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Abstract—String Satisfiability Modulo Theories (SMT) solver is
widely used in academia and industry. The runtime efficiency of
the solvers may have great impact on various software
engineering tasks such as automated reasoning and formal
verification. Although many studies have been conducted to test
SMT solvers, they mainly focus on detecting soundness bugs of
SMT solvers. In contrast, only very few studies concentrate on
detecting performance defects of SMT solvers. Moreover, in the
existing literatures, we observe two major barriers in generating
test cases that trigger performance defects for string SMT solvers,
i.e., the guidance information barrier and the diversity barrier.
In this paper, we propose a multi-objective evolutionary
algorithm, MulStringFuzz, to detect performance defects of string
SMT solvers. The unique feature of MulStringFuzz lies in
the combination of the multi-objective model and the diversity
maintenance mechanism. To tackle the guidance information
barrier, MulStringFuzz employs multiple objective functions, i.e.,
the running time, the code coverage, and the test case complexity
to guide the test case generation. To tackle the diversity barrier, a
tracing based crowding distance mechanism is proposed to ensure
the diversity of generated test cases. Extensive experiments are
conducted to evaluate the effectiveness of MulStringFuzz, and
we investigate how each proposed mechanism contribute to the
overall framework. The test cases generated by MulStringFuzz
can cover nearly 5,000 more lines of code and trigger 3.25
times performance defects than StringFuzz, which shows that
MulStringFuzz can effectively detect performance defect of the
String SMT solver.

Keywords: String SMT Solvers, Fuzz testing, Multi-
objective search algorithm

I. INTRODUCTION

String SMT solver is a software tool designed to solve the
Satisfiability Modulo Theories (SMT) problems with string
constraints, and it has been widely used in many areas, such
as software validation [1] and testing [2], [3]. SMT solver
errors may lead to crash of the application, or even worse. The
performance and correctness of the target application may be
influenced by the string SMT solver. For example, in the work
of Lucas Bang [4], they use the method of symbol execution
to calculate the information leakage of the program. The string
solver is used to calculate the path constraints generated by the
symbol execution in a run. If the solver has timeout problems
or fails to return results, normal analysis results will not be
obtained. Hence, it is critical to detect performance defects of
the string SMT solver.

Although many approaches have been proposed to test SMT
solvers, they mainly focus on detecting soundness bugs of

3xiaochen.li@uni.lu,

SMT solvers, i.e., when the solver returns the wrong result of
instance. For example, STORM [5] detects soundness bugs in
the solver by fragmenting the seed test cases, extracting some
formulas from them, and eventually constructing satisfiable
instances. Dominik Winterer [6] et al. adopt the method called
semantic fusion that guarantees satisfiability instances when
two existing formulas with known satisfiability are fused into
a new formula. Opfuzz [7] also can find a large number of
soundness bugs, which proposes type-aware operator mutation.
The key idea of type-aware operator mutation is to change
the function in the SMT formula with the function that
conforms to the type. These studies mainly focus on how
to generate instances with known satisfiability to detect SMT
solver soundness bugs.

However, only a few work focuses on testing the per-
formance issues of SMT solver. FuzzZSMT [8] is the first
work which uses grammar-based black-box fuzz testing to
complement traditional testing techniques for bit vector and
array theory. Alexandra Bugariu [9] proposes a method for
string theory, which generates simple formulas with known
truth values and derives more complex, equi-satisfiable for-
mulas with their transform rules. Both studies generate a
large number of SMT instances, and record test cases that
trigger timeouts in the process. In other words, the test cases
found are a windfall in testing SMT solvers and they do not
propose an effective variant to detect the solver performance
defects. To solve this problem, the Z3 developers implement
StringFuzz [9], which uses genetic algorithms and takes the
solver’s running time as the objective function, to generate
SMT instances with string constraints. Compared with other
approaches, StringFuzz is more effective for finding test cases
that trigger timeouts.

Although the existing approaches have yielded very promis-
ing results, there still are two major challenges in detecting
performance defects of String SMT solvers:

o Guidance information barrier. In the existing studies, the
test case generation is modeled as a single-objective prob-
lem, i.e., the current methods only use running time as
the objective function. Due to the lack of effective guid-
ance information, the search process tends to randomly
explore in the solution space. Consequently, such random
exploration variant does not guarantee test coverage, and
may discard some test cases that potentially trigger solver



defects during the search. As a result, the generated test
cases cannot be solved within a small running time limit,
but their actual running time cannot be predicted.

o Diversity barrier. Shortage of diversity assessment may
give rise to the algorithm producing an individual set that
all contain the same structural fragments. In genetic algo-
rithms such as StingFuzz, individual genes are exchanged
through crossover operations to form new genotypes. In
this way, a long-duration structure may be swapped into
many individuals, and these individuals take longer to be
solved by the SMT solver which leads to the algorithm
early convergence.

In order to tackle these challenges, in this paper, we present
MulStringFuzz (Multi-objective evolutionary algorithm for
String SMT solver testing) to effectively generate instances to
detect String SMT solver performance defects. The proposed
framework features the combination of the multi-objective
and the diversity maintenance mechanisms, to tackle the
aforementioned challenges, respectively. On the one hand, to
tackle the guidance information barrier, we consider three
objectives, i.e., the runtime difference from the reference
solver, the code coverage score, and the complexity score, to
guide the search process. The basic idea of MulStringFuzz
is to use multiple optimization objectives to enhance the
guidance information during the search process. We define
three optimization objectives as the fitness function: runtime
difference of the solver, code coverage score, and complexity
of SMT instances. We employ the runtime difference from the
reference solver to measure whether a performance defect has
occurred. By maximizing the runtime difference between the
target solver and the reference solver, we intend to generate
test cases that may trigger target solver performance defect.
To ensure that more code can be tested in the solution space
we explore, code coverage score is another optimization goal.
A reward mechanism is designed to encourage instances of
overlaying different code snippets during instance generation.
In addition, to prevent the test cases from bloating too much,
we consider the instance complexity as an optimization objec-
tive. Since there are multiple optimization targets, we adopt
non-dominated Pareto sort for individual screening. On the
other hand, to tackle the diversity barrier, we leverage the
similarity between the tracing information collected for test
cases to calculate the crowding distance between individuals.

