1 2.89 162.0 1.87

 600 20 30 600s 14.5 59.4 22.7 1.49 15.6 1.62 16.4 2.41
Non-Eucl 600 600 20 30 600s 17.7 23.7 22.0 0.82 16.1 1.24 16.1 1.28

 600 20 30 600s 15.1 29.5 22.1 0.44 16.0 1.66 15.8 1.48

some predefined CPU time limits are given in the experiments on
a Pentium IV 2.8 GHZ PC [9]. Therefore, in order to normalize
the running time, a scheme is used according to the well-known

SPEC benchmark (Standard Performance Evaluation Corporation,
Uwww.specbench.org/osg/cpu2000/ U), which indicates that Pentium
D 2.66 GHz is nearly 1.13 times faster than Pentium IV 2.8 GHZ

223

(see Appendix). Hence, the CPU time used in DASA is limited to
88.3% of the one used in VNS.

Table 1 and 2 show the results of the experiments on the
TSPLIB instances and other instances, respectively. Columns 1-3
in both Table 1 and Table 2 present instances names, number of
nodes, and number of clusters, respectively. Column 4 in Table 2
shows the average number of nodes per cluster. Column 4 in Ta-
ble1 (column 5 in Table 2) presents the time limits for the heuris-
tics (except SA). In columns 5-11 of Table 1 (columns 6-11 of
Table 2), we present the computational results reported by Hu et
al. [9]. The column GA in Table 1 shows the results obtained by
the GA of Golden et al. [5], where just some smaller TSPLIB
instances are tested. Results of GA are unavailable for instances
in Table 2.

It can be found from Table 1 and Table 2 that TS2 obtains 21
best results out of the 46 instances, VNDS obtains 4 best results,
SA obtains no best results, VNS obtains 25 best results, and
DASA obtains 29 best results. DASA outperforms other algo-
rithms for most of the instances. Since VNS is the best heuristic
algorithm reported in the literature [9], we will compare DASA
with VNS in more details. Table 1 illustrates that DASA can ob-
tain better results on 6 TSPLIB instances than VNS, while VNS
can obtain better results on 3 TSPLIB instances. Both DASA and
VNS can obtain best solutions on the same 7 TSPLIB instances.
In addition, the standard deviations of solutions by DASA are
better than that by VNS for most TSPLIB instances. Table 2
shows that DASA gets better results on 8 instances than VNS for
both grouped Euclidean and non-Euclidean instances, while VNS
gets better solutions on 3 instances than DASA for both grouped
Euclidean and non-Euclidean instances. An exception is that no
best result is found by DASA for random Euclidean instances,
while best results can be found by VNS on 5 random Euclidean
instances. The poor performance of DASA on random Euclidean
instances may be caused by the hardness to find effective and
informative candidate sets for such instances.

6. CONCLUSIONS
In this paper, we show that it’s NP-hard to obtain the muscle

for GMST. After that, a new heuristic algorithm named DASA is
proposed to efficiently solve GMST. In future work, we will in-
vestigate the reasons why DASA works poorly on random
Euclidean instances. Furthermore, more robust and efficient local
search operators will be designed to accelerate DASA for solving
larger instances. In addition, we will also explore the potential
applications of the muscle on other NP-hard problems.

7. ACKNOWLEDGMENTS
Our work is partially supported by the NSFC under Grant No.

60805024, the National Research Foundation for the Doctoral
Program of Higher Education of China under Grant No.
20070141020.

APPENDIX
According to Table 3, Pentium IV 2.80 GHz: Intel Pentium D

820 2.8 GHz = 1166 / 1321=0.883.

Table 3. CPU Benchmark from SPEC

 Pentium IV 2.80 GHz Intel Pentium D 820 2.80 GHz

SPECint 2000 1166 1321

6BREFERENCES
[1] Myung, Y.S., Lee, C.H., and Tcha, D.W. 1995. On the gen-

eralized minimum spanning tree problem. Networks 26, 4
(May 1995), 231–241. DOI=
http://dx.doi.org/10.1002/net.3230260407

[2] Feremans, C. 2001. Generalized spanning trees and exten-
sions. Doctoral Thesis. Université Libre de Bruxelles, Bel-
gium.

[3] Pop, P.C. 2002. The generalized minimum spanning tree
problem. Doctoral Thesis. University of Twente, Nether-
lands.

[4] Ghosh, D. 2003. Solving medium to large sized Euclidean
generalized minimum spanning tree problems. Technical re-
port NEP-CMP-2003-09-28. Indian Institute of Management,
Research and Publication Department, India.

[5] Golden, B., Raghavan, S., and Stanojevic, D. 2005. Heuristic
search for the generalized minimum spanning tree problem.
INFORMS J. Comput. 17, 3 (Summer 2005), 290-304.
DOI=http://dx.doi.org/10.1287/ijoc.1040.0077

[6] Wang, Z., Che, C.H., and Lim, A. 2006. Tabu search for
generalized minimum spanning tree problem. In Proceedings
of 9th Pacific Rim International Conference on Artificial In-
telligence (Guilin, China, Aug. 07 - 11, 2006). PRICAI '06.
Springer-Verlag, Berlin / Heidelberg, 918–922. DOI=
http://dx.doi.org/10.1007/978-3-540-36668-3_106

[7] Öncan, T., Cordeau, J.-F., and Laporte, G. 2008. A tabu
search heuristic for the generalized minimum spanning tree
problem. Eur. J. Oper. Res. 191, 2 (Dec. 2008), 306-319.
DOI=http://dx.doi.org/10.1016/j.ejor.2007.08.021

[8] Hu, B., Leitner, M., and Raidl, G.R. 2005. Computing
generalized minimum spanning trees with variable
neighborhood search. In Proceedings of the 18th Mini-Euro
Conference on Variable Neighborhood Search (Tenerife,
Spain, 2005).

[9] Hu, B., Leitner, M., and Raidl, G.R. 2008. Combining vari-
able neighborhood search with integer linear programming
for the generalized minimum spanning tree problem. J. Heu-
ristics 14, 5 (Nov. 2008), 473-499. DOI=
http://dx.doi.org/10.1007/s10732-007-9047-x

[10] Jiang, H., Xuan, J.F., and Zhang X.C. 2008. An approximate
muscle guided global optimization algorithm for the three-
index assignment problem. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (HongKong, China,
Jun. 01 - 06, 2008). CEC '08. IEEE Computer Society Press,
Piscataway, NJ, 2404-2410.
DOI= http://dx.doi.org/10.1109/CEC.2008.4631119

[11] Kruskal, J. B. 1956. On the shortest spanning subtree of a
graph and the traveling salesman problem. Proc. Am. Math.
Soc. 7, 1 (Feb. 1956), 48–50.

[12] Boese. K. D. 1995. Cost versus distance in the traveling
salesman problem. Technical Report CSD-950018. UCLA
Computer Science Department.

[13] Glover, F. 1994. Tabu search for nonlinear and parametric
optimization (with links to genetic algorithms). Discrete
Appl. Math. 49, 1-3 (Mar. 1994), 231–255. DOI=
http://dx.doi.org/10.1016/0166-218X(94)90211-9

224

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

