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Abstract—With the plain text descriptions of design patterns, developers could better learn and understand the definitions and usage

scenarios of design patterns. To facilitate the automatic usage of these descriptions, e.g., recommending design patterns by free-text

queries, design patterns and natural languages should be adequately associated. Existing studies usually use texts in design pattern

books as the representations of design patterns to calculate similarities with the queries. However, this way is problematic. Lots of

information of design patterns may be absent from design pattern books and many words would be out of vocabulary due to the content

limitation of these books. To overcome these issues, a more comprehensive method should be constructed to estimate the relatedness

between design patterns and natural language words. Motivated by Word2Vec, in this study, we propose DPWord2Vec that embeds

design patterns and natural language words into vectors simultaneously. We first build a corpus containing more than 400 thousand

documents extracted from design pattern books, Wikipedia, and Stack Overflow. Next, we redefine the concept of context window to

associate design patterns with words. Then, the design pattern and word vector representations are learnt by leveraging an advanced

word embedding method. The learnt design pattern and word vectors can be universally used in textual description based design

pattern tasks. An evaluation shows that DPWord2Vec outperforms the baseline algorithms by 24.2-120.9 percent in measuring the

similarities between design patterns and words in terms of Spearman’s rank correlation coefficient. Moreover, we adopt DPWord2Vec

on two typical design pattern tasks. In the design pattern tag recommendation task, the DPWord2Vec-based method outperforms two

state-of-the-art algorithms by 6.6 and 32.7 percent respectively when considering Recall@10. In the design pattern selection task,

DPWord2Vec improves the existing methods by 6.5-70.7 percent in terms of MRR.

Index Terms—Design pattern, word embedding, Word2Vec, semantic similarity, tag recommendation, design pattern selection
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1 INTRODUCTION

SOFTWARE design patterns derive from the notion of design
pattern in the area of architecture [1], aiming to docu-

ment reusable experience for recurring software design
problems [2]. In recent years, many studies about design
patterns have been conducted [3], [4], [5]. As to the litera-
ture, there are roughly two ways to describe design pat-
terns: the formal way and the informal way.

The formal way specifies design patterns with formally
defined pattern languages. For example, the Gang-of-Four
(GoF) book respectively uses Unified Modeling Language
(UML) class diagram and sequence diagram to illustrate the

structure and collaborations of each design pattern [2]. A
number of studies are based on the formal descriptions of
design patterns [4], [6], as formal specifications enhance the
capabilities of machine processing [7]. However, there are
some weaknesses of the formal way. First, it is inconvenient
to precisely specify the intent and applicability of design
patterns. Second, building the meta-model of each design
pattern is usually costly [8]. Third, the formal way may lose
human readability, which is critically important to the util-
ity of design patterns [7].

Conversely, the informal way depicts design patterns
with free text. Comparing with the formal way, it is more
understandable and convenient to describe design pattern
relevant artifacts in words. Thus, the informal way is a
profitable supplement to the formal way. To provide tool
supports for design pattern relevant tasks based on infor-
mal descriptions, the key point is to establish the semantic
relationships between design patterns and natural lan-
guages, so that the retrieval or identification of design pat-
terns can be practically realized. However, to associate
design patterns with natural languages is no easy job. A
design pattern name is usually a phrase, such as “factory
method”. An experienced developer may capture the
semantics of the design pattern via the name as he/she
understands the relevant background. But for the automatic
tools, it is difficult to comprehend the connotations from
only these several words. More information about design
patterns should be provided for them to “learn” the back-
ground knowledge.
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To obtain exact semantic information of design patterns,
the existing studies usually take the descriptions in design
pattern books as standard definitions of design patterns [8],
[9], [10]. If a snippet of text is similar to the standard defini-
tion of a design pattern, then it is likely to be related to the
design pattern. Hence, the relatedness between design pat-
terns and natural languages can be estimated. However,
this kind of methods is still problematic. On one hand,
much information about design patterns is absent from
these books. Design pattern books usually depict the mecha-
nisms, scenarios, and specifications of design patterns [2].
As time goes by, many applications beyond the original
design pattern books have been developed. For example,
the Active Record design pattern is related to the Ruby on
Rails framework as Active Record provides the data model
of the framework.1 The AngularJS framework implements
the Dependency Injection design pattern itself and usually
accompanies by this design pattern.2 These relationships
cannot be mined from design pattern books. On the other
hand, the vocabulary extracted from design pattern books is
usually too small. The lengths of descriptions in design pat-
tern books are limited and many natural language words
may be out of the scope. It is difficult to handle the texts
containing many out-of-vocabulary words. Therefore, the
wide usage of this kind of methods is restricted.

In this study, we aim to overcome these issues by con-
structing a general method to estimate the relatedness
between design patterns and natural language words, in
order that it can be universally used in the tasks based on
informal descriptions of design patterns. The “words” here
refer to as both plain natural language words, such as
“factory” and “method”, and software specific terms, such
as “angularjs”. Inspired by theword embeddingmethod [11],
we propose DPWord2Vec that maps both design patterns
and natural language words into one vector space. With the
design pattern and word vectors, the similarity between a
design pattern and a word or a document can be calculated.
In this way, the relationship between natural languages and
design patterns can be built. However, there are two chal-
lenges to be addressed. First, how to find a relatively large
corpus about design patterns? Second, how to associate a
design pattern with its relevant natural language words for
vectors training?

To handle the first challenge, we build a general corpus
containing 491,555 documents. The general corpus consists
of two parts: the description corpus and the crowdsourced
corpus. The description corpus contains relatively formal
design pattern descriptions that are extracted from design
pattern books and Wikipedia. The crowdsourced corpus is
constructed based on a set of design pattern relevant Stack
Overflow posts obtained from our previous work [12]. Then
we extend the concept of context window in Word2Vec to
our general corpus and define the context windows for each
design pattern and each word respectively. In this way, the
linkages between design patterns and words are established,
that is, the design pattern context windows contain words
anddesign patterns appear inword contextwindows.Hence,
the second challenge can be properly addressed. Finally, the

design pattern and word vector representations are learnt by
leveraging an advanced word embedding method, namely
GloVe [13], based on these context windows.

To clarify the quality of the learnt design pattern and
word vectors, we deploy an evaluation with a dp-word
(design pattern - word) similarity task. Experimental results
on 2,000 manually labelled dp-word pairs show that the
learnt vectors by DPWord2Vec are more effective than
some widely used semantic relatedness estimation algo-
rithms, i.e., outperform these algorithms by 24.2-120.9 per-
cent in terms of Spearman’s rank correlation coefficient. To
show the practicability, we depict two applications of
DPWord2Vec to solve two typical design pattern tasks, i.e.,
design pattern tag recommendation and design pattern
selection. In the first application, when recommending the
top 10 design pattern tags for the posts in a software infor-
mation site, the DPWord2Vec-based method outperforms
two state-of-the-art tag recommendation methods by 6.6
and 32.7 percent respectively in terms of Recall@10. In the
second application, the method refined by DPWord2Vec
outperforms the two existing design pattern selection meth-
ods by 6.5 and 70.7 percent respectively when considering
the mean values of Mean Reciprocal Rank (MRR) over three
design pattern collections.

In this paper, we make the following contributions:

1) We propose DPWord2Vec that maps both design
patterns and natural language words into vectors to
support design pattern relevant tasks. To the best of
our knowledge, this is the first work that establishes
the universal relationship between design patterns
and natural languages.

2) We evaluate DPWord2Vec on a manually labelled
dp-word pair dataset to show its effectiveness in
semantic relatedness estimation.

3) DPWord2Vec is applied to two design pattern rele-
vant tasks, namely design pattern tag recommenda-
tion and design pattern selection. DPWord2Vec
outperforms the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
shows the background of the study. Section 3 presents the
framework of DPWord2Vec. The settings and results for
evaluating DPWord2Vec are depicted in Sections 4 and 5,
respectively. Sections 6 and 7 introduce two applications of
DPWord2Vec. Section 8 discusses potential threats to valid-
ity. Some studies related to our work are outlined in
Section 9. We conclude the paper in Section 10.

2 PRELIMINARIES

Before the depiction of DPWord2Vec, we demonstrate the
concept of design pattern in this study and briefly introduce
the word embedding technique.

