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ABSTRACT 
The Generalized Minimum Spanning Tree problem (GMST) has 
attracted much attention during the last few years. Since it is in-
tractable, many heuristic algorithms have been proposed to solve 
large GMST instances. Motivated by the effectiveness and effi-
ciency of the muscle (the union of all optimal solutions) for solv-
ing other NP-hard problems, we investigate how to incorporate 
the muscle into heuristic design for GMST. Firstly, we demon-
strate that it’s NP-hard to obtain the muscle for GMST. Then we 
show that the muscle can be well approximated by the principle 
and subordinate candidate sets, which can be calculated on a re-
duced version of GMST. Therefore, a Dynamic cAndidate set 
based Search Algorithm (DASA) is presented in this paper for 
GMST. In contrast to existing heuristics, DASA employs those 
candidate sets to initialize and optimize solutions. During the 
search process, those candidate sets are dynamically adjusted to 
include in new features provided by good solutions. Since those 
candidate sets cover almost all optimal solutions, the search space 
of DASA can be dramatically reduced so that elite solutions can 
be easily found in a short time. Extensive experiments demon-
strate that our new algorithm slightly outperforms existing heuris-
tic algorithms in terms of solution quality. 

Categories and Subject Descriptors 
 I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search-Heuristic methods. 

General Terms 
Algorithms 

Keywords 
Local Search, Generalized Minimum Spanning Tree, Candidate 
Set 

 

1. 0BINTRODUCTION 
The Generalized Minimum Spanning Tree problem (GMST) 

was firstly introduced by Myung et al. [1]. As an extension of the 
classical Minimum Spanning Tree problem (MST), GMST was 
shown to be a NP-hard problem [1] arising in telecommunication, 
design of backbones in large communication networks, energy 
distribution, and agricultural irrigation. 

According to the computational complexity theory, there is no 
algorithm to solve NP-hard problems to optimality in polynomial 
time unless P=NP. As a result, exact algorithms are only applica-
ble to small instances. Therefore, many heuristic algorithms have 
been proposed for GMST to achieve near optimal solutions in 
reasonable time. Feremans [2] proposed a Tabu Search algorithm 
for GMST in 2001. Pop [3] presented a Simulated Annealing 
heuristic (SA) based on the global edge-change neighborhood. 
Ghosh [4] developed a series of heuristic algorithms for GMST, 
including Tabu Search based on recency memory (TS1), Tabu 
Search based on recency and frequency memory (TS2), Variable 
Neighborhood Descent Search, Reduced VNS, and VNS with 
Steepest and a Variable Neighborhood Decomposition Search 
(VNDS). In those four variants of the VNS, 1-swap and 2-swap 
were used as neighborhoods. Golden et al. [5] presented a Local-
Search Heuristic (LSH) based on the 1-swap neighborhood. Fur-
thermore, they also proposed a Genetic Algorithm (GA) which 
took LSH as the mutation operator. Another Tabu Search was 
developed recently by Wang et al. [6]. Temel et al. [7] presented 
an attribute based Tabu Search employing new neighborhood 
called ( )cN s . Hu et al. [8] devised a VNS with the global edges 
exchange neighborhood designed by Pop [3] and the restricted 
nodes exchange neighborhood provided by Ghosh [4]. Moreover, 
by employing an additional neighborhood type based on the small 
enough parts of a candidate solution via Mixed Integer Program-
ming (MIP), Hu et al. proposed a new VNS for the GMST [9]. 

As an efficient tool for heuristic algorithm design, the muscle 
was firstly introduced by Jiang et al. [10] for the Three-Index 
Assignment Problem (AP3). The muscle is defined as the union of 
all optimal solutions. In [10], an Approximate Muscle guided 
Global Optimization (AMGO) was proposed to solve the AP3. 
Experimental results demonstrated that the new conception could 
dramatically improve the effectiveness for heuristic algorithm. 

Motivated by the success of the muscle in AP3, we investigate 
how to employ this tool for GMST as follows. Firstly, we demon-
strate that it’s NP-hard to obtain the muscle for GMST. The key 
idea behind the proof is to map any GMST instance to a biased 
GMST instance with a unique optimal solution. Therefore, finding 
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the muscle of the biased instance is equivalent to finding an opti-
mal solution to the original instance. Secondly, it’s shown that the 
muscle can be approximated by those principle and subordinate 
candidate sets, which are defined by the lower bounds on a re-
duced version of GMST. Finally, a new algorithm named DASA 
is proposed to efficiently solve GMST. DASA consists of two 
phases. In the first phase, those candidate sets are generated. The 
second phase is a loop composed of several steps. In each loop, an 
initial solution is constructed for future improvement. After that, a 
local search based on those candidate sets is employed to improve 
the initial solution. Then, a path relinking procedure is conducted 
to further improve the current solution. During the whole loop, 
those candidate sets will be dynamically adjusted to retain new 
features provided by new solutions. Experiments on 46 widely 
used instances [9] demonstrate that our new algorithm outper-
forms existing heuristic algorithms in terms of solution quality. 

2. 1BPRELIMINARIES 
In this section, we shall present some related definitions and 

notations about GMST. 