To evaluate our approach, we first compare the effectiveness
of MulStringFuzz with the state-of-the-art single-objective
approach, i.e., StringFuzz. Second, we verify whether each
optimization objective is able to achieve the specified design
goal, by evaluating the results obtained by a set of variants
of MulStringFuzz. We observe the effect of the optimization
target by deleting it during the execution of the algorithm.
Finally, we analyze whether using tracing information based
similarity could effectively improve the population diversity.
Experimental results show that our method can effectively
generate test cases for detecting performance defects. There
has also been a significant improvement in code coverage and

instance size reduction. On average, nearly 5,000 more lines

of code can be covered by the test cases generated by Mul-

StringFuzz than StringFuzz; correspondingly MulStringFuzz

can trigger 3.25 times performance defects than StringFuzz.
The paper makes the following contributions:

e We propose a fuzzer MulStringFuzz, based on multi-
objective evolutionary algorithm, which can automati-
cally generate test cases to detect the String SMT solver’s
performance defect.

o We conduct extensive experiments to evaluate MulString-
Fuzz. The results show that the test cases generated by
MulStringFuzz can cover more code, and the complexity
of test cases is greatly reduced. Using the similarity of
tracing information to calculate the crowded distance can
effectively reduce the chance of repeatedly instance.

The rest of the paper is organized as follows. Section II
provides the background with a motivating example on SMT
solver and performance testing. Section III introduces the
design of our approach. The evaluation result of our approach
is introduced in Section IV. Section V describes related work
and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATING EXAMPLE
A. String SMT solver and Performance Defect

SMT is a decision problem for first-order theories, which
include integers, bit vectors, floating-point, string [10] etc. The
SMT solver is a tool to determine whether the formulas in
these theories are satisfactory. Z3str3 [11] and CVC4 [12] are
two widely used open source solver that implements string
theory. The solver verifies the input SMT instance and return
SAT/UNSAT. The SMT solver determines that the logic of
the instance can be satisfied, and it returns SAT. Otherwise,
UNSAT is returned. The performance defect occurs when the
SMT solver is unable to get the answer of the instance after
a long period of computation.

Developers often refer to performance defect as software
bugs [13]. Finding performance defect is also difficult because
performance defect have non-failover symptoms. Although
the existing work has found a large number of soundness
bugs, only few researches focus on performance defect of
SMT solver which leads to lack of performance benchmarks.
Compared with other well-developed solver theories, string
theory has a deficiency in benchmarks to test. In addition,
the specialized solver competition SMT-COMP [14] includes
a number of solver test benchmarks. However, there are few
test cases for string theory, and almost no test cases for
detecting performance defect. This still leaves a large gap in
the detection of String SMT solver performance defect.

StringFuzz is a genetic algorithm based method, which
can generate an instanced that takes a long time for a given
solver to solve. This method takes the running time of the
target solver as the objective function. In the culling phase
of the genetic algorithm, instances are ordered according to
a fitness function, selects excellent individuals and removes
others. StringFuzz is random in its mutations.



(set—logic QF_S)

(declare—fun var3 () Int)

(declare—fun var0 () String)

(declare—fun var2 () String)

(assert (< (str.to.int var2)
(str.to.int var0)))

(assert (> (str.indexof "+]YAPKJ8b8”
”8b8” var3d) 9))

(check—sat)
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(a) Individual A.

set—logic QF_S)

declare—fun var3 () Int)

declare—fun var0 () String)

declare—fun var2 () String)

assert (< (str.to.int ”8b87) 9))

assert (> (str.indexof ”+]YAPKJ8bS”
var2 var3d) (str.to.int var0)))

(check—sat)
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(c) Individual C.

1 (set—logic QF_S)

2 (declare—fun var3 () Int)

3 (declare—fun var0 () String)

4 (declare—fun var2 () String)

5 (assert (< (str.to.int var2) 9))
(assert (> (str.indexof ”+]YAPKJ8bS”

7 ”8b8” var3) (str.to.int var0))

8 (check—sat)

(b) Individual B.

(set—logic QF_S)
(declare—fun var3 () Int)
(declare—fun var0 () String)
(declare—fun var2 () String)
(

assert (> (str.indexof 7+]YAPKJ8b8”
var2 var3) (str.to.int var0)))
(check—sat)
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(d) Individual D.

Fig. 1. Test case generated by MulStringFuzz

B. Motivating Example

In this subsection, we describe the challenges of test case
generation for performance defect with an example.

In Figure 1, we present four SMT instances as individ-
vals. Suppose Individual A and Individual B are generated
first through individual crossover or mutation operation as
in StringFuzz. Individual A takes 0.21077 seconds for the
Z3str3 solver to verify. But Individual B merely takes 0.20428
seconds. If we only use time as the criterion for single-
objective optimization, Individual B will be left out of the
selection process, and unable to participate in the subsequent
evolution process. However, we notice that Individual B
covers 811 more lines of code at run time than Individual
A. Interestingly, by swapping node var2 and node “8b8”,
we can convert Individual B to Individual C, which could
trigger a timeout of Z3str3. If we consider code coverage
information as guidance information, Individual B will survive
in the population because it performs well in terms of code
coverage. In other words, using coverage information as an
optimization goal can fully search the solution space and find
more structures that trigger defects.

Meanwhile, we continue to investigate Individual D, which
is transformed from Individual C by deleting an assert state-
ment. The structure that triggers the timeout problem is
“(assert (> (strindexOf "+ ]YAPKJS8b8” var2 var3) (str.to.int
var0)))” . We note that Individual D is simpler, which al-
lowing developers to locate the structure that produces the
performance defect more quickly. Hence, we assume that the
complexity of the SMT instance could also be utilized as an
optimization objective, which would help us reduce the size of
test cases. Furthermore, we notice that there may exist conflicts
between the complexity of the instance and its corresponding
code coverage of the solver. Hence, such phenomena inspire
us to adopt multi-object.