2.1 Concept of Design Pattern

Generally speaking, design patterns are proven solutions to
recurring software design problems [2]. However, to the
best of our knowledge, there are no formal definitions nor
standard lists of design patterns. There exist numbers of
design pattern collections that are published with multiple
channels, such as design pattern books, academic papers, or

1. https://guides.rubyonrails.org/active_record_basics.html
2. https://angular.io/guide/dependency-injection
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online libraries [7]. Design patterns in different collections
may be depicted in different ways, e.g., in flat text format or
using UML. In this paper, we focus on the design patterns
with rich textual descriptions and collect design patterns
from various sources.

Similar to “design pattern”, “architecture pattern” is also
a means for software design. Strictly, they are not a same
concept, but the boundary between themmay not be unified
for different design pattern collections. For example, Model
View Controller is an example of architectural pattern in
Wikipedia3 but marked as a design pattern in MSDN.4

Therefore, instead of creating a standard subjectively, we
choose not to distinguish them in our study. Once an entity
is identified as a design pattern in some design pattern col-
lections, we regard it as a design pattern.

2.2 Word Embedding

Word embedding is a set of techniques that maps words or
phrases in the vocabulary to vectors of real numbers. The
core part of DPWord2Vec is also word embedding, but it
handles both words and design patterns. Word embedding
methods focus on mapping words into a continuous vector
space with a much lower dimension than the size of vocabu-
lary and the vector representation of each word is deter-
mined by supervised learning based on the corpus [11].

To facilitate the demonstration, we explain how word
embedding works with an example. Assuming there is a
corpus that contains a sentence: “software design patterns
encapsulate proven solutions that address recurring prob-
lems”. To mine the relationships between words, the sliding
context window strategy is usually used [11]. A context
window contains a central word and several surrounding
words which are at a distance of no more than c positions
from the central word. For example, the context window
with centre “patterns” and c = 2 contains the surrounding
words “software”, “design”, “encapsulate”, and “proven”.
Multiple local context windows are constructed as the cen-
tral word slides from the beginning (“software”) to the end
(“problems”) of the corpus.

Then the word vectors are learnt based on these local
context windows. The intuition is that if two words appear
frequently in the same context window then their vector
representations are highly associated. For example, the
objective of the Skip-gram model is to learn word vector
representations that are good at predicting each surround-
ing word by the vector of the central word [11]. Conversely,
the Continuous Bag-of-Words (CBOW) model aims to pre-
dict the central word by the concatenation or average of the
vectors of the surrounding words [11]. Different from them,
the GloVe model counts the number of the total co-occur-
rences of each pair of words through all the local context
windows and predicts the co-occurrence number by the
vectors of the words in the pair [13].

3 THE DPWORD2VEC FRAMEWORK

DPWord2Vec aims to embed natural language words and
design patterns into one vector space. This process can be

divided into four phases (as shown in Fig. 1). At first, the
corpus related to design patterns are acquired from multi-
ple sources. Next, the documents in the corpus are prepro-
cessed. Then, we propose a context window-based strategy
to strengthen the tie between words and design patterns. At
last, the word and design pattern vectors are trained based
on the corpus and the context windows.

3.1 Corpus Building

To train the vectors of words and design patterns, a corpus
relevant to design patterns should be built at first. Formally,
we construct a general corpus C, which contains multiple
documents. For each document doc in C, doc has two compo-
nents: the token component doc:Tokens, a sequence of natural
language words that describes some design patterns, and the
design pattern component doc:DPs, a set of design patterns
described by doc:Tokens. The general corpus C can be further
categorized into two groups according to their sources.

Description Corpus. Documents in this corpus are extracted
from design pattern books and Wikipedia. Some design pat-
tern books catalog their own lists of design patterns. For
example, GoF presents 23 design patterns with the problem
definitions and design specifications [2]. A design pattern is
usually described by a chapter or a section in a design pattern
book. Similarly, a number of design patterns are specified by
Wikipedia as entries with one page for each design pattern.5

A chapter or section of a design pattern book, or a Wikipedia
page of a design pattern forms a document doc. In this corpus,
doc:Tokens denotes the whole text in the chapter, section, or
page, but excluding the code snippets. Meanwhile, doc:DPs
contains only one element, i.e., the described design pattern.

Totally, the description corpus contains 431 documents,
which are associated with 13 design pattern books and 125
Wikipedia pages. Amongst the design pattern components,
349 unique design patterns are involved.

Fig. 1. The framework of DPWord2Vec.

3. https://en.wikipedia.org/wiki/Architectural_pattern
4. https://msdn.microsoft.com/en-us/library/ms978748.aspx 5. https://en.wikipedia.org/wiki/Category:Software design patterns
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Crowdsourced Corpus. Documents in this corpus are con-
structed by referring to the programming forum, i.e., Stack
Overflow.6 In the previous study [12], 187,493 design pat-
tern relevant question posts spanning from August 2008 to
December 2017 are detected in Stack Overflow.

A design pattern relevant post indicates the design pattern
name(s) appears at least one time in the post. However, it is
not a trivial string matching task to detect the design pattern
occurrences in Stack Overflow posts, as the discussions on
StackOverflow are usually informal [14], [15] and the name of
a design pattern may not be mentioned in a unique form. It is
also referred to as the morphological form issue [14]. The pre-
vious study has attempted to address this issue in two
aspects. On the one hand, the standard design pattern names
as well as other common names are collected simultaneously
from the existing design pattern collections, e.g., design pat-
tern books, inwhich the other well-known names of each con-
taining design pattern are usually presented explicitly, e.g.,
marked as “also known as”. These names include aliases, e.g.,
“open implementation” is an alias for “reflection”, and acro-
nyms, e.g., “mvc” is an acronym for “model view controller”.
On the other hand, regular expressions are leveraged to allow
some variants when searching a design pattern name in the
text of the Stack Overflow posts. For example, the regular
expression for “model view controller” is “model[ba-z]?view
[ba-z]?controller”, where “[ba-z]?” denotes a non-alphabetic
character that matches zero or one time, so that the variants
such as “model-view-controller”, “model_view_controller”,
and “modelviewcontroller” can be involved. A manual vali-
dation on the sampled posts shows that the detection
is acceptably accurate, i.e., achieves Precision value of
97.3 percent and Recall value of 87.8 percent. More details can
be obtained by referring to [12].

We use these question posts to construct the crowd-
sourced corpus. Moreover, it is enriched by all the answer
posts to these design pattern relevant question posts. A
question post and each of its answer post are assigned to
different documents. The relevant design pattern(s) to an
answer post is as same as its question post. For a document
doc in this corpus, doc:Tokens denotes a content merging the
title and body part of a question or answer post with code
snippets discarded, and doc:DPs is the set of the relevant
design pattern(s) to the post.

Finally, there are 491,124 documents in this corpus and
210 unique design patterns are involved.

By merging the two corpora, we obtain a general corpus
C, which contains 491,555 documents.7 The involved design
patterns are indexed and form a design pattern vocabulary,
namely VDP , with 372 design patterns. Although the docu-
ments in the description corpus are far less than those in the
crowdsourced corpus, the description corpus is indispens-
able for building the design pattern vectors. On one hand,
the description corpus makes it possible to build vectors for
the design patterns that are rarely discussed in Stack Over-
flow. On the other hand, this corpus tends to provide more
formal and precise depictions of design patterns than the

crowdsourced corpus. We will show its significance in
Section 5.1.

3.2 Corpus Preprocessing

Comparing to the general natural language documents, the
amount of design pattern relevant documents tends to be
quite small. Therefore, our built corpus is relatively smaller
than those for training the common word vectors [11], [13].
Based on this actuality, we perform preprocessing on the
token component of each document aiming to filter out the
insignificant and redundant information and build a com-
pact vocabulary.