Given an undirected weighted graph ( , , )G V E w= , where  
{1,2, , }V n= L  is the node set, E  is the edge set, and 

:w E R+→  is the edge cost function. The node set V  is parti-
tioned into k  disjoint nonempty clusters 1 2, , , kC C CL  such that 

1 2 kC C C V=U ULU  and i jC C = ∅I (1 i j k≤ ≠ ≤ ). A feasible 
solution to the GMST instance (denoted by ( , , )GMST V E w ) is 
defined as a MST on the sub-graph ( , , )s s s sG V E w= , where 

{ 1 }s iV v i k= ≤ ≤  contains exactly one node  from every cluster, 
i.e., i iv C∈ ( 1 i k≤ ≤ ), {( , ) ( , ) , , }s i l i l i l sE v v v v E v v V= ∈ ∈ , and 

( , ) ( , )s i l i lw v v w v v= . GMST aims to find a feasible solution whose 
cost is minimized. Since a MST can be constructed from the sub-
graph ( , , )s s s sG V E w=  in ( log )s sE VΟ  time [11], most papers 
use the set sV  to represent the feasible solution rather than the 
MST. The cost for the MST derived from ( , , )s s s sG V E w=  is 
denoted by ( )ssol V . 

Figure 1 illustrates an example for a GMST instance. There’re 
5 clusters in this instance, including {1,2,3,4} , {5,6,7,8,9} , 
{10,11} , {12,13,14} , and {15,16} . For brevity, the edges among 
these clusters are not given in Figure 1. A MST generated from 
the solution {4, 6, 10, 12, 16} is linked by the black lines.  

 
Given a GMST instance ( , , )GMST V E w , let 1 2{ , , , }q

s s sV V V∗Π = L  
be the set of all optimal solutions, where q∗Π =  represents the 
number of optimal solutions. The muscle of ( , , )GMST V E w  is 
defined as 1 2( , , ) q

s s smuscle V E w V V V= U ULU . It’s easy to see that 

we can dramatically reduce the search space if the muscle is 
available.  

Given a GMST instance ( , , )GMST V E w , its biased instance is de-
fined as ˆ( , , )GMST V E w , where ˆ ( , ) ( , ) 1 2in jw i j w i j += +  for 
every ( , )i j E∈  (i < j) and ˆ ˆ( , ) ( , )w i j w j i= (i>j). Obviously, the 
biased instance is also a GMST instance and a feasible solution to 
the biased instance is also feasible to its original instance. Given a 
solution sV  to ˆ( , , )GMST V E w , its cost is denoted by ˆ ( )ssol V . 

We shall shows that it’s NP-hard to obtain the muscle for 
GMST as follows.  

Lemma 1. Given a GMST instance ( , , )GMST V E w , if ( , )w i j  
is nonnegative integer for every ( , )i j E∈ , then the biased in-
stance ˆ( , , )GMST V E w  has a unique optimal solution. 

Proof. To prove this lemma, we only need to verify that 
ˆ ( )ssol V ′ ˆ ( )ssol V ′′≠ , for any two distinct feasible solutions s sV V′ ′′≠  

to the biased instance ˆ( , , )GMST V E w . 
By definition, the cost function of any MST is the total edge 

cost to the spanning tree. Since s sV V′ ′′≠ , there must exist one 
edge ( , )i j∗ ∗  ( i j∗ ∗< ) which is only contained in ˆ( , )sMST V w′  
rather than ˆ( , )sMST V w′′ , where ˆ( , )sMST V w′  and ˆ( , )sMST V w′′  are 
the MSTs derived from ˆ( , , )s s sG V E w′ ′ ′=  and ˆ( , , )s s sG V E w′′ ′′ ′′= , 
respectively.  When viewed as a binary string, the i n j∗ ∗∗ + th bit 
of the fractional part of ˆ ( )ssol V ′  will be 1. However, the same bit 
of ˆ ( )ssol V ′′  will be 0. Therefore, we have that ˆ ( )ssol V ′ ˆ ( )ssol V ′′≠  
holds. 

Thus, this lemma is proved.  

Lemma 2. Given a GMST instance ( , , )GMST V E w , if ( , )w i j  is 
nonnegative integer for every ( , )i j E∈ , then the unique optimal 
solution to the biased instance ˆ( , , )GMST V E w  is also optimal to 

( , , )GMST V E w . 

Proof. By Lemma 1, given a GMST instance ( , , )GMST V E w , 
there exists a unique optimal solution (denoted by sV ∗ ) to the 
biased instance ˆ( , , )GMST V E w . Obviously, sV ∗  is also a feasible 
solution to ( , , )GMST V E w .  

Assuming Lemma 2 is false, there exists at least one solution 

sV ′  such that ( ) ( )s ssol V sol V ∗′ < . We verify that a contradiction 
will be found in the following proof.  

According to the assumption that ( , ) {0}w i j Z +∈ U  for 
( , )i j E∈ , we have that ( )ssol V Z′ ∈  and ( )ssol V Z∗ ∈ . Since 

( ) ( )s ssol V sol V ∗′ < , we have that ( ) ( ) 1s ssol V sol V∗ ′− ≥ . On the 
other hand, we have 

( , )
ˆ0 ( ) ( ) 1 2 1i n j

s s i j E
sol V sol V ∗ +

∈
′ ′< − < <∑ . 