Finally, we illustrate the effect of population diversity

assessment. Because Individual D is better than other individ-
uals, it can constantly participate in the following mutations.
If the node is swapped again, Individual D generates an entity
containing “(assert (> (str.indexOf "+ JYAPKJ8bS” var3 var2)
(str.to.int var0)))”. This individual performs essentially the
same as Individual D in fitness evaluation (because only
two String variable names are exchanged, without structural
change), which decreases the diversity of the solutions. Conse-
quently, a diversity assessment is necessary to help find diverse
test cases that trigger defects. Moreover, if we introduce
the diversity assessment, the similarity between the dynamic
execution files of the two individuals is 98.76%. Therefore, we
discard one of them to ensure that we generate more timeout
use cases with different structures.

IIT. OUR APPROACH

In this section, we introduce the implementation of Mul-
StringFuzz, include the main framework of MulStringfuzz, the
details of individual generation, the fitness function evaluation,
the congestion calculation, and the genetic operator.

A. Framework

We implement a multi-objective evolutionary algorithm
to find SMT instances that can trigger solver performance
defects, shown in Algorithm 1. First we randomly initialize
the population with a specified size. In the population, each
individual represents a test case. The population is evaluated
for fitness and subjected to rapid non-dominated Pareto se-
quencing [15] in lines 1-5. We set the individual fitness to the
Pareto frontier order. The initial population generates the first
offspring by 2-tournament selection in lines 6-7.

The algorithm works as follows. In each generation, the
offspring are generated from these individuals selected by
tournament selection based on dominance. In this process,
crossover operators and mutation operators are used to explore



Algorithm 1 MulStringFuzz
Input:

popSize: population size;

maxrGen: maximum evolutionary generation;

cx Prob: crossover probability;

mutate Prob: mutation probability;
QOutput:
A collection of SMT instances P,qzcGens
Py < GeneratePopulation(popSize)
for each ind € P, do

ind. fitnesses = evaluate(ind)
end for
fronts = sortNondominat(Fy)
Qo < selTournament(fronts, popSize)
Qo < GenOffspring(Qy, muProb, cx Prob)
for each i € [1, maxGen] do
R+ P 1UQi

10:  for each ind € R; do
ind. fitnesses = evaluate(ind)
122 end for
13:  fronts < sortNondominat(R;)
14:  for each front € fronts do
15: assignCrowdingDist( fronts)
16:  end for
17:  P; < seINSGA2(fronts, popSize)
18:  Q; + selTournamentDCD(P;, popSize)
19:  Q; + GenOffspring(Q;, muProb, cx Prob)
20: end for
21: return Pp,axcen
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the solution space. MulStringFuzz merges the offspring and
the parent generation to get the new population in line 9 of
algorithm 1. With the new population, the fitness is applied to
perform a fast non-dominated Pareto sort [16], in lines 10-13.
Then we calculate the crowding distance, select and generate
the offspring again, in lines 14-19.

B. Individual definition

In the implementation of genetic algorithms, each individual
need to be mapped into the coding space. Each individual
corresponds to a unique SMT instance. The individual in
this paper is implemented based on SMT-LIB' programs.
SMT-LIB theory is a standard rigorous description of solver
input and output. StringFuzz implements several generation
strategies (called generators), which encodes the SMT-LIB
instances as abstract syntax trees (ASTs), which consists of
four components: Set logic, Declare, Assert and Check sat.
Set logic defines the SMT-LIB theory used by the test cases,
which is set to “QF_S” by default. Variables and their types
are declared in the second part. For example, lines 2-4 of
the example in Fig.1(a) defines two String variables and one
Integer variable. Each assert statement is an abstract syntax
tree that is stored in the assert list. Line 5 and line 6 in Fig.1(a)

Thttp://smtlib.cs.uiowa.edu/

respectively represents an assert statement. Check sat has a
fixed statement which lets the solver check the satisfaction of
the test case. Since variables in the assert statement need to be
modified in the mutation operator, we use a map to maintain
the relationships between variable names and types for type
checking.

C. Design of fitness function

The definition of fitness function plays an important role
in the genetic algorithm. This subsection describes the three
objective functions, which are the running time difference
between the target solver and the reference solver, the code
coverage score, and the complexity of test cases.

The runtime difference of the solvers. The first objective
function is the runtime difference between the target solver
and the reference solver. Runtime is the most immediate
manifestation of the performance defects, and the first step
when looking for a timeout use case is to define the SMT
solver’s timeout. Although it is mentioned in the SMT-COMP
[14] contest to set 40 minutes as the time-out period for
each test case, an excessive time-out period will waste a lot
of computing resources when generating test cases. In order
to reduce the time elapsed for each test case validation, we
choose a relatively small timeout period, so that the overall
evolution time is acceptable. Therefore, we do not directly use
the running time of the test case as the objective function in the
experiment, but using the difference in running time between
the target solver and the reference solver as the objective
function. If we can maximize the time difference between the
two SMT solvers, the SMT instance is more possible to trigger
a performance defect in the target solver.

fie(1,T), [itI,T) < fi(1,B)
fi(L,T)+ (fi(1,T) — fe(1, B)), )
f+(I,T) > f:(I,B)

We use fi(I,T) and f;(I, B) to respectively represent the
CPU running time of the test case I on the target solver T
and the reference solver B. Eq. 1 shows how to calculate the
running time score of the SMT instance: when the test case /
uses less time on the target solver than the reference solver,
we use the running time of the target solver as the final score;
if the running time of the target solver is greater than the
reference solver, we combine the time difference between the
two running and the running time of the target solver as the
final score. For example, the instance in Fig. 1(d) takes 5s
to run under Z3str3 (we set Ss as the timeout period in our
experiment) and 0.01731 second to run under CVC4. So the
tScore of this instance is 5 + (5 — 0.01731) = 9.98269 .
Using this incentive mechanism can expand the running time
difference between the two solvers, we can obtain test cases
that are difficult to be solved by the target solver.