At first, code-like tokens (e.g., function names) in a natural
language sentence are split according to its camel style to
ensure the semantic integrity of the sentence. With this step,
on the one hand, these code-like tokens can be converted into
more understandable identifiers [16] to better reflect the
semantic meanings. On the other hand, the volume of the
vocabulary can be reduced. Next, we tokenize and lowercase
the token component of each document. Then, the less infor-
mative tokens, including English-language stop words, spe-
cial tags (HTML tags in Stack Overflow posts, and reference
markers in design pattern books and Wikipedia pages), and
non-alphabetic characters (e.g., numbers) are removed from
the text, as they are not very useful to reflect the semantic rela-
tionship between the natural language and design patterns.
Moreover, each token is stemmed to its root form, e.g.,
“developer”, “developed”, and “developing” to “develop”.
As the words with a same root usually have similar mean-
ing [17] and the vector representations of themare also similar
in some word embedding methods [18], [19], we can simply
regard them as a same word without losing much semantic
information. At last, we discard the words that occur nomore
than five times in the corpus when constructing the vocabu-
lary but retain them in the corpus. These words are likely to
be noisy terms [20] and it is not significant to train the vectors
of them.

Some of the above steps, such as camel case splitting,
stop words removing, and word stemming, may be not
common in word embedding methods. With abundant
training corpora, vector representation of each distinct iden-
tifier in the text can be learnt. However, due to the scale of
the design pattern corpus, it is reasonable to conduct these
preprocessing steps to reduce the vocabulary size, i.e., the
number of vectors to be learnt, to adapt to the corpus. Fur-
thermore, the focus of this study is to build the semantic
relationship between natural languages and design pat-
terns, it is not a core concern to represent all the identifiers
precisely. As a common concept in the word embedding
methods, the word context will not be significantly affected
by the preprocessing, since the eliminated tokens contain
little semantic information and the meanings of the changed
tokens are mainly retained. It is adequate to apply the word
embedding methods to the preprocessed corpus.

After the preprocessing, we obtain a word vocabulary
VWord that contains 27,770 words.

3.3 Context Window Construction

As to the corpus we build, each document contains two
parts: the natural language words and the design patterns.
To train the vectors of words and design patterns together,

6. https://stackoverflow.com/
7. The detailed description corpus and crowdsourced corpus, as

well as the number of relevant documents to each design pattern are
available via https://github.com/WoodenHeadoo/dpword2vec.
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we should combine the two parts. In standard word embed-
ding models, words are usually associated by leveraging
the sliding context window-based strategy [11]. For exam-
ple, in the Skip-gram model, the vector representation of
the central word is learned for predicting the other words in
a context window. Similarly, the CBOW model uses the
composition of the vectors of the surrounding words in a
context window to predict the central word. Hence, a rea-
sonable method for associating natural language words and
design patterns is to locate them in a context window.

To this end, an intuitive way is to regard design pattern
names appearing in natural language text as special “words”.
Concretely, given a document doc in the corpus C, for the
design patterns in doc:DPs, we detect all the occurrences of
design pattern names (including aliases) in doc:Tokens and
replace them with predefined tokens. These predefined
tokens are the “words” of design patterns andmixedwith the
natural languagewords. Then design patterns can be handled
together with natural language words by the sliding context
window-based strategies. However, there is a main issue for
this way: design pattern names tend to appear infrequently in
the text. For instance, Fig. 2 presents a paragraph in a post
(#131766) of Stack Overflow. This paragraph indeed describes
the Dependency Injection design pattern, but the design pat-
tern name only appears one time at the beginning of the para-
graph. When applying the sliding context window-based
strategies to this paragraph, the design pattern Dependency
Injection can be only associated with some words in the front
but the rest are ignored.

To resolve this issue, we redefine the concept of context
window by considering both natural language words and
design patterns. In the new definition, the context window
size is not fixed, but there is also a parameter of context win-
dow size for words as the standard models. For clarity, we
name it as c.

There are two types of context windows:
Context Window for Word. For a word in a document, the

context window for this word contains other words around

the word with radius c and all the design patterns the docu-
ment describes. Formally, for a document doc in C, let
doc:TokensðiÞ denote the ith word of the text and
doc:Tokens:len denote the length of the text. The Context
Window of doc:TokensðiÞ is defined as

ContextWord
doc ði; doc:TokensðiÞÞ

¼fdoc:TokensðjÞjmaxf1; i� cg � j �
minfdoc:Tokens:len; iþ cg; j 6¼ ig [ doc:DPs:

(1)

Take the document in Table 1 as an example. Assuming c ¼
2, the Context Window for the sixth word “interface” con-
tains the two words ahead of it (i.e., “facade” and
“provide”), the two words behind it (i.e., “create” and
“subsystem”), as well as the two design patterns mentioned
in the document (i.e., “[abstract-factory]” and “[facade]”).

Context Window for Design Pattern. Given a design pattern
described by a document, the context window for the
design pattern consists of all the words in the text and the
other described design patterns. Formally, for a document
doc and a design pattern dp 2 doc:DPs, the Context Window
of dp is

ContextDP
doc ðdpÞ

¼fdoc:TokensðjÞj1 � j � doc:Tokens:leng
[ ðdoc:DPs� fdpgÞ:

(2)

For example, in Table 1, the Context Window for the design
pattern “[abstract-factory]” contains all the words (i.e.,
“abstract”, “factory”, ..., “class”) and the other design pat-
tern “[facade]”.

According to the definitions of the two context windows,
a design pattern can be associated with each word in the
document that describes the design pattern. The tie between
words and design patterns is strengthened. To show the
effectiveness of the new definitions, we use the performance
of the method that leverages design pattern name occur-
rences (mentioned above) for comparison in Section 5.3.

With the definitions, for any document doc in C, the con-
text window of each word in doc:Tokens and the context
window of each design pattern in doc:DPs are constructed.

3.4 Vectors Training

Once the context windows are clarified, the word and
design pattern vectors can be generated by any sliding con-
text window-based models. In DPWord2Vec, we choose
GloVe [13] for vector generation, due to the following
reasons:

Fig. 2. A paragraph that describes the Dependency Injection design pat-
tern. The design pattern name is in red bold font and the words in the
context window (of size five) of the name are in blue italic font.

TABLE 1
An Example for Two Types of Context Windows (c ¼ 2)

a As declared above, the stop words are eliminated from the text of the document (in strikeout fonts) and the rest of the words are stemmed to their root forms.

1232 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:33:40 UTC from IEEE Xplore.  Restrictions apply. 



1) GloVe is a state-of-the-art model that outperforms
Skip-gram and CBOW on several natural language
processing tasks with higher efficiency [13].

2) GloVe benefits from both global co-occurrences and
local context windows. Global co-occurrences suit to
present the dp-word relationships and design pat-
tern - design pattern relationships. Meanwhile, the
word - word relationships could be well handled by
local context windows. Therefore, the GloVe model
is suitable for this scenario.

To train the vectorswith GloVe, the input of GloVe should
be specified. Generally, the input of GloVe is the entries co-
occurrence counts matrix X, whose element Xij represents
the number of times entry j occurs in the context window of
entry i. In DPWord2Vec, entry j and entry i can be any word
in the word vocabulary VWord or any design pattern in the
design pattern vocabulary VDP . Therefore, in DPWord2Vec,
Xij is calculated respectively when entry i is a word and
when entry i is a design pattern according to the two defini-
tions of context window. Note that Xij ¼ Xji for any j and i
according to our context window definitions, hence only half
of the entries co-occurrence counts should be calculated.

Moreover, the dp-word co-occurrences are weighted.
According to [21], the frequencies of words follow Zipf’s law
in natural language corpora. Similarly, the number of rele-
vant posts in Stack Overflow to each design pattern exhibits
a long tail behavior [12]. That means, the distribution of
words or design patterns is highly skewed. Moreover,
according to the definitions, the context window of a design
pattern contains all the words in the document and the
design pattern is also contained in the context window of
each of the words. As a result, some design patterns may
appear commonly in the context windows of many words,
i.e., potentially relate to many words, and vice versa. When
dealing with the tasks which request to associate design pat-
terns with words, e.g., to retrieve design patterns by key-
words, we should ensure these very common design
patterns not to be over weighted. Likewise, the words that
are contained in the context windows of many design pat-
terns should also be well handled. Hence, a weighting strat-
egy is applied to diminish the effects of these common terms.
Formally, if entry j is a word and entry i is a design pattern,
Xij is tuned by the weights of j and i. The weights are calcu-
lated just like the inverse document frequency value

wj ¼ log
#VDP

OccurDP ðjÞ
� �

; wi ¼ log
#VWord

OccurWordðiÞ
� �

; (3)

where OccurDP ðjÞ denotes the number of unique design
patterns in VDP that ever occur in the context window of
word j and OccurWordðiÞ denotes the number of unique
words in VWord that ever occur in the context window of
design pattern i. The weights are normalized by the average
values

fwj ¼ wj

avgfwj0 jj0 2 VWordg ;fwi ¼ wi

avgfwi0 ji0 2 VDPg : (4)

Finally,Xij is recalculated as

fXij ¼ ceilðXij �fwi �fwjÞ; (5)

where ceilð:Þ is a function that converts a floating number to
the nearest integer.