Similarly, we have ˆ0 ( ) ( ) 1s ssol V sol V∗ ∗< − < . Thus, it implies 
that 

ˆ ( )ssol V ∗ ˆ ( )ssol V ′−  
ˆ( ) ( ) ( ( ) ( ))s s s ssol V sol V sol V sol V∗ ∗ ∗′= − + − ˆ( ( ) ( ))s ssol V sol V′ ′− −  

ˆ1 ( ( ) ( ))s ssol V sol V∗ ∗≥ + − ˆ( ( ) ( ))s ssol V sol V′ ′− − 1 1 0> − =  

However, it contradicts with the fact that sV ∗  is optimal to the 
biased instance ˆ( , , )GMST V E w . Thus, this lemma is proved.  
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Figure 1. An Example of GMST  
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Theorem 1. There exists no polynomial time algorithm to ob-
tain the muscle of GMST unless P NP= . 

Proof.  Otherwise, there must be a polynomial time algorithm 
(denoted by Η ) which can obtain the muscle of GMST. A con-
tradiction will be found in the following proof by constructing a 
polynomial time algorithm to solve GMST. 

Given any GMST instance ( , , )GMST V E w , without loss of gen-
erality, we shall assume that ( , )w i j  is nonnegative integer for 
every ( , )i j E∈ , otherwise we can rescale every edge weight by 
multiplying a large number. Therefore, an optimal solution to the 
instance ( , , )GMST V E w  can always be found as follows. 

Firstly, the biased instance ˆ( , , )GMST V E w  can be constructed 
in 2( )nΟ  time. Secondly, since the biased instance is also a 
GMST instance, its muscle can be found by Η  in polynomial 
time (denoted by ( )Ο • ). By Lemma 1, the muscle is the unique 
optimal solution to ˆ( , , )GMST V E w . Meanwhile, by Lemma 2, 
the muscle is also optimal to ( , , )GMST V E w . Therefore, we can 
always solve GMST in 2( ) ( )nΟ • + Ο  running time. Obviously, it 
contradicts with the fact that GMST is NP-hard. Thus, this theo-
rem is proved.  

3. 2BCANDIDATE SETS 
In this section, we shall discuss how to approximate the muscle. 

Given a node iv C∈ (1 i k≤ ≤ ), a v -graph ( , , )v v v vG V E w=  is 
defined as follows. Every cluster jC (1≤j≤k) is reduced to a node 

jc . Let { |1 }v jV c j k= ≤ ≤ , let {( , ) |1 , , }v j lE c c j l k j l= ≤ ≤ ≠ . 
For every edge ( , )j lc c ( , ,j l j i l i≠ ≠ ≠ ), the edge cost ( , )v j lw c c  
is defined as the minimum cost of edges between cluster jC  and 

lC , i.e., ( , ) min ( , )v j l p qw c c w v v= , where p jv C∈  and q lv C∈ . 
For every edge ( , )i jc c ( j i≠ ), its cost ( , )v i jw c c  is defined as the 
minimum cost of edges between node v  and the nodes in jC  on 

( , , )G V E w= . After the v -graph is constructed, the lower bound 
(denoted by ( )LB v ) for v  is defined as the cost of the MST on 

( , , )v v v vG V E w= .The MST can be obtained in ( log )v vE VΟ  
time [11]. 

Given a cluster iC , we sort the nodes in cluster iC  by their 
lower bounds in ascending order. The principle candidate set (de-
noted by ( )iPCS C ) for iC  is defined as the set of those nodes 
ranked from 1st to | | *iC r⎡ ⎤⎢ ⎥ th, where r  ( 0 1r≤ ≤ ) is the princi-
ple candidate set ratio. The union of all the principle candidate 
sets is denoted by ( )PCS V , i.e., 1( ) ( )i k iPCS V PCS C≤ ≤= U . 

To evaluate the effectiveness of the principle candidate sets, we 
conducted several experiments on some typical GMST instances 
whose optimal solutions are presented in [2].  As shown in Figure 
2, along with the growth of the value of r , more and more nodes 
in optimal solutions will be contained by ( )PCS V . When the 
principle candidate ratio r  exceeds 0.4, there’re over 80% nodes 
in the optimal solutions will be contained by ( )PCS V  for all the 
instances (gr137, kroa150, gr202, and krob200). 

In addition to the principle candidate set, we also define the 
subordinate candidate set for every node iv C∈ (1 i k≤ ≤ ). Given 
a node iv C∈ ( 1 i k≤ ≤ ) and its v -graph ( , , )v v v vG V E w= , let 

( )A v  be the set of nodes adjacent to ic  in the MST on 
( , , )v v v vG V E w= . The subordinate candidate set (denoted by 

( )SCS v ) for node v  is defined as the set of nodes v V′∈  such 
that lv C′∈ , ( )lc A v∈ , and ( , ) ( , )v i lw v v w c c′ = . The union of all 
the subordinate candidate sets is denoted by ( )SCS V , i.e., 

( ) ( )v VSCS V SCS v∈= U .An example is given in Figure 3. Figure 3 
(a) shows the 10-graph defined on GMST and its MST plotted by 
dashed lines. Figure 3 (b) shows that (10) {16,13}SCS = , since 

10 3 4(10,13) ( , )w w c c= , 10 3 5(10,16) ( , )w w c c= . 
Similar to the principle candidate sets, we also evaluated the ef-

fectiveness of the subordinate candidate sets on some typical 
GMST instances. As shown in Figure 4 (a), along with the growth 
of the value of r , most nodes in optimal solutions will be con-
tained by ( )SCS V . Figure 4 (b) shows that the normalized size of 

( )SCS V  increases slowly along with the growth of the value of 
r . 