Code coverage score. The intention of this objective is to
examine as much code path as possible to trigger performance
defects. However, we need to pay attention that the SMT solver
is a highly complex system. For instance, the z3 solver has

tScore(I) =



Algorithm 2 CalCodeCoverageScore
Input:
gcdaDir: code coverage information directory;
codeln fos: global code coverage information file;
Output:
Code coverage score covSocre;

1: covInfos < collectGeovInfo(gcdaDir)

2: covSocre < (

3: for each fileInfos € covinfos do

4. if fileInfos ¢ codeln fos then

5: covSocre += 1000

6: else

7: for each row € fileInfos do

8: if row ¢ codelnfos|fileInfos] then
9: covSocre += 100 x fileIn fos[row)
10: end if

11: if row € codeInfos|fileInfos]

and fileInfos[row| > codelnfos[row| then

12: covSocre += 10 X filelIn fos|row)
13: else

14: covSocre += 1

15: end if
16: end for

17 end if

18: end for

19: return covSocre

216,721 lines of code (version 4.8.10, obtained by gcov test),
and the number of lines covered by a test file only which
is a small fraction of the entire code lines (i.e., the code
coverage rate is very low). As a result, a change on the test
case (assert statement change or node change) may only affect
the coverage of a few lines of code in the solver, which has no
significant impact on the calculation of code coverage. Hence,
the common code coverage testing tools [17]-[20] may not be
suitable to measure the slight changes of the code coverage.
To solve this problem, we designed a reward mechanism to
encourage new code statements or test cases with more runs
after mutations.

As shown in algorithm 2, we use a reward mechanism to
calculate the code coverage score. We can get “*.gcda” files
with coverage information after program Instrumentation. We
iterate over these files to get statement coverage information,
which includes names of the solver’s code files executed by
the test case and the execution times of each statement in the
code file. Each time we run MulStringFuzz, we maintain a
static dictionary codeln fos to store the maximum number of
execution times of each statement of all code files. For each
test case, we obtain the execution times of each statement,
which is saved in covIn fos. Then we compare covIn fos with
the static dictionary codelInfos and calculate bonus scores.
We iterat through the names of code files that appear in
covInfos, if a new code file name appears, it means that
this test case greatly expands the covered code statement. In
order to encourage this situation, we give it a bonus of 1,000

scores. Then we iterate over each statement in the file: 1) If
a new code statement appears, we assign a bonus socre as
the execution times x 100 to this code statement. 2) If the
code statement has already appeared in codelnfos, but the
execution times of the test case is bigger than the execution
times of codeln fos, the bonus points are the augmentation of
the execution times x 10; 3) In other cases, each statement
has a bonus score of 1. After we calculate the bonus score for
each code statement, the newly-appearing code file name and
the maximum execution times are updated into codeln fos.
The sum of all the bonus scores is the code coverage score
for this test case.

Complexity of test cases. Finally, in order to prevent
excessive bloating of test cases, our third objective function
is to constrain the complexity of test cases. This goal aims to
improve the readability of test cases and make it as easy as
possible for developers to find bugs. We find that the main
reason for complex test cases are the number of assertion
statements and the depth of the nesting. Therefore, we cannot
simply use the size of the test case or the number of assert
statements to measure the complexity of the test case. In order
to comprehensively consider the number of assert statements,
the depth of nesting, and the number of nodes, we use Eq. 2
to calculate the complexity of an SMT instance.

lengssert deepassert,i

>

=1

comScore(I) =0 — J*numpede  (2)

i=1

Eq. 2 uses the number of nodes in assertions to calculate
the complexity of the test case. In this way, the depth of each
node in the AST tree can be weighted into the result. It helps
reflect the actual complexity. For example, if the node is at the
level n of the tree, it is considered that the node accumulates
n points. Then we sum the points of each node to get the final
score. For example, the individual complexity in Fig. 1(c) is
(Ix3+2x1)4+(1x34+2x%x3+2x1) =16, and the
individual complexity in Fig. 1(d) is 11. Finally, we use the
negative of the score as a complexity score for convenience
to find the maximum value.

D. Diversity assessment

The diversity assessment is to enable the algorithm to
generate more diverse individuals during the search process.
In the classical NSGA2 algorithm, crowding distance and
crowdedness comparison operator are often used as the criteria
for the comparison between individuals in the population, so
that the individuals in the quasi-Pareto domain can evenly
extend to the whole Pareto domain and ensure the diversity of
the population. The crowding distance calculation of NSGA2
algorithm is: sort the population in ascending order according
to the size of each objective function value; for each objective
function, the boundary solution (the solution with maximum
and minimum values) is specified as the value of an infinite
distance; All other intermediate solutions are specified as equal
to the absolute difference of the normalized values of the two



49 [mk-app] -#174-=-#173-#172 26
50 [instance] -6-#174 27
51 [attach-enode] #174-0 28
52  [lend-of-instance] 29 [end-of-instance]
53  [mk-app]-#173-String 30 [mk-appl #173 String
31 [mk-app]l-#172-str.++ #171-#45
54 [inst-discovered] theory-solving 8-seq# ;-#172 32 [inst-discovered] theory-solving @ seq# ; #172
55 [mk-app] -#174-=-#172 -#173 33 [mk-app]l #174-= #172 #173
56 [instance] -0 -#174 34 [instance] -0-#174
57 lattach-enode] #174-0 35 [attach-enode]-#174-0
58 [end-of-instancel 36 [end-of-instance]
37 [mk-app]-#171- str.indexof-#124-#24 #35
38 [attach-meaning]-#48-arith- (-1}
39 [mk-app]-#172-+-#33-#171
40 [mk-app]-#174.->=-#171 #35
41 [mk-appl-#175-if -#174 #172 #40
42  [inst-discovered]-theory-solving-0 seq# ; -#178
43 [mk-app]-#179-=-#178-#177
44 [instance] -0-#179
45 [attach-enode] -#179-8
46 [end-of-instance]
59  [mk-app]-#174-String 47  [mk-appl #174 String
60 [inst-discovered] theory-solving 0 seq#: ;-#124 48  [inst-discovered]-theory-solving 0 seq# ; #124

[mk-app] #174-= #173-#172
[instance] -6-#174
[attach-enode] -#174-0

Fig. 2. Trace log comparison between Individual C and Individual D.

adjacent solutions; the same calculation method is adopted for
other objective functions. All the crowding coefficient values
are calculated by adding the distance values of each target of
the individual, and each objective function will be normalized
before calculating the crowding coefficient. However, in our
algorithm, we do not expect individuals to be uniformly
distributed in the whole Pareto domain. We introduce two other
objective function to increase the search scope and reduce the
complexity of the test cases, and we would prefer to have more
test cases with timeouts. In order to ensure the diversity of the
population, we do not use the traditional method to calculate
the crowding degree, but used the similarity of the dynamic
execution files of each individual to represent the crowding
distance.