Given the vector dimension, the vectors of words in VWord

and design patterns in VDP are generated by GloVe8 based
on the entries co-occurrence counts matrix X. For training
GloVe, we use the settings in [13], i.e., the number of itera-
tions is 100, the initial learning rate is 0.05, and the model
parameters xmax ¼ 100 and a ¼ 0:75. Finally, the word and
design pattern vectors are calculated as the sum of the
“input” and “output” vectors generated by GloVe.9

4 EVALUATION SETTINGS

In this section, we present the experimental settings for
evaluating the DPWord2Vec model, including evaluation
protocols, baseline algorithms, evaluation metrics, and
parameter settings of DPWord2Vec.

4.1 Evaluation Protocols

In this subsection, we demonstrate the strategy and dataset
for evaluating DPWord2Vec.

Word similarity tasks are usually leveraged to evaluate
the quality of word vectors in word embedding models [13],
[18], [22], [23]. Generally speaking, two semantically rele-
vant words should indicate that their vector representations
are similar [22]. In DPWord2Vec, “word” means natural
language word or design pattern. As we focus on the rela-
tionship between natural languages and design patterns,
only the dp-word similarity is considered. This similarity
can be estimated by calculating the cosine similarity of the
word vector and the design pattern vector. To the best of
our knowledge, there exist no publicly available datasets for
dp-word similarity evaluation. Therefore, we build a new
dataset of dp-word pairs with relatedness labels to address
this issue.10

Design Pattern Selection. At first, a list of design patterns is
selected. To obtain a diverse list of design patterns, we select
design patterns based on their frequencies, like the methods
for word similarity datasets construction [18], [23]. The fre-
quency of a design pattern means the number of documents
inC that describe the design pattern. The 372 design patterns
in VDP can be grouped into five classes according to five fre-
quency intervals: (0,10], (10,50], (50,400], (400,1500], and
(1500,+1). Except the first class which contains a relatively
large number of infrequent design patterns, the other four
classes have similar sizes, i.e., there are 34, 33, 33, and 34
design patterns in these classes respectively. We randomly
sample ten design patterns from each class and get a list of 50
design patterns.

Pair Construction. Next, for each design pattern, we select
a list of words to form pairs. Given a design pattern, if a
word is randomly selected from VWord, it is unlikely to be
related to the design pattern. In other studies, word pairs are
constructed by usingWordNet synonym sets [18], [23]. How-
ever, there are no similar databases specified for design pat-
terns as to our knowledge. Hence, we employ the frequency

8. https://nlp.stanford.edu/projects/glove/
9. The source code and the learnt word and design pattern vectors

can be accessed on https://github.com/WoodenHeadoo/dpword2vec.
10. We provide the dataset on https://github.com/WoodenHeadoo/

dpword2vec.
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of co-occurrence to select words. The intuition is if a design
pattern and aword appear in the same document frequently,
they are more likely to be relevant, then the word is more
likely to be chosen. Concretely, given a design pattern, 40
non-duplicated words are randomly chosen based on a dis-
tribution, in which the probability of choosing a word is pro-
portional to the number of documents containing both the
word and the design pattern. Then we obtain 50�40 = 2,000
dp-word pairs and the number is comparable to those in [18]
and [23].

Human Judgment. According to the last step of word simi-
larity datasets construction [18], [23], [24], the relatedness
between the design pattern and the word in each pair is
manually labelled. To reduce the influence of personal
biases, we recruit three graduate students to label the pairs.
These participants all have bachelor’s degrees majoring in
computer science or software engineering and have been
trained in object-oriented programming including design
pattern relevant skills. They are also experienced with anno-
tating software artifacts, such as evaluating the quality of
the enriched API specifications and scoring the results of
the code search algorithms.

Before labelling these pairs, all the participants go over
the materials of the involving design patterns as a retro-
spect. When labelling, each dp-word pair is sent to each par-
ticipant and he/she attempts to construct a context that the
word is mentioned and associated with the design pattern.
In this procedure, the participants are allowed to search for
the texts that contain the design pattern and the word on
the Internet to help them. If one still doubts whether such a
context exists, the documents in C, in which the design pat-
tern and the word co-occur, can serve as references. For
each participant, a pair is labelled as “related” if the design
pattern and the word can be associated in some certain con-
texts, and labelled as “unrelated” if they are hard to be
linked or the meaning of the word is so general that the link
seems to be too weak. The final label of a pair is “related” or
“unrelated” if the participants can reach an agreement, i.e.,
they all label it as “related” or “unrelated”. Otherwise, its
final label is “somewhat related”. That means, there exists
some uncertainty but the relatedness is between “related”
and “unrelated”.

From the labelling process, we get some observations.
Some pairs are consistently labelled as “related” since the
word can describe the use scenario of the design pattern
directly and the relationship between them can be easily
imagined. For example, Publish/Subscribe is a messaging
design pattern that provides instant notifications for distrib-
uted applications. The related words include “event” (the
notifications are events), “channel” (notifications are broad-
casted via the channel), and “endpoint” (the notification
publishers and subscribers are all endpoints). Some pairs
are related when considering the background of the entity
that the word represents. For example, the word “wpf”
refers to a programming framework. It is supposed to be
related to the Model View ViewModel (MVVM) design pat-
tern as it is a typical application of MVVM. For the pairs with
the consistent label “unrelated”, the association between the
word and the design pattern is usually too weak to make
sense. They may just be mentioned in a same document occa-
sionally, for instance, Sharding - “excel”, Iterator - “message”,

andDecorator - “plugin”. Thewordswhosemeanings tend to
be very general, such as “idea”, “make”, and “sometime”, are
also labelled as “unrelated” to anydesign patterns as it is diffi-
cult to specify a scenario that they can be related. Except for
the consistently labelled ones, some pairs are controversial.
For example, “dismiss” can represent a specific operation in
the ViewController design pattern. However, it is also some-
what a general meaning word. Two participants judge it to
be related to ViewController but the other one labels
“unrelated”. Hence, the final label is “somewhat related”. To
measure the degree of agreement among the participants, we
calculate the Fleiss’ Kappa. The value is 0.6421, which means
a substantial agreement. Therefore, the labelling results are
relatively reliable.

After the labelling process, 369 pairs (18.45 percent) are
labelled as “related”, 457 pairs (22.85 percent) are labelled
as “somewhat related”, and 1,174 pairs (58.7 percent) are
with the label “unrelated”.

4.2 Baseline Algorithms

There exist several similarity methods to estimate semantic
relatedness between natural language words. We take three
categories of intensively used methods as baselines. This
categorization can cover that adopted in [25].

4.2.1 Latent Semantics Based Methods

In this category ofmethods, thewords anddesign patterns are
represented by latent variable vectors. Then the relatedness
between a word and a design pattern can be measured by the
cosine similarity.11 This category includes Latent Semantic
Indexing (LSI) and Latent Dirichlet Allocation (LDA).

LSI (also known as Latent Semantic Analysis, LSA) is an
unsupervised algorithm of analyzing the relationships
between documents and terms by producing a set of latent
semantic concepts [26]. It has been used in estimating seman-
tic relatedness in source code [25]. In the evaluation, the
input of LSI is the term� document matrix, in which an ele-
ment represents the frequency of a term (word or design pat-
tern) appearing in a document. Then the words and the
design patterns are represented in a low-dimensional (latent)
space by applying singular value decomposition. The
dimension of the latent space is initially set as 10 and then
gradually increased. During this process, the performance of
LSI is evaluated. The value which achieves the best perfor-
mance is retained and recorded. Finally, the dimension is set
as 400.12

LDA is a topic modeling technique that has been used for
analysing software-specific data in several studies [20], [27],
[28], [29]. To use LDA in the evaluation, each document in
the corpus C is represented as a bag of words and design
patterns without order. With the Gibbs sampling based
implementation of LDA [30], each word or design pattern
in a document is assigned to a topic. By considering the
whole corpus, the words and the design patterns can be rep-
resented as probability distributions over topics. The topic

11. https://en.wikipedia.org/wiki/Cosine_similarity
12. In fact, the performance of LSI in terms of NDCG@40 and

Spearman’s r does not change much when the dimension is larger than
250. The details are shown on https://github.com/WoodenHeadoo/
dpword2vec/blob/master/baselines/LSI.md.
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number is set to 40 as it has been shown to be appropriate
for the Stack Overflow dataset [28].