In summary, it’s a good way to approximate the muscle with 
both principle candidate sets and subordinate candidate sets. 

 

 

4. 3BDASA 
Inspired by the observation that the muscle can be approxi-

mated by those candidate sets (both principle and subordinate 
candidate sets), we propose the Dynamic cAndidate set based 
Search Algorithm (DASA) for GMST in this section. It can dra-
matically reduce the search space by restricting the search process 
in the candidate sets. 

The framework of DASA is presented in Algorithm 1. After the 
initiation of the best solution, the principle and subordinate candi-
date sets will be generated. Then, a loop is repeated in DASA 
until the stopping criterion is met. In this paper, a pre-defined 
running  time  is  given as the stopping criterion. The loop mainly  
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Algorithm 1: DASA 
Input: GMST instance ( , , )GMST V E w , r, jΔ , rΔ  

Output: solution *
sV  

Begin 
(1) let the best solution iteration number *j =0, the best solu-

tion *
sV = ∅  with cost *( )ssol V = +∞ , 0j =  

(2) generate principle candidate sets with the ratio r and subor-
dinate candidate sets 

(3) while the stopping criterion is not met do 
//to generate an initial solution 

      (3.1) if *( )mod 0j j j− Δ = //no improvement in jΔ  iterations 
              then  

(3.1.1) 0 =InitSolution( ( , , ))sV GMST V E w  
(3.1.2) r r r= + Δ //to enlarge the principle candidate sets 

else 
(3.1.3) shake *

sV by random perturbation to generate 0
sV  

(3.2) 0=LS( )s sV V  //local search 

(3.3) *=PathRelinking( , )s s sV V V  

(3.4) if ( )ssol V < *( )ssol V  
(3.4.1) adjust the principle candidate set 
(3.4.2) *

sV = sV , *j = j 
      (3.5) j + +  

(4) return *
sV  

End 

consists of 4 steps. Firstly, an initial solution is constructed for 
further improvement (see Step (3.1)). At most times, the initial 
solution is generated by randomly perturbing the best solution, so 
that the initial solution can retain some components in the best 
solution while some new features can also be introduced for fu-
ture improvement. To avoid getting trapped in the neighborhood 
of the best solution, a new solution will be constructed from those 
candidate sets directly, when no improvement is achieved during 
predefined iterations ( jΔ  iterations in DASA). Secondly, a local 
search process is employed to improve the initial solution (see 
Step (3.2)). Thirdly, a path relinking process is called to further 
improve the current solution (see Step (3.3)). Finally, DASA 
checks whether a better solution is obtained. If so, the principle 
candidate sets will be adjusted to include new features provided 
by this new solution, and the best solution is replaced with the 
new solution (see Step (3.4)).  

4.1 7BInitializing a Solution with Candidate Sets 

Obviously, a good initial solution is essential for local search. 
In this subsection, we present the algorithm of InitSolution  
which is used in Step (3.1) of DASA. The key idea of 
InitSolution  is to generate a new solution by employing the prin-
ciple candidate sets and the subordinate candidate sets. As shown 
in Section 2, these two kinds of candidate sets contain most nodes 
appearing in optimal solutions. Therefore, the initial solutions 
generated by InitSolution  are more likely to converge to optimal 
solutions than random ones. 

Algorithm 2: InitSolution 
Input: GMST instance ( , , )GMST V E w  

Output: initial solution 0
sV  

Begin 
(1) set 1 2{ , , }kC C C C= L , 0

sV = ∅ , Q = ∅  

(2) while 0| |sV k<  do 
if Q = ∅  then 
(2.1) randomly choose a cluster C Cξ ∈  

(2.2) select the 1st ranked node v  from ( )PCS Cξ  

(2.3) { }Q v= , \C C Cξ= , 0 0 { }s sV V v= U  

else // Q ≠ ∅  
(2.4) select a node v Q∈  
(2.5) \ { }Q Q v=  
(2.6) for every ( )v SCS v′∈  do 