. 2% || I () L2
sim(l,I3) = ————+ 3
I b) = I ]

de(fr(mts—l) sim(I, O)
|| fronts — I

crowdingdist(I) =1 — 4)

Trace log comparison is used to measure the similarity
between newly generated test files and seed files, which is
proposed by Opfuzz’s work [7]. As shown in Fig. 2, the
trace log records runtime information and provide a detailed
picture of the target program’s runtime behavior [21], [22]. So
it can be used to represent the similarity between instances.
We use this concept to measure the similarity between the
two test case, the specific calculation method between Eq.
3. ||/I|| represents the number of lines of the trace log, and
I, (N I represents the same portion of two trace logs which is
computed by diffscope?. We obtained the Pareto front surface
through Pareto sorting, and then used Eq. 3 to calculate the
similarity between individuals. For example, we calculate the
similarity between individual C and individual D in Fig. 1. The
tracing log of individual C contains 4,553,000 lines, and the
tracing log of individual D contains 4,430,457 lines. Through
diffoscope comparison, the same lines of two tracing log is
1,680,940. Then the similarity of these two individuals is:
(2 x 1,680,940) + (4,553,000 + 4,430,457) = 0.374. In

Zhttps://diffoscope.org/

order to synchronize with the concept of crowding distance
in NSGA2, an individual with a larger crowding distance
indicates a smaller density of surrounding solutions. We use
one minus the average similarity as the crowding distance of
an individual, as Eq. 4 shows.

E. Genetic operator

The exploration of solution space with genetic algorithm
mainly uses three kinds of operators: the selection operator,
the mutation operator and the crossover operator. We explain
how to use these three operators in our research.

Selection operator. Selection is a necessary operation in
population evolution. The functionality of selection is to
eliminate individuals with poor fitness. Only those individuals
who perform well have the chance to survive. MulStringFuzz
uses two selection operators:

o Tournament selection. The crowding is not calculated for
the first generation population, so the order of the Pareto
front is used as fitness. Take two individuals from the
population at a time, and select the ones which’s fitness
well.

o Tournament selection based on dominance between two
individuals. After a quick calculation of non-dominant
ordering and crowding, each individual I in the population
has two properties: the non-dominant ordering deter-
mined by the non-dominant ordering and the crowding.
In either case, individual I will prevail: the individual I
is located in the non-dominant layer superior to that of
individual J, or the two individuals do not inter-dominate
but the crowding distance of individual I is greater than
individual J’s crowding distance.

Crossover operator. Crossover operation is to imitate the
mating process in nature. Two individuals in a population
can exchange each other’s genes through sexual reproduction,
thereby generating new genotypes. This process can increase
the diversity of population genotypes. In order to ensure a
sufficient amount of crossover, we select 20% of the sum of the
number of assert statements in the two test cases for exchange.
If the number of asserts of a parent does not reach the number
of exchanges, then two individuals swap one assert statement.

Mutation operator. If only the crossover operation is
performed, it may lead to premature convergence. Because
the crossover operator can only change the genotype of the
individual, and does not generate new genes. Based on the
work of StringFuzz, we have defined the basic mutation
operators:

o New variable: We add a new type of variable, and

generate a statement using the variable.

« Delete variable: We delete a variable and replace the place
where the variable is used in the assert statement with
other variables. In order to ensure the availability of the
variable deletion, it is necessary to ensure that there is
at least one variable of each type when the variable is
deleted.

o Add assertion: We add a random assertion. When adding
a assertion, we need to check the validity of the variables.



o Delete assertion: We delete a assertion randomly;

o Fuzz numbers and characters: We randomly change the
string or number that appears in the test case.

o Replace Type: We replace the modifiable function in
Assertion with a function of the same type without
modifying the contents.

« Exchange the same node: We iterate through the assertion
list, and randomly pick two identical nodes to swap their
positions.

IV. EVALUATION
A. Research Questions

This study focuses on the following research questions
(RQs):

« RQI1: Is our tool more effective at generating test cases
to trigger performance defects?

« RQ2: Do these three objective functions help us discover
the solver’s performance defects?

+ RQ3: Can population diversity be improved by using file
similarity to calculate crowding distance?

« RQ4: How to select the population size, crossover prob-
ability, and mutation probability in the algorithm?

Among these RQs, RQ1 evaluates the effectiveness of our
tool. We illustrate the effectiveness of our tool by comparing
it with StringFuzz for single-objective optimization, and by
the effect of the generated test cases. the purpose of RQ2 is
to verify whether each objective function we choose achieves
the desired effect. We analyze the effect of each objective
function by comparing the result sets generated by the different
variations. RQ3 is to discuss population diversity. To increase
the diversity of the generated test case set, we use the test
file trace log similarity to calculate the crowding distance.
We compare the Pareto surface formed by different variations
generate. The purpose of RQ4 is to discuss the influence of
parameter selection on the experiment. To illustrate the effect
of population size, we record the convergence time of the
algorithm under different population sizes and the number of
test cases that trigger solver timeout in the generated result
set. We find the recommended population size by comparing
the different trends in the two recorded values.