4.2.2 Co-occurrence Based Methods

Co-occurrence based methods calculate the similarity (or
distance) between a word and a design pattern directly
based on their co-occurrences, including Pointwise Mutual
Information (PMI) and Normalized Google Distance (NGD).

PMI is an intuitive and computationally efficient related-
ness method for massive corpora of textual data [31]. NGD is
a semantic distance measure between words or phrases
based on information distance and Kolmogorov complex-
ity [32]. It has been verified to be effective in quantifying
semantic relatedness between individual code terms (named
Normalized Software Distance, NSD) [25]. Since NGD is a
distance measure, the similarity can be obtained by negating
the value of NGD. Both PMI and NGD take the frequency of
a word (i.e., the number of documents containing the word),
the frequency of a design pattern (i.e., the number of docu-
ments containing the design pattern), and the frequency of
the co-occurrence (i.e., the number of documents containing
both the word and the design pattern) in the corpus C as
input, but calculate themeasures in different ways.

4.2.3 Vector Space Model Based Method

Another baseline is the Vector Space Model (VSM). Specifi-
cally, we use the Term Frequency - Inverse Document Fre-
quency (TF-IDF) [33] schema to model the text. By
multiplying each row of the term� documentmatrix (which
is also the input of LSI) by the IDF value of the correspond-
ing term, we obtain a matrix of TF-IDF values. Each row of
the TF-IDF matrix can be regarded as the vector of the corre-
sponding term (word or design pattern), which indicates
the TF-IDF value of the term in each document. With these
term vectors, the dp-word similarity can be also obtained
by calculating the cosine similarity. Actually, the calculation
of the IDF values is redundant in this case. Since the IDF
weighting is operated on each entire term vector, the multi-
plied IDF values are eliminated automatically when calcu-
lating the cosine similarities. Therefore, this model is
equivalent to represent a term with a row of the term�
documentmatrix.

4.2.4 Software-Specific Method

In the evaluation, we consider a domain-specific method,
WordSimSE, which aims to build WordNet like resources
for software [24]. WordSimSE is a composite method that
measures the similarity between terms by combining
weighting strategy and co-occurrences. We use the Word-
SimSE method to calculate the dp-word similarities based
on the corpus C. Moreover, there are three parameters to be
clarified. According to the definition in [24], a word or a
design pattern can be classified into one of the three groups:
popular software tag, if it is a top 10 percent most frequent
Stack Overflow tag; non-popular software tag, if it is a Stack
Overflow tag but not in the top 10 percent; and ordinary
term, otherwise. The three groups are weighted with three
different parameters, namely 2.8, 2.0, and 1.4, which are
also used in [24].

4.3 Evaluation Metrics

In our built dataset, each design pattern is paired with 40
words, which are labelled as “related”, “somewhat related”,
or “unrelated” to the design pattern. We want to investigate
whether the similarity scores given by the similarity meth-
ods could correspond with the labelled ones. To this end,
we use two metrics for evaluation, namely NDCG and
Spearman’s rank correlation coefficient.

Normalized Discounted Cumulative Gain (NDCG) is a
measure of ranking quality in information retrieval and
employed in several software engineering tasks [34], [35],
[36]. For each design pattern, a similarity method ranks the
40 words in descending order according to their similarity
scores. The measureNDCG@k is calculated as

NDCG@k ¼ DCG@k

IDCG@k
;DCG@k ¼

Xk
i¼1

ri
log 2ðiþ 1Þ ; (6)

where ri denotes the degree of relevancy of the ith
ranked word and its permissible values are 3 (“related”),
2 (“somewhat related”), and 1 (“unrelated”). IDCG@k is
the ideal value of DCG@k that normalizes the measure
into [0,1].

Spearman’s rank correlation coefficient (Spearman’s r) is
a non-parametric measure of rank correlation which is usu-
ally used in the evaluations of word similarity tasks [13],
[18], [23]. It represents the correlation between the ranks of
the 40 words based on the similarity scores of a similarity
method and the ranks based on the labelled relevance scores.
However, there are only three unique labelled relevance
scores in our dataset. Following [37], words with a same
score are assigned with a same average fractional rank. Spe-
cifically, after ranking the 40 words according to the three
labels, we assume that the first m1 words are “related”, the
middle m2 words are “somewhat related”, and the last m3

words are “unrelated”. The rank of the “related” words is
1
m1

� ð1þm1Þm1
2 ¼ m1þ1

2 , the rank of the “somewhat related”
words ism1 þ m2þ1

2 , and the rank of the “unrelated” words is
m1 þm2 þ m3þ1

2 . Then the coefficient is calculated as

r ¼ 1� 6
PN

i¼1 d
2
i

NðN2 � 1Þ ; (7)

where N ¼ 40, denotes the length of the rank list, and di is
the difference between the two ranks of the ith word.

5 EVALUATION RESULTS

In this section, we investigate the following four research
questions (RQs) to evaluate different aspects of DPWord2Vec.

5.1 RQ1: How Do the Settings of the Parameters
Affect the Performance of DPWord2Vec?

5.1.1 Motivation

The performance of DPWord2Vec may vary when using dif-
ferent settings. In this RQ, we investigate how DPWord2Vec
performs under different values of the parameters, i.e., the
dimension of the vectors, the size of context window for
words, and the ratio of the weights of the two corpora.
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5.1.2 Approach

Each of the three parameters is investigated independently.
Specifically, we adjust the value of one parameter and ana-
lyse how the performance of DPWord2Vec changes. Mean-
while, the other two parameters keep fixed.

We change the value of the vector dimension (d) from 50
to 1,000, including 50, 100, 200, 300, 400, 500, 800, and 1,000.
The value of the context window size for words (c) varies
from 5 to 100, including 5, 10, 20, 30, 40, 50, 80, and 100.More-
over, we explore the importance of the description corpus
and the crowdsourced corpus under different ratios of
weights (r). The ratio m : n indicates that each document in
the description corpus and each document in the crowd-
sourced corpus are added into the final corpus for m and n
times, respectively.

5.1.3 Results

The results for the three parameters are presented respec-
tively at follows.

Dimension of Vectors. The fold lines in Fig. 3a plot how the
mean values of NDCG@k change with different vector
dimensions. For simplicity, we only show the results for k =

5, 10,..., 40. The bars in Fig. 3a show the mean values of
Spearman’s r on different vector dimensions. The settings
of the other two parameters are c = 10 and r = 1:1. In
Fig. 3a, we notice that all the fold lines have similar
trends. The values of NDCG rise slightly when the vector
dimension varies from 50 to 200 and then keep stable as
the vector dimension increases further. Meanwhile, by
referring to the bars, a similar trend can also be found on
Spearman’s r. In general, the performance of DPWord2-
Vec is not very sensitive to the vector dimension in terms
of NDCG and Spearman’s r.

The dimension of the vector controls over the granularity
of the representation of a word or a design pattern. A larger
vector dimension tends to produce more fine-grained and
detailed vector representations. However, the performance
cannot further improve when the vector dimension is larger
than 200. It may imply that the representations of words
and design patterns reach the saturations at this vector
dimension based on the current model and corpus.

Size of Context Window for Words. The values of NDCG
and Spearman’s r under different settings are presented in
Fig. 3b as line chart and bar chart, respectively. The other
two parameters are fixed at d = 100 and r = 1:1. As shown in
the figures, both NDCG and Spearman’s r all have an
approximately descending trend as the context window
size increases, especially from c = 10 to c = 20. The perfor-
mance at c = 5 is comparable to that at c = 10. For example,
NDCG@40 is 0.9556 at c = 5 and 0.9548 at c = 10, the former
is slightly better; Spearman’s r is 0.6141 at c = 5 and 0.6273
at c = 10, the later is slightly better. Generally, the descend-
ing trends are not very significant.