(2.6.1) if C Cη∃ ∈  s.t. ( )v PCS Cη′∈  then 

{ }Q Q v′= U , \C C Cη= , 0 0 { }s sV V v′= U  

(3) return 0
sV  

End  

   A detailed description of InitSolution  is given in Algorithm 2. 
Two sets are used in InitSolution  to record different kinds of 
information. The set  Q  is employed to record those nodes under 
consideration and the set C  is to record those unchecked clusters. 
The algorithm InitSolution  works as follows. Firstly, all the clus-
ters are marked as unchecked by setting 1 2{ , , }kC C C C= L  and 
the initial solution is also set to empty (see Step (1)). At this step, 
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there’s no node under consideration, i.e., Q = ∅ . Secondly, a 
loop is repeated until the initial solution is successfully con-
structed (see Step (2)). There’re 2 cases in the loop. For the case 
that no node exists to be considered in Q  (see Step (2.1)-(2.3)), 
an unchecked cluster will be randomly chosen and removed from 
C . The first ranked node in the principle candidate set of this 
chosen cluster will be added to Q  for further consideration. At 
the mean time, this first ranked node will be also added to the 
initial solution. For the other case that Q ≠ ∅  (see Step (2.4)-
(2.6)), a node v  in Q  will be picked out. After that, every node 
v′  in its subordinate candidate set will be checked in the follow-
ing way. If the cluster containing v′  hasn’t been checked and v′  
belongs to the principle candidate set of this cluster, the node 
v′ will be added to Q  for further consideration. In addition, the 
node v′  will also be inserted to the initial solution. 

4.2 8BShaking by Random Perturbation 
In DASA, a new initial solution can also be generated by shak-

ing the best solution. As shown by Boose [12], there exist “big 
valley” structures for many combinatorial optimization problems 
(e.g. the traveling salesman problem), i.e., a lot of local optimal 
solutions cluster together around optimal solutions. Therefore, it’s 
a good way to obtain the initial solution by shaking the best solu-
tion. 

In this paper, we randomly perturb the best solution for further 
local search as follows. Firstly, *t iterationφ= Δ⎡ ⎤⎢ ⎥  clusters are 
randomly selected, where iterationΔ is the iterations elapsed 
since the best solution is found in DASA, φ is the perturbation 
intensity factor between 0 and 1. Secondly, a node in every se-
lected cluster is arbitrarily chosen to replace the existing one in 
the best solution. By this strategy, some useful features of the best 
solution can be retained in the new initial solution, while many 
new nodes are introduced for further improvement. Obviously, the 
more iteration elapsed since the best solution is achieved, the 
more randomness will be introduced by our shaking strategy. 

4.3 9BCandidate Sets Adjustment 
In DASA, the principle candidate sets are dynamically adjusted 

in two cases. 

For the case that no improvement is achieved in jΔ  iteration, 
we enlarge the principle candidate set size by setting r r r= + Δ  
(see Step (3.1.2) in DASA). This strategy is necessary, because an 
optimal solution may include a “bad” node when viewed from a 
local perspective. Although small principle candidate sets can 
contain most nodes in optimal solutions, a fraction of those nodes 
in optimal solution can still be excluded out of the principle can-
didate sets. Therefore, we dynamically enlarge the principle can-
didate sets to cover more potential nodes. 

For the case that a better solution is achieved after local search 
and path relinking process, the principle candidate sets are ad-
justed to retain elite information from the improved solutions (see 
Step (3.4.1) in DASA). It works as follows. Firstly, every node 
appearing in both the new better solution and principle candidate 
sets is moved to the first ranked positions. If it isn’t contained in 
its corresponding principle candidate set, a node in the new better 
solution will be inserted to the first ranked position in the princi-
ple candidate set. 

4.4 10BLocal Search 
After an initial solution is generated, a local search process will 

be employed in DASA to further improve it. Algorithm 3 presents 
the framework of our local search process. Firstly, a random visit 
order VR  for clusters will be initialized (see Step (1)). Then the 
current solution will be improved by a process named ClusterOp-
timizer, cluster by cluster in VR  (see Step (3.2)). When a better 
solution is found, the current solution will be replaced with the 
new found solution. And then the new current solution will be 
further improved using clusters in VR  until no improvement can 
be achieved.  

Algorithm 3: LS 
Input: solution 0

sV  
Output: solution *

sV  
Begin 
(1) initialize a random visit order VR  for clusters, let  * 0

s sV V=  
(2) flag = true 
(3) while flag = true do 

(3.1) flag = false 
(3.2) for i = 1 to k do 
      (3.2.1) let Cγ be the ith cluster in VR  
      (3.2.2) ( , )s sV ClusterOptimizer V Cγ

∗=  
      (3.2.3) if ( ) ( )s ssol V sol V ∗<  then 

s sV V∗ = , flag = true, break 
(4) return *

sV   
End  

Given a cluster and an initial solution, let v∗  be the cluster’s 
node appearing in the solution. The process ClusterOptimizer (see 
Algorithm 4) works as follows.  For every node v  belonging to 
the principle candidate set of this cluster, a modified solution is 
generated by replacing v∗  with v . If any improvement can be 
achieved, the modified solution is returned. Otherwise, a depth 
first search named DFS is further employed to improve the modi-
fied solution. If the resulting solution from DFS is better than the 
initial solution, this solution from DFS will be returned. 