B. Experimental Setup

Our experiments run under a PC with an Intel Core i9 2.8
GHz CPU, 32 GB memory, and Ubuntu 20.04.2 LTS. We set
the size of the population as 40, the crossover probability
as 0.75, and the mutation probability as 0.25 when running
the multi-objective genetic algorithm. The experiment select
two of the most popular open source solvers. We use Z3str3
as the target solver (version 4.8.10), CVC4 is selected as
the reference solver (version 1.6). We do not choose Z3str4
because it is a meta-solver, which uses algorithm selection
techniques to complete the instance solver for unforeseen
problems. Each solver uses the default settings during the
experiment, and memory to run each solver is limited to 8GB.
All programs run in single-threaded mode. The output format
of the test case is SMT-LIB2.5.

In the experiment, we compare MulStringFuzz and String-
Fuzz. At the same time, we design several different variants
to verify the effectiveness of the method. Two methods are
used in the experiment, which are StringFuzz based on single-
objective optimization and MulStringFuzz based on multi-
objective optimization.

For StringFuzz we design two variants: Default and
Runtime-Difference.

o Default: The Default variant uses the elapsed time of a
single solver as the optimization goal and uses random
mutation variant during iteration.

o Runtime-Difference: The Runtime Difference variant
takes the time difference between two solvers as the
optimization target, and the default setting of StringFuzz
is used for the rest of the departments.

There are five variations for MulStringFuzz: Default, Only-
Time, No-Coverage, No-Complexity, Default-Crowding.

o Default: The Default variant uses three objective function:
the running time difference between the target solver and
the reference solver, the code coverage score, and the
size of the test case. The individual crowding distance is
calculated using the similarity of the dynamic trace files
of the test cases.

e Only-Time: The only-time variant uses the target solver
run time as the optimization goal. Other policies are the
same as the Default policy.

o No-Coverage: The No-Coverage variant does not use
code coverage as an optimization goal.

o No-Complexity: The No-Complexity variant does not use
the complexity of test cases as an optimization goal.

o Default-crowding: The crowding distance between indi-
viduals is calculated using the default variant in NSGA?2.

Since genetic algorithm has a high degree of randomness, in
order to make the experimental results more accurate, we ran
each variant for 24 hours to generate a result set and repeated
each variant 50 times.

C. RQI: Performance of MulStringFuzz

To answer this RQ, we compare the test case result sets
generated by MulStringFuzz and StringFuzz. We illustrate the
effectiveness of each optimization goal by comparing the result
sets generated by different variations. Toty;,.s represents
the lines of code covered by all generated test cases in an
algorithm run, measured by a static file maintained at each
run. After each file is executed, we count the code it covers
and updates it to the static file. At the end of each run, we
can use this file to measure how many lines of code are
covered in one run of the algorithm. Awvg;,.s represents the
average number of lines of code covered by each test case
in the result set. Avgyscore T€presents the average time score.
Note that StringFuzz’s Default variation and MulStringFuzz’s
Only-Time variation take the time of a single solver as the
optimization goal, so its average time score is smaller than
5s. Other variations use the time difference proposed by us,
so the score will be higher than 5s. We also measure the



TABLE I
RESULTS UNDER DIFFERENT VARIATIONS

Method Variant TOtlines Avglines AUgtSco'l‘e Numimeout Avgcomplezity
Default 15,332.1 13,011.8 4.33 4 44.07
StringFuzz
Runtime-difference 18,268.5 13,048.7 4.78 5 48.87
Default 21,188.5 13,593.5 7.85 13 22.88
Only-Time 20,093.2 13,496.6 4.25 6 21.26
MulStringFuzz No-Coverage 18,3262 13,1275 5.93 5 20.5
No-Complexity 22,161.1 16,434.2 8.98 12 95.5
Default-Crowding 21,570.6 13246.0 7.56 10 26.03
running time of the test cases in the result using the SMT- CDF plots
COMP standard (2,400s). Numiimeout 1S the number of test F—
cases that trigger a 2,400s timeout in each result set. The final ’
metric is AVGcompiexity, Which is the average complexity of 25 T!_/-
the result set. =TT
el
As we can see from Table I, the test cases generated by 2 ;'
MulStringFuzz cover 5000 more lines of code than those £ A
. . 0-
generated by stringFuzz. MulStringFuzz can generate 9 more 3 ’ .l"!
test cases with timeouts than StringFuzz at the same run time. é .
This shows that using code coverage information helps explore i ,j
more structures and generate more test cases which trigger < 254 = Method
timeout of solver. At the same time, the average complexity of e~ MulStringFuzz
the result set generated by our method is only 22.88, which is ~=- StringFuzz
much lower than StringFuzz’s 44.07. This means the test cases N

generated by MulStringFuzz can reduce two assert statements.
The test file that MulStringFuzz generated retains the structure
of triggering solver timeouts while removing some statements
that are not related to triggering performance defects.

We use cumulative distribution function (CDF) diagrams
to visualize the results. 2,400s is used as the timeout time
to measure the test cases in the result set. We sort all
times from small to large, draw points (¢1, 1), (t2, 2) etc.,
and in general (Zx, k). By normalizing the Y-axis to [0, 1]
(without dismissing the timeout case), we can approximate
the cumulative distribution function. CDF diagrams are used in
Satzilla’s work [23] to describe solver performance. The point
in the CDF figure can be interpreted as “what is the probability
of solving a random problem in ¢ seconds”. To make the trend
of the image more apparent, we use logarithmic coordinates
to represent the time.

As shown in Fig. 3, the result set generated by MulString-
Fuzz contains some instances that are relatively short in time.
70% of the test cases could be solved in 1s. Because our
algorithm contains multiple objective functions, these individ-
uals may be superior in terms of code coverage score and
individual complexity, and therefore have poor performance
in terms of time. The StringFuzz generates more test cases
distributed between 5 seconds and 600 seconds. Due to the
StringFuzz algorithm takes the solver running time as the

01 1 10 100 1000

Time

Fig. 3. CDF plots of the result set.

objective function, the individuals retained are those whose
running time exceeds 5s. With the running time limit of 2,400s,
Z3str3 solved only 77.5% of the result set of MulStringFuzz,
less than 90% of the result set of StringFuzz. MulStringFuzz
could find more instances that trigger the timeout of the solver.
We report the test cases to the developers of Z3str3 to help
them check and resolve the performance defects.