The context window size in DPWord2Vec only affects the
context windows for words, it determines the number of
surrounding words that a word is associated with. Too large
context window size results in too many surrounding
words that would diminish the syntactic information. It
may lead to low-quality vector representations of words
and design patterns, and then impairs the performance.

Ratio of Corpora Weights. The results are shown in Fig. 3c.
The other two parameters are set as d = 100 and c = 10.
From the figures, we notice that the values of both NDCG
and Spearman’s r reach their peaks at r = 1:1, i.e., when the
two corpora are directly mixed. The performance at r = 5:1
is the most similar one to that at r = 1:1. When changing the
ratio, the performance drops and reaches the worst in the
two directions at r = 1:0 and r = 0:1. That means, we will get
bad results when using only one of the two corpora.13

From the results, we can conclude that both the descrip-
tion corpus and the crowdsourced corpus are all indispens-
able for good performance. Although the description
corpus is much smaller than the crowdsourced corpus, its
effects cannot be neglected. The description corpus may
stand for “quality” which supplies precise descriptions of
design patterns, and the crowdsourced corpus stands for
“quantity” which provides rich textual data relevant to
design patterns.

Fig. 3. Mean NDCG and Spearman’s r of DPWord2Vec under different
parameter settings on the 50 design patterns.

13. Some words or design patterns may be out of the vocabulary
when using only one corpus. In this case, the vectors are represented as
random initial values. It may be a reason for the bad results. Neverthe-
less, it also implies that neither of the corpora is negligible.
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5.1.4 Conclusion

Generally, the performance of DPWord2Vec is not very sen-
sitive to the dimension of vectors, but the settings of the con-
text window size and the corpora weights affect the
performance. To get a good performance, the context win-
dow size for words should not be too large, and the descrip-
tion corpus and the crowdsourced corpus should be
balanced. The following experiments are all based on the set-
tings that d = 100, c = 10, and r = 1:1.

5.2 RQ2: Does DPWord2Vec Outperform the
Baseline Algorithms in the dp-Word Similarity
Task?

5.2.1 Motivation

In this RQ, we explore whether DPWord2Vec can be
superior to the baseline algorithms in dp-word similarity
estimation.

5.2.2 Approach

We compare DPWord2Vec against the six baseline algo-
rithms, namely LSI, LDA, PMI, NGD, VSM, and Word-
SimSE, on our dp-word pair dataset. The two metrics, i.e.,
NDCG and Spearman’s r, are applied for evaluation.

5.2.3 Results

Fig. 4a shows the mean values of NDCG@k of the five algo-
rithms and DPWord2Vec over the 50 design patterns on
various k. Fig. 4b presents the averaged value of Spearman’s
r of these algorithms. As shown in Fig. 4a, DPWord2Vec
almost outperforms all the baseline algorithms for all values
of k. For example, NDCG@40 of DPWord2Vec is 0.9548,

which outperforms those of LSI, LDA, PMI, NGD, VSM,
and WordSimSE by 0.0173, 0.0494, 0.0559, 0.0472, 0.0155,
and 0.0421, respectively. In Fig. 4b, DPWord2Vec outper-
forms LSI, LDA, PMI, NGD, VSM, and WordSimSE by 32.3,
120.9, 60.4, 57.4, 24.2, and 63.9 percent respectively in terms
of Spearman’s r. As the metrics are only shown in mean val-
ues, we use Wilcoxon signed rank test [38] to investigate
whether there are significant differences between the per-
formance of DPWord2Vec and the baseline algorithms over
the 50 design patterns. For NDCG@40, the p-values when
comparing DPWord2Vec against the baseline algorithms
are all less than 3e-6. For Spearman’s r, the corresponding
p-values are all less than 1e-7. That means, DPWord2Vec
significantly outperforms the baseline algorithms in terms
of NDCG and Spearman’s rank correlation coefficient.

Among the baseline algorithms, LSI and VSM achieve bet-
ter performance and the other four have somewhat compara-
ble performance when considering NDCG and Spearman’s
r. We note that LSI and VSM are all based on the term�
document matrix. It means that this way of text representa-
tion is relatively suitable for this task. The software specific
method, WordSimSE, does not perform quite well in the
evaluation. A possible reason is that there are differences
between the software domain and the design pattern
domain, as design patterns are universal solutions to recur-
ring design problems and tend to be independent of specific
software entities.

To gainmore intuitions of how the algorithms perform,we
give an example of ranked lists of these algorithms. Table 2
shows the top ten most related words to the design pattern
Record Set [39] ranked by each algorithm. For DPWord2Vec,
the ten words are all labelled as “related” or “somewhat
related” to the design pattern Record Set. The top ten lists of
the other algorithms all contain “unrelated” words, which are
shown in boldface. For example, for LDA, PMI, andNGD, the
top ten lists are contaminated by the noise word “jone”. The
word “jone” is a person name and usually used as an example
of usernamewhen discussing database records in Stack Over-
flow (e.g., post #10050790). However, “jone” is not semanti-
cally related to Record Set. The top ten lists of LSI, VSM, and
WordSimSE contain words with too general or vague mean-
ings, e.g., “try”, “get”, and “use”.

5.2.4 Conclusion

DPWord2Vec significantly outperforms the baseline algo-
rithms on the dp-word similarity task in terms of NDCG
and Spearman’s r.

5.3 RQ3: Does the Usage of the New Context
Windows Contribute to the Performance of
DPWord2Vec?

5.3.1 Motivation

In DPWord2Vec, we define new context windows for design
patterns and words respectively (Section 3.3). In this RQ, we
explore whether the usage of these context windows is an
advisable choice to associate design patternswith words.

5.3.2 Approach

To investigate the effects of the new context windows, we
replace them with the traditional fixed context windows

Fig. 4. Mean NDCG and Spearman’s r of each baseline algorithm and
DPWord2Vec on the 50 design patterns.
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used in Word2Vec [11] and repeat the experiments on the
dp-word pair dataset. As the words and the design patterns
are independent in the corpus C, we use two strategies to
integrate words and design patterns into sequences, namely
the occurrence strategy and the shuffling strategy, so that they
can be handled by the traditional context windows.

The design pattern name occurrences strategy is to detect
the occurrences of design pattern names in the text as
design pattern tokens. This strategy is discussed in Sec-
tion 3.3. The shuffling strategy is leveraged in a recent study
to align words and APIs into a fixed context window [40].
Following [40], for a document doc, the words in doc:Tokens
and the design patterns in doc:DPs are merged and ran-
domly shuffled for ten times to produce ten token sequences
(containing both words and design patterns).

Moreover, we also consider two other strategies which
represent design patterns in higher levels rather than token
level. They are from Doc2Vec [41] and Category enhanced
Word Embedding (CeWE) [42], respectively. The original
Doc2Vec aims to embed words and paragraphs or docu-
ments into vector spaces. Based on this model, we regard a
design pattern as a document-level term to learn its vector
representation. Specifically, the vector of each document in
Doc2Vec is substituted with the vector of the design pattern
which is contained in the document. Each design pattern in
VDP always keeps a unique vector even if it appears in differ-
ent documents. However, a document may contain multiple
design patterns. In this case, its word tokens (doc:Tokens) are
duplicated multiple times so that each duplicate can be com-
bined with a design pattern. Recently, Nguyen et al. have
used the same approach to produce the vector representa-
tions of APIs andwords [43].

Likewise, CeWE can learn the vector representations of
words as well as categories. A category indicates a label or a
classification of documents. A document may belong to
multiple categories. In this study, we regard each design
pattern as a category. In this way, design patterns are also
associated with words in document level and their vectors
can be obtained accordingly.

For all the strategies above, the parameters, including
the dimension of the vectors, the size of context window, the
initial learning rate, and the number of iterations, are the
same as in Section 3.4. As introduced in [42], the parameter �
of CeWE is set to be 1=ð2 � cþ 1Þ, where c is the size of con-
text window.

5.3.3 Results

The results are shown in Figs. 5a and 5b in terms of NDCG
and Spearman’s r, respectively. As shown in the figures, we

notice that the performance of DPWord2Vec with the occur-
rence strategy (Occ.) is poor. For example, the Spearman’s r
is 0.1315, even worse than all the baseline algorithms in Sec-
tion 5.2. DPWord2Vec with the shuffling strategy (Shuff.),
and the strategies of Doc2Vec and CeWE, achieve compara-
ble performance. Among them, the shuffling strategy tends
to be slightly better than the other two, but still surpassed
by DPWord2Vec with the new context windows. According
to Wilcoxon signed-rank test, the differences between the
performance of the default DPWord2Vec and that with the
other strategies on NDCG@40 and Spearman’s r are statisti-
cally significant (p-values are all less than 1e-5).