Algorithm 4: ClusterOptimizer 
Input: solution 0

sV , cluster iC  
Output: solution *

sV  
Begin 
(1) let v∗  be the cluster iC ’s node appearing in 0

sV , * 0
s sV V=  

(2) for every node ( ) \ { }iv PCS C v∗∈  do 
(2.1) let 0 \ { } { }s sV V v v∗= U  
(2.2) if 0( ) ( )s ssol V sol V<  then *

sV = sV , break 
else 

0=DFS( , , ,{ })s s s iV V V v C′  //depth first search from v  

if 0( ) ( )s ssol V sol V′ <  then s sV V∗ ′= , break 

(3) return *
sV    

End 
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DFS (see Algorithm 5) works in a recursive way. A set P  is 
used to record those visited clusters. Given a node v , the current 
solution sV  and the initial solution 0

sV , DFS iteratively checks 
every node v′  belonging to the subordinate candidate set of 
node v . If the cluster (denoted by vC ′  in DFS) containing v′  
hasn’t been visited yet, a modified solution sV ′  will be generated 
by replacing vC ′ ’s node in sV  with v′ . If it is better than the 
initial solution 0

sV , the modified solution will be returned. Oth-
erwise, the DFS process will be recursively called by taking in  

sV ′ , 0
sV , v′ ,and { }vP C ′U  as input. More details can be found in 

Algorithm 5. 

Algorithm 5: DFS 
Input: solution sV , solution 0

sV , node v ,  visited cluster set P  
Output: solution *

sV  
Begin 
(1) *

s sV V=  
(2) for every node ( )v SCS v′∈  do 

(2.1) let vC ′  be the cluster containing v′ , let v′′  be the vC ′ ’s 
node appearing in sV  

(2.2) if vC P′ ∉  then //when vC ′  hasn’t been visited before 
          (2.2.1) let \ { } { }s sV V v v′ ′′ ′= U  
          (2.2.2) if 0( ) ( )s ssol V sol V′ <  then *

s sV V ′= , break 
          (2.2.3) 0( , , , { })s s s vV DFS V V v P C ′′′ ′ ′= U  
          (2.2.4) if 0( ) ( )s ssol V sol V′′ <  then *

s sV V ′′= , break 
          (2.2.5) if ( ) ( )s ssol V sol V ∗′′ <  then *

s sV V ′′=  
(3) return *

sV    

End 

4.5 11BPathRelinking 
In DASA, a PathRelinking strategy is called to improve the lo-

cal optimal solution. PathRelinking is firstly proposed by Glover 
[13] as an intensification strategy to explore trajectories linking 
two elite solutions. The key idea behind PathRelinking is to com-
bine basic components of two guiding solutions so that the search 
space between them can be explored to discover new better solu-
tions.  

Our PathRelinking for DASA is presented in Algorithm 6, 
which takes in two solutions (denoted by sV , sV ′ , respectively) as 
input. The main part of PathRelinking consists of two phases. The 
first phase (Step (1)-(2)) constructs a solution from sV  to sV ′ , and 
the second one (Step (3)-(4)) does from sV ′  to sV . Since these 
two phases work in a similar way, we just briefly investigate the 
first phase as follows. Firstly, the nodes appearing in sV ′  rather 
than sV  are collected in the set dV . Both the current solution 0

sV  
and the resulting solution 1

sV  in the first phase are initialized by 
sV . Secondly, a loop is repeated until 0

sV  equals to sV ′ . In the 
loop (Step (2)), every node in dV  will replace its corresponding 
node appearing in 0

sV  to construct a new solution (denoted by 
sV ′′ ), respectively. Out of those new generated solutions, the best 

one will become the new current solution for further iteration 
(Step (2.3)). If the new current solution 0

sV  is better than 1
sV , it 

will become the new  resulting solution (Step (2.4)). After such 
processes, the set dV  is renewed and this loop continues until dV  
is empty (i.e., 0

sV  equals to sV ′ ). After these two phases, two 
solutions are generated and the better one will be returned. 

Algorithm 6: PathRelinking 
Input: solution sV , sV ′  

Output: solution *
sV  

Begin 
// relink from sV  to sV ′  
(1) let \d s sV V V′= , 1

s sV V= , 0
s sV V=  

(2) while 0
s sV V ′≠  

(2.1) mc = +∞  
(2.2) for every dv V∈  do 

(2.2.1) let vC  be the cluster containing v  
(2.2.2) replace the vC ’s node in 0

sV  with v  to generate a 
new solution sV ′′  

(2.2.3) if ( )ssol V mc′′ <  then  

s sV V ′′= , ( )smc sol V ′′= , v v=  
(2.3) 0

s sV V=  
(2.4) if 0 1( ) ( )s ssol V sol V<  then 1 0

s sV V=  
(2.5) \ { }d dV V v=  

// relink from sV ′  to sV  
(3) let \d s sV V V ′= , 2

s sV V ′= , 0
s sV V ′=  

(4) while 0
s sV V≠  

(4.1) mc = +∞  
(4.2) for every dv V∈  do 

(4.2.1) let vC  be the cluster containing v  
(4.2.2) replace the vC ’s node in 0

sV  with v  to generate a 
new solution sV ′′  

(4.2.3) if ( )ssol V mc′′ <  then  

s sV V ′′= , ( )smc sol V ′′= , v v=  
(4.3) 0

s sV V=  
(4.4) if 0 2( ) ( )s ssol V sol V<  then 2 0

s sV V=  
(4.5) \ { }d dV V v=  

(5) if 1 2( ) ( )s ssol V sol V<  then * 1
s sV V=  else * 2

s sV V=  
(6) return *

sV  
End 

5. 4BEXPERIMENTS AND ANALYSIS 
In this section, we demonstrate the effectiveness of DASA by 

experimental results over the GMST instances used by Hu et al. 
[9]. There’re 4 kinds of instances, including TSPLIB, grouped 
Euclidean, random Euclidean, and non-Euclidean. DASA is im-
plemented in C++ on a Pentium D 2.66GHz PC with 1GB RAM 
running the Federal Linux 10 operating system. In the experiment, 
DASA sets r=0.5, jΔ =10, rΔ =0.2, φ =0.8. For comparison, we 
also list the results for TS2 [4], VNDS [4], SA [3], GA [5], and 
VNS [9]. All the experimental results for those algorithms are 
obtained from [9].  