The experimental results show that MulStringFuzz can
trigger 3.25 times performance defects than StringFuzz. The
test cases generated by MulStringFuzz can cover more code
statements and have a lower complexity. We believe that
MulStringFuzz is better than StringFuzz at detecting solver
performance defects.

D. RQ2: Validity of optimization objectives

In this subsection, we verify whether each objective function
we choose achieves the desired effect. First, we analyze
whether the difference in running time with two solvers helps
find more test cases that trigger timeouts. We can see the
variant that uses the time difference as objective function
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generates more timeout test cases than the variant that uses
a single solver run time as objective function. When we use
the single solver time as objective function, the average time
score of the population is very close to full score (because the
timeout is 5s). However, a few test cases trigger timeout under
the running time limit of 2,400s. This shows that the variant of
using a single solver run time can indeed produce individuals
who perform well within the specified timeout range, even if
we can set the timeout large enough, we can also find test
cases that can trigger performance defects of String solver.
This is a big test for the efficiency of the program, which
needs to consume a lot of computing resources. Using the
time difference policy can increase the probability of finding
test cases that trigger performance defects.

Second, we observe whether using code coverage score can
effectively expand the search solution space. We can see that
the result sets generated by the Default and No-Complexity
variant triggered timeouts with 13 and 12 cases respectively,
which is far more than the 5 cases generated by the No-
Coverage variant. The variant of using code coverage to guide
the search explored more lines of code during the algorithm’s
run and gain the advantage in the number of timeout test
cases. The No-Coverage variant equivalent to the algorithm
of random selection and random evolution. It explores the
solution space aimlessly, relying on the computing power of
the computer to find test cases that may trigger performance
defects. Some test cases can be solved in a relatively short time
but cover more lines of code statement. MulStringFuzz allows
these test cases to survive in the population, which allows the
algorithm to explore more structures. It helps MulStringFuzz
to generate more test cases that trigger performance defects.

Finally, we compare the effect of using complexity as the
objective function. The average file complexity under the No-
Complexity variant is 95.5, which is much higher than the
other variations. However, under this variant, the total number
of lines of code covered during the run and the average number

of lines of code covered per file in the result set is the highest.
There is a conflict between complexity and code coverage.
A test case with a complex structure can cover more code
statements. Therefore, without the complexity constraint, the
algorithm can search for more solution space. Overly complex
test cases cause difficulties for developers identifies defects.
Although using complexity as the objective function reduce
the number of timeout test cases, it can significantly reduce
the complexity of test cases.

We verify the effect of three objective functions through
compare the result generated by different variants. The time
difference between the target solver and the reference solver
helps find SMT instances that are more difficult for the target
solver. Using code coverage information to guide the search
process allow MulStringFuzz to find more test cases that
trigger performance defects. We can clearly see that using
complexity as objective function can prevent test case bloat.
The three objective functions we selected are effective.

E. RQ3: Effect of individual crowding distance

In order to explain the influence of the two different
crowding distances on the algorithm, the convergence speed
and the distribution of the final result set are used to illustrate.
Fig. 4 shows the variation trend of the average tScore of
the population as the population generation changes during
the operation of the algorithm. It can be seen that when the
custom crowding distance is used, the average time score
of the crowd is relatively high, which can reach about 7-9,
and finally converges to about 9. When the default crowding
distance is used, the average time score is around 7-8.5 and
eventually converges to about 8. However, the convergence
rate of the two is relatively close, and the change of tScore
tends to be flat from the 45th generation to the 55th generation.
The default policy does not change the convergence rate of
the algorithm, which only affects the resulting set. Using the
default policy can help increase the average running time score
of the population. As you can also see from Table 1, the
result set generate under the default policy contains more test
cases that trigger long timeouts. The same effect as the no-
Complexity variant can be achieved, and the complexity of the
test case is superior to the no-Complexity variant. So we think
the default policy is better at generating test cases that trigger
performance defects of solver.

In addition, we analyze the distribution of the result set. Fig.
5 shows the Pareto frontage generated by both the Default
variant and the Default-crowding variant. Each individual
in the result set is evaluated for fitness and each goal is
normalized. (Although we use a negative comScore score, we
normalize it to [0, 1]). Since there are three objective functions,
the figure is shown as a three-dimensional graph. Fig. 5(a) is
the Pareto preface generated by using the Default-Crowding
variant. We can see that the test cases are concentrated in the
space . The solution dispersion obtained by the Default variant
is relatively scattered, and it can be seen that we have more
individuals with the score of solution concentration time.
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Fig. 6. Convergence time and timeout test cases number in different
population sizes.

We believe that using the default crowding distance calcu-
lation does not fail to represent the actual population diversity.
Trace log can effectively reflect the execution trajectory of a
test case, so it is more accurate to judge the similarity of two
test cases. However, it is important to note that calculating
the similarity between test files is computationally expensive.
When running both variations with the same parameters, the
Default one takes twice as long as default-crowding. Due to
the trace log are large, it take a lot of time to calculate the
same number of lines for two trace logs.

FE. RQ4: Parameter sensitivity analysis

Preliminary experiments show that compared with mutation
probability and crossover probability, population size has a
greater influence on parameters, so the influence of population
size is analyzed in this RQ.

The size of a population is the number of individuals per
generation. If there are more individuals in the population,
that means there is a greater chance of finding the optimal
solution. However, the population contains more individuals,
the more computational resources are used to calculate fitness
and population evolution. To illustrate the effect of population
size, we record the convergence time of the algorithm under
different population sizes and the number of test cases that
trigger solver timeout in the generated result set. In order

to facilitate comparison, we calculate the relative measure
of the results obtained when the population size is 40, As
shown in Fig. 6. When the population size is less than 60, the
convergence time grows linearly as the number of timeout test
cases increases. When the population size is greater than 70,
although the number of timeout test cases still increase, the
increase in convergence time is more pronounced. So we spend
more computing resources, but the efficiency of the algorithm
is not significantly improved.