The drawback of the occurrence strategy is obvious. As the
design pattern names tend to be sparse in the text, it is hard
to mine the relationships between words and design pat-
terns adequately by leveraging the context windows. With
regard to the shuffling strategy, it may break the structure of
the natural language sentences and do harm to the capture
of semantic relationships. Moreover, the shuffling process
will significantly increase the size of the corpus (almost ten
times the original one) which results in extra computation
complexity.

The two document-level strategies, i.e., that from Doc2-
Vec and CeWE, have similar mechanisms. The core is that,
in each document, the vectors of the design patterns are
integrated with the vectors of the surrounding words in a
context window to predict the central one. Hence, design
patterns can be deemed to be contained in the context of
words in some way. However, there exists no similar con-
text for design patterns and the design patterns in a docu-
ment are not predicted by the vectors of the involving

TABLE 2
The Top 10 Most Related Words to Record Set

Design Pattern of Each Algorithm

Fig. 5. Mean NDCG and Spearman’s r of the variants of DPWord2Vec on
the 50 design patterns. Occ. = DPWord2Vec with the occurrence strategy,
Shuff. = DPWord2Vec with the shuffling strategy, Doc2Vec = DPWord2-
Vecwith the strategy of Doc2Vec, CeWE=DPWord2Vecwith the strategy
of CeWE,W/OW. = DPWord2Vec without the weighting strategy.
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words. Compare to these strategies, the new context win-
dows can build stronger ties between design patterns and
words.

5.3.4 Conclusion

DPWord2Vec with the new context windows can achieve
better results than the variants with the two serializing strat-
egies and the two document-level strategies. Thus, the usage
of the new context windows does contribute to the perfor-
mance of DPWord2Vec.

5.4 RQ4: Does the Weighting Strategy Contribute
to the Performance of DPWord2Vec?

5.4.1 Motivation

A weighting strategy is applied in the training phase of
DPWord2Vec (Section 3.4). To verify whether this strategy
is redundant, we set up this RQ.

5.4.2 Approach

We construct a variant of DPWord2Vec by removing the
weighting strategy. Then the performance of the variant is
compared against that of the default DPWord2Vec.

5.4.3 Results

The results are also presented in Figs. 5a and 5b (W/OW.).
In Fig. 5a, we observe that there are minor effects on
NDCG@k with small k after removing the weighting strat-
egy. The differences are obvious when k is larger than five.
When considering all the 40 words for each design pattern,
the values of NDCG@40 and Spearman’s r after removing
are respectively 0.9471 and 0.5603, which are all worse than
the original ones, i.e., 0.9548 and 0.6273. As the mean values
seem to be close, we perform Wilcoxon signed-rank test on
NDCG@40 and Spearman’s r. The p-values are respectively
2.72e-3 and 1.05e-5, which indicates the differences are sig-
nificant according to the p < 0:05 standard. Moreover, we
quantify the magnitude of the difference of performance by
analysing the effect size. Specifically, Cohen’s d [44] is calcu-
lated to measure the differences between the means of the
metrics with and without the weighting strategy. The
results for NDCG@40 and Spearman’s r are 0.2959 and
0.6087, which indicate a small-medium effect size and a
medium-large effect size [45], respectively. That means, the
effect of the weighting strategy on the performance is not
negligible.

Based on the results, we note that DPWord2Vec achieves
better performance with the weighting strategy, especially
in terms of NDCG@k with k > 5. Without the weighting
strategy, the irrelevant but frequent words, such as “get”
and “case”, may be included in the top k list with a rela-
tively large k and ranked ahead of the ones which are
labelled as “related”. The weighting strategy could effec-
tively weaken the relationships between the design patterns
and these words, thus improves the performance.

5.4.4 Conclusion

DPWord2Vec can benefit from the weighting strategy for
measuring dp-word similarity.

6 APPLICATION I: DESIGN PATTERN TAG
RECOMMENDATION

Many software information sites allow developers to label
their posts with tags, such as Stack Overflow, Ask Ubuntu,
and Freecode. Tags are short descriptions within a few
words long that are provided as metadata to classify, iden-
tify, and search software objects in these sites [46]. To
improve the quality of tags in software information sites, a
series of automatic tag recommendation methods have been
proposed to recommend appropriate tags for new posts
based on existing tag candidates [47], [48], [49], [50], [51]. In
this application, we consider a design pattern specific tag
recommendation task that recommends design pattern tags
for design pattern relevant posts. That is, each recommended
tag is a design pattern. By the recommendations, the synony-
mous design pattern tags could be better avoided, which
results in better information organization and retrieval for
design pattern relevant posts.

6.1 Common Methods for Tag Recommendation

Actually, the design pattern tag recommendation task can also
be accomplished by general tag recommendation methods.
We briefly introduce themethods for tag recommendation.

The main intuition of the existing tag recommendation
methods is to use the historical information of tag assign-
ments to recommend tags for new posts. Concretely, the tag
recommendation methods analyse the existing posts and
their tags in a software information site, and then infer the
relationship between a tag and a word or a whole post.
When a new post is coming, the same analysis process is
deployed on this post with the inferred results and each tag
is given a likelihood score. The top few tags with the highest
likelihood scores will be recommended. By restricting the
tags to design pattern tags, i.e., each tag represents a design
pattern, these methods are directly applied in the design
pattern tag recommendation task.

6.2 Design Pattern Tag Recommendation Based
on DPWord2Vec

In this part, we explain how to recommend design pattern
tags by leveraging DPWord2Vec.

With DPWord2Vec, design patterns and natural lan-
guages are associated. We can use these associations for
design pattern tag recommendation. As the content of a
post is a typical document that contains multiple words, to
recommend design pattern tags for a post, the relationship
between a design pattern and a document should be built
based on the word and design pattern vectors. Therefore,
we adopt the text semantic similarity [52] to measure the
relatedness between a design pattern and a set of words

SimðWords; dpÞ ¼ 1

2

�P
w2Words IDF ðwÞ � Simðw; dpÞP

w2Words IDF ðwÞ
þ max

w2Words
Simðw; dpÞ

�
; ð8Þ

where IDF ðwÞ is the inverse document frequency14 value of
the word w in the corpus C and Simðw; dpÞ is the vector
cosine similarity between w and the design pattern dp.

14. https://en.wikipedia.org/wiki/Tf-idf
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Generally, given a new design pattern relevant post, there
are three steps for design pattern tag recommendation:

1) Preprocess and tokenize the textual description of
the post following the procedures in Section 3.2.

2) For each design pattern tag in the tag candidate set,
calculate the similarity between the design pattern
and the post as Formula (8).

3) Rank the design pattern tags in descending order
according to their similarities and recommend the
top k design pattern tags.

6.3 Evaluation on Design Pattern Tag
Recommendation

6.3.1 Motivation

In the evaluation, we try to explore whether the DPWord2-
Vec-based method performs better than the common tag
recommendation methods on the design pattern tag recom-
mendation task.

6.3.2 Approach

To evaluate the effectiveness of the DPWord2Vec-based
method, we compare it against the state-of-the-art tag rec-
ommendation algorithms on a real-world dataset. We detail
the strategies for evaluation, the constructed datasets, the
state-of-the-art tag recommendation algorithms, and the
leveraged metrics as follows.

Strategies. As to our knowledge, there are two software
information sites in which design patterns are broadly dis-
cussed: Stack Overflow and Software Engineering.15 How-
ever, on one hand, the posts in Stack Overflow have been
leveraged by DPWord2Vec, it is inappropriate to use them to
evaluate DPWord2Vec again. On the other hand, the amount
of design pattern relevant posts in Software Engineering is
relatively small (less than 3,000, a dataset of tag recommenda-
tion usually contains more than 13,000 posts [47], [48], [49],
[50], [51]), it may be detrimental for the other tag recommen-
dation algorithms to train proper models based on these
posts. Therefore, the main strategy for evaluation is to use the
Software Engineering posts for testing, and use the Stack
Overflow posts to train tag recommendationmodels.