As presented in [9], the results for VNDS and VNS are aver-
aged over 30 runs, and the results for SA are averaged over 10 
runs due to its long running time. Since TS2 is deterministic, it’s 
run only once in [9]. For every run of TS2, VNDS, and VNS, 
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Table 1. Results on TSPLIB Instances with Geographical Clustering 
TSP instances TS2 VNDS SA GA VNS DASA 

Names |V| k time  ( )C T   ( )C T  ( )C T  std dev ( )C T  ( )C T  std dev  ( )C T  std dev 
gr137 137 28 150s 329.0 330.0 352 0.00 329.0 329.0 0.00 329.0 0.00

kroa150 150 30 150s 9815.0 9815.0 10885.6 25.63 9815.0 9815.0 0.00 9815.0 0.00
d198 198 40 300s 7062.0 7169.0 7468.7 0.83 7044.0 7044.0 0.00 7044.0 0.00

krob200 200 40 300s 11245.0 11353.0 12532.0 0.00 11244.0 11244.0 0.00 11244.0 0.00
gr202 202 41 300s 242.0 249.0 258.0 0.00 243.0 242.0 0.00 242.0 0.00
ts225 225 45 300s 62366.0 63139.0 67195.1 34.49 62315.0 62268.5 0.51 62268.3 0.48
pr226 226 46 300s 55515.0 55515.0 56286.6 40.89 55515.0 55515.0 0.00 55515.0 0.00
gil262 262 53 300s 942.0 979.0 1022.0 0.00 – 942.3 1.02 942.0 0.00
pr264 264 54 300s 21886.0 22115.0 23445.8 68.27 – 21886.5 1.78 21886.0 0.00
pr299 299 60 450s 20339.0 20578.0 22989.4 11.58 – 20322.6 14.67 20317.4 1.52
lin318 318 64 450s 18521.0 18533.0 20268.0 0.00 – 18506.8 11.58 18513.6 7.82
rd400 400 80 600s 5943.0 6056.0 6440.8 3.40 – 5943.6 9.69 5941.5 9.91
fl417 417 84 600s 7990.0 7984.0 8076.0 0.00 – 7982.0 0.00 7982.7 0.47
gr431 431 87 600s 1034.0 1036.0 1080.5 0.51 – 1033.0 0.18 1033.0 0.00
pr439 439 88 600s 51852.0 52104.0 55694.1 45.88 – 51847.9 40.92 51833.8 36.07

pcb442 442 89 600s 19621.0 19961.0 21515.1 5.15 – 19702.8 52.11 19662.5 39.79
 

Table 2. Results on Grouped Euclidean, Random Euclidean, and Non-Euclidean Instances 
Instances TS2 VNDS SA VNS DASA 

Set |V| k |V|/k time  ( )C T  ( )C T  ( )C T  std dev ( )C T  std dev  ( )C T  std dev 

 125 25 5 600s 141.1 141.1 152.3 0.52 141.1 0.00 141.1 0.00 
Grouped Eucl 125 125 25 5 600s 133.8 133.8 150.9 0.74 133.8 0.00 133.8 0.00 

 125 25 5 600s 143.9 145.4 156.8 0.00 141.4 0.00 141.4 0.00 

 500 100 5 600s 566.7 577.6 642.3 0.00 567.4 0.57 588.1 2.09 
Grouped Eucl 500 500 100 5 600s 578.7 584.3 663.3 1.39 585.0 1.32 573.7 1.17 

 500 100 5 600s 581.6 588.3 666.7 1.81 583.7 1.82 581.1 1.94 

 600 20 30 600s 85.2 87.5 93.9 0.00 84.6 0.11 84.6 0.00 
Grouped Eucl 600 600 20 30 600s 87.9 90.3 99.5 0.28 87.9 0.00 87.9 0.00 

 600 20 30 600s 88.6 89.4 99.2 0.17 88.5 0.00 88.5 0.00 

 1280 64 20 600s 327.2 329.2 365.1 0.46 315.9 1.91 320.1 3.52 
Grouped Eucl 1280 1280 64 20 600s 322.2 322.5 364.4 0.00 318.3 1.78 317.2 2.37 

 1280 64 20 600s 332.1 335.5 372.0 0.00 329.4 1.29 329.1 1.99 

 250 50 5 600s 2285.1 2504.9 2584.3 23.82 2300.9 40.27 2292.5 23.53 
Random Eucl 250 250 50 5 600s 2183.4 2343.3 2486.7 0.00 2201.8 23.30 2244.0 56.49 