By comparing the trend of convergence time and the number
of timeout test cases, we believe that the appropriate range
of population size is [40, 60]. The population size within this
interval can maximize the use of computing resources.

V. THREATS TO VALIDITY

After analyzing the experimental results, there are three
possible threats to the effectiveness of our experiment. First,
the goal of this paper is to detect the performance defects of
the solver, so we need to consider the impact of computing
resources on the results of running experiments. The stronger
CPU and larger memory will make the solver solve test
cases faster. But in the actual development, these computing
resources are also limited. If the benchmark solver can get
the result of the test case running but the target solver
cannot solve under the same computing resources, the test
case will trigger the performance defect of the target solver.
Therefore, in our experiment, we choose the same hardware
environment and limit the running memory of each solver to
8GB. Moreover, in the process of experimental evaluation, we
do not consider whether the choice of the target solver will
affect our experimental results. Our optimization goal includes
code coverage score so we need to use gcov to compile the
target solver which will reduce the number of solvers that we
can choose. In order to minimize this threat, we choose z3str3
as the target solver of our experiment which is widely used
in open source solvers. In addition, the test cases generated in
our experiment are based on SMT-LIB 2.5 syntax, which is



one of the versions of SMT-LIB. Due to the syntax differences
between various versions of SMT-LIB, the syntax structure of
test cases may be different. We choose SMT-LIB2.5 which is
compatible with most of the current solvers in our experiment.
For other versions of SMT-LIB, we only need to change the
syntax generation part, which does not affect other parts of
the algorithm or the effectiveness of our method.

VI. RELATED WORK
A. SMT solver testing

SMT solver plays a vital role in many fields such as formal
verification [24], program analysis [25], and software testing
[26]. So far, a lot of work pay attention to test the SMT solver.
FuzzSMT [8] focuses on finding SMT solver crashes of bit-
vector and array instances, which uses syntax-based black-box
fuzzing to trigger crash instances. Some work applies fuzzy
testing based on search [27], [28] , coverage guidance [29],
[30] and symbolic execution [25] to test solvers. StringFuzz
looks for performance defects in string logic by changing
the transformation benchmark case or by randomly generating
formulas from the syntax. Coverage-guided fuzziness testing is
applied to floating point constraints in the Just Fuzz-It Solver
(JES) tool [31]. In terms of floating point constraint resolution,
JES can either compete with or complement advanced SMT
solvers, and JFS’s cover-guide approach provides significant
benefits over naive fuzzing in floating point domains.

There is also a lot of work focusing on finding solver
soundness errors. They test the solver mainly by constructing
SMT instances with known satisfiability. If the solver returns
an incorrect result, a robustness error is triggered. In Storm’s
research [5], some formulae satisfying the known row are
obtained by dividing the seed test cases, and then they are
rewritten and constructed into test cases. In addition, test cases
are generated by semantic fusion and type-aware operation
mutation, which achieves good results. Some work focus on
how to test the solver’s various API parameters and options
for running the solver. Cyrille Artho [32] uses model-based
testing (MBT) to test the sequence of API calls and different
system configurations. Niemetz [33] develope a model-based
API fuzzing framework to detect API usage problems of SMT
solvers. Different from these work, MulStringFuzz combines
fuzzing test with multi-objective evolutionary algorithm to
improve the efficiency of detecting the performance defects
of String SMT solvers.

B. Multi-objective evolutionary algorithm

The main task of a multi-objective evolutionary algorithm
is to solve multi-objective optimization problems by evolu-
tionary computation. The evolutionary algorithm can explore
the solution space randomly, so it fits the software testing field
very well. In this process, multiple optimization objectives can
be designed to achieve better testing results. Multiobjective
genetic algorithms based on Pareto sorting have another key
point: the algorithm is looking for a set of Pareto solutions
(not a single Pareto solution), so the diversity of the population
is better. Sapienz [34] introduces multi-objective optimization

into Android application testing, which uses minimized length
to optimize test sequences while maximizing test coverage and
fault detection. Stoat’s work [35] also focuses on Android
testing. Its goal is to maximize code-level coverage while
increasing the variety of tests. Wuji [36] also applied the
multi-objective evolutionary algorithm to the field of game
testing. They a combination of evolutionary algorithms and
DLR to test more game states and cover more lines of code. In
our work, MulStringFuzz uses a multi-objective evolutionary
algorithm for increase guidance information during search,
towards covering more code statements and finding more test
cases that trigger performance defects.

VII. CONCLUSION

In this paper, we propose a multi-objective evolutionary
algorithm, MulStringFuzz, which is used to generate test cases
to detect solver performance defects. We use three optimiza-
tion objectives to increase guidance information during the
algorithm search. The run time difference between the solver
and the reference solver helps us find test cases that trigger
solver performance defects. We use code coverage scores
to encourage the algorithm to explore more solution space
and introduce complexity constraints on SMT instances to
prevent test case bloat. We set up different variations to verify
the effectiveness of each optimization goal. The experimen-
tal results show that our algorithm can generate more test
cases that trigger the solver timeout, which can effectively
detect the solver’s performance defects. On average, nearly
5,000 more lines of code can be covered by the test cases
generated by MulStringFuzz than StringFuzz, correspondingly
MulStringFuzz can trigger 3.25 times performance defects
than StringFuzz. Importantly, the complexity of the individual
in the generated result set can be effectively reduced. At the
same time, we use the similarity of trace log to measure the
crowding distance between individuals, which can expand the
diversity of individuals in the population to a certain extent.

For future work, the method in this paper can be generalized
to the theory of other solvers to find performance defects.
We also plan to modify the calculation method of the time
score to find the test cases that allow multiple solvers to time
out simultaneously, and the generated test cases can be used
to extend the test benchmark of SMT-COMP. At the same
time, because the measurement of code coverage information
is time-consuming, we plan to speed up the calculation through
multi-threading, to improve the search efficiency.
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