Datasets. We download the Stack Overflow posts (from
August 2008 to December 2017) and the Software Engineer-
ing posts (from September 2010 to March 2019) to construct
the datasets. Before that, the design pattern tags should be
detected. At first, we construct the regular expressions for
the names of each design pattern in VDP . Specifically, each
design pattern name is split into word(s), i.e., word1,
word2; . . . ; wordn, and the regular expression is written as
“word1-?word2...-?wordn(-pattern)?” (as words can only be
separated by hyphens in tags). In this way, the tags like
“active-record”, “activerecord”, and “active-record-pattern”
can all be matched with the design pattern name “active
record”. Next, all the tags of these posts are extracted and a
tag is mapped to a design pattern if it matches with a name
of the design pattern via the corresponding regular expres-
sion. Then, we manually review each mapped tag if it has a
description in the corresponding software information site

to filter out false-positive tags that do not denote the design
patterns. At last, multiple tags are merged into one tag if
they are mapped to the same design pattern. Finally, 94 and
36 design pattern tags are detected in Stack Overflow and
Software Engineering, respectively. In this way, the design
pattern tags of the two sites are unified and these tags have
a one to one correspondence with the design patterns.

With the design pattern tags, we construct two datasets: a
dataset for training the common tag recommendationmodels
and a dataset for testing the common models and the
DPWord2Vec-based model. To build the training set, we
extract the Stack Overflow posts that contain the design pat-
tern tags but discard the tags appearing in less than 50 posts
as they are less interesting and less useful to serve as repre-
sentative tags [47]. For the test set, we extract the Software
Engineering posts that contain the design pattern tags but dis-
card the tags not appearing in the training set as they cannot
be recommended by the common tag recommendation algo-
rithms. Finally, the training set contains 176,427 Stack Over-
flow posts and 74 design pattern tags which are used as
candidates, the test set contains 2,986 Software Engineering
posts and 35 design pattern tags.16 Like the training set here,
the crowdsourced corpus, which is for training the design
pattern and word vectors, is also constructed based on the
StackOverflowposts. It should be noted that they are distinct.
The crowdsourced corpus consists of the posts with at least
one design pattern name appearing in the titles, bodies, or
tags. It involves 210 design patterns in total. In contrast, the
training set only cares about the posts containing design pat-
tern tag(s). The latter can be roughly covered by the former.

According to the settings above, the common tag recom-
mendation models are trained on the Stack Overflow posts
containing the design pattern tags. Meanwhile, our DPWord2-
Vec-basedmodel relies on the design pattern andword vectors
learnt form the corpus C. In other words, these models do not
have a consistent training set. To achieve unbiased compari-
sons, we conduct another part of evaluation in which the
corpus C is also used for training the common tag recommen-
dationmodels. Specifically, each document inC is regarded as
a post and each design pattern in a document is regarded as a
design pattern tag. Then, all the 372 design patterns in VDP

serve as candidates.
State of the Arts. To the best of our knowledge, there are

three common tag recommendation algorithms, TagMul-
Rec [49], EnTagRec++ [50], and FastTagRec [51], shown to
be the state-of-the-art on software information sites. Similar
to word embedding models, FastTagRec represents words
as vectors and recommends tags using neural network-
based classification. Given a new post, TagMulRec first
locates the posts that are semantically similar to it, and then
exploits multi-classification to produce a ranked tag list.
EnTagRec++ integrates the historical tag assignments and
the information of users for tag recommendation. However,
EnTagRec++ cannot be applied here as the training set and
the test set are from different sites which do not share the
same group of users. Therefore, we only take TagMulRec
and FastTagRec for comparisons.

15. https://softwareengineering.stackexchange.com/

16. The training and test sets, as well as the original tag - design pat-
tern mappings are available on https://github.com/WoodenHeadoo/
dpword2vec.
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In addition, with the concern that the design pattern
names may appear in the posts explicitly, we deploy a base-
line method which leverages the occurrences of design pat-
terns. Specifically, the design pattern names of each design
pattern in the tag candidate set are searched in the Software
Engineering posts (the test set) by using the regular expres-
sions (as discussed in Section 3.1). A post is supposed to
contain a design pattern tag if one of the design pattern
names appears in the title or body of the post. Since the
common tag recommendation methods only provide likeli-
hood scores for ranking the candidate tags, for this baseline
method, the design pattern tags are also sorted according to
the numbers of design pattern occurrences for comparabil-
ity. If there are no or not enough design pattern occurrences
found in the post, the design pattern tags are sorted in
alphabetical order.

Metrics. The recommending strategy of all the algorithms
above is to provide a rank list of candidate design pattern tags
and recommend the top k ones. To evaluate the recommenda-
tions, we exploit three metrics, Recall@k, Precision@k, and
F1� score@k, which are usually used to evaluate tag recom-
mendation systems on software information sites [49], [51]. In
particular, the sample-wisemetrics are calculated as

Recall@ki ¼ jRankListki \ Tagij
jTagij ; (9)

and

Precision@ki ¼ jRankListki \ Tagij
k

; (10)

where Tagi and RankListki are the set of real design pattern
tags and the set of top k recommended design pattern tags
for the ith posts in the test set, respectively. By combining
Recall@ki and Precision@ki

F1� score@ki ¼ 2 �Recall@ki � Precision@ki
Recall@ki þ Precision@ki

: (11)

Then the set-wise metrics Recall@k, Precision@k, and F1�
score@k are respectively the average values of the sample-
wise metrics in Formulas (9), (10), and (11) over all the posts
in the test set. According to the literature [47], [48], [49],
[50], [51], k is set to 5 and 10.

6.3.3 Results

As introduced before, the evaluation contains two parts. In
the first part, the StackOverflowposts with the design pattern
tags are used for training the TagMulRec model and the Fast-
TagRec model, the Software Engineering posts are used for
testing all the models. The tag candidate set for recommenda-
tion includes the 74 design pattern tags appearing in these
Stack Overflow posts. The results are shown in Table 3. The
best result on each metric is shown in boldface. As shown in
the table, the DPWord2Vec-basedmethod achievesmuch bet-
ter performance than TagMulRec, i.e., over 30 percent
improvements on all metrics. When comparing against Fast-
TagRec, the improvements are not so apparent, i.e., all within
10 percent.We performWilcoxon signed-rank test on sample-
wise metrics of all the 2,986 posts and the p-values on the six
metrics are all less than 0.0025when comparingDPWord2Vec

against FastTagRec. That means, the DPWord2Vec-based
method significantly outperforms FastTagRec in statistics.

In the second part, we train the TagMulRec model and
the FastTagRec model using the corpus C and test all the
models with the Software Engineering posts. The candi-
dates are changed to all the 372 design patterns in VDP .
Table 4 presents the evaluation results. From the table, we
notice that the performance of TagMulRec and FastTagRec
improves on all the metrics contrast to the previous ones,
but is still not as good as that of the DPWord2Vec-based
method. The DPWord2Vec-based method is relatively sta-
ble as the results are almost unchange when involving more
design pattern tag candidates. According to the results of
Wilcoxon signed-rank test, the differences on Recall@5,
Precision@5, and F1� score@5 are not significant, i.e., the
p-values are 0.22, 0.44, and 0.19, respectively. However, the
DPWord2Vec-based method still significantly outperforms
FastTagRec when recommending ten design pattern tags,
i.e., p-values on Recall@10, Precision@10, and F1�
score@10 are all less than 1e-6. It implies that the DPWord2-
Vec-based method benefits from not only a comprehensive
corpus but also an appropriate algorithmic model.

As shown in Tables 3 and 4, it is surprising that the per-
formance of the baseline method is better than that of Tag-
MulRec on all metrics, although surpassed by that of
FastTagRec and the DPWord2Vec-based method. That
means, to detect the design pattern occurrences is also effec-
tive for design pattern tag recommendation to some degree.
From the perspective of Recall, the names of a part of the
design patterns serving as tags appear in the text of the
posts as well. But it does not achieve a quite ideal coverage.
From the perspective of Precision, an occurrence of a design
pattern name in a post does not necessarily mean that it is
also a tag of the post, as the design pattern may be not the
main focus or the mentioned design pattern name is ambig-
uous. Comparing Table 4 against Table 3, we notice that the
baseline method