 250 50 5 600s 2048.4 2263.7 2305.0 16.64 2057.6 31.58 2071.2 55.90 

 400 20 20 600s 557.4 725.9 665.1 3.94 615.3 10.80 612.4 7.23 
Random Eucl 400 400 20 20 600s 724.3 839.0 662.1 7.85 595.3 0.00 611.5 23.35 

 400 20 20 600s 604.5 762.4 643.7 14.54 587.3 0.00 604.9 23.45 

 600 20 30 600s 541.6 656.1 491.8 7.83 443.5 0.00 508.3 59.08 
Random Eucl 600 600 20 30 600s 540.3 634.0 542.8 25.75 537.0 10.20 550.7 32.03 

 600 20 30 600s 627.4 636.5 469.5 2.75 469.0 11.90 530.6 26.81 

 200 20 10 600s 71.6 94.7 76.9 0.21 71.6 0.00 71.6 0.07 
Non-Eucl 200 200 20 10 600s 41.0 76.6 41.1 0.02 41.0 0.00 41.0 0.00 

 200 20 10 600s 52.8 75.3 86.9 5.38 52.8 0.00 52.8 0.13 

 500 100 5 600s 143.7 203.2 200.3 4.44 152.5 3.69 140.3 6.79 
Non-Eucl 500 500 100 5 600s 132.7 187.3 194.3 1.20 148.6 4.27 144.3 6.76 

 500 100 5 600s 162.3 197.4 205.6 0.00 166.1 2.89 162.0 1.87 

 600 20 30 600s 14.5 59.4 22.7 1.49 15.6 1.62 16.4 2.41 
Non-Eucl 600 600 20 30 600s 17.7 23.7 22.0 0.82 16.1 1.24 16.1 1.28 

 600 20 30 600s 15.1 29.5 22.1 0.44 16.0 1.66 15.8 1.48 
             

 
some predefined CPU time limits are given in the experiments on 
a Pentium IV 2.8 GHZ PC [9]. Therefore, in order to normalize 
the running time, a scheme is used according to the well-known 

SPEC benchmark (Standard Performance Evaluation Corporation, 
Uwww.specbench.org/osg/cpu2000/ U), which indicates that Pentium 
D 2.66 GHz is nearly 1.13 times faster than Pentium IV 2.8 GHZ 
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(see Appendix). Hence, the CPU time used in DASA is limited to 
88.3% of the one used in VNS.  

Table 1 and 2 show the results of the experiments on the 
TSPLIB instances and other instances, respectively. Columns 1-3 
in both Table 1 and Table 2 present instances names, number of 
nodes, and number of clusters, respectively. Column 4 in Table 2 
shows the average number of nodes per cluster. Column 4 in Ta-
ble1 (column 5 in Table 2) presents the time limits for the heuris-
tics (except SA). In columns 5-11 of Table 1 (columns 6-11 of 
Table 2), we present the computational results reported by Hu et 
al. [9]. The column GA in Table 1 shows the results obtained by 
the GA of Golden et al. [5], where just some smaller TSPLIB 
instances are tested. Results of GA are unavailable for instances 
in Table 2. 

It can be found from Table 1 and Table 2 that TS2 obtains 21 
best results out of the 46 instances, VNDS obtains 4 best results, 
SA obtains no best results, VNS obtains 25 best results, and 
DASA obtains 29 best results. DASA outperforms other algo-
rithms for most of the instances. Since VNS is the best heuristic 
algorithm reported in the literature [9], we will compare DASA 
with VNS in more details. Table 1 illustrates that DASA can ob-
tain better results on 6 TSPLIB instances than VNS, while VNS 
can obtain better results on 3 TSPLIB instances. Both DASA and 
VNS can obtain best solutions on the same 7 TSPLIB instances. 
In addition, the standard deviations of solutions by DASA are 
better than that by VNS for most TSPLIB instances. Table 2 
shows that DASA gets better results on 8 instances than VNS for 
both grouped Euclidean and non-Euclidean instances, while VNS 
gets better solutions on 3 instances than DASA for both grouped 
Euclidean and non-Euclidean instances. An exception is that no 
best result is found by DASA for random Euclidean instances, 
while best results can be found by VNS on 5 random Euclidean 
instances. The poor performance of DASA on random Euclidean 
instances may be caused by the hardness to find effective and 
informative candidate sets for such instances. 

6. CONCLUSIONS 
In this paper, we show that it’s NP-hard to obtain the muscle 

for GMST. After that, a new heuristic algorithm named DASA is 
proposed to efficiently solve GMST. In future work, we will in-
vestigate the reasons why DASA works poorly on random 
Euclidean instances. Furthermore, more robust and efficient local 
search operators will be designed to accelerate DASA for solving 
larger instances. In addition, we will also explore the potential 
applications of the muscle on other NP-hard problems. 
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APPENDIX 
According to Table 3, Pentium IV 2.80 GHz: Intel Pentium D 

820 2.8 GHz = 1166 / 1321=0.883.  

Table 3. CPU Benchmark from SPEC 

 Pentium IV 2.80 GHz Intel Pentium D 820 2.80 GHz 

SPECint 2000 1166 1321 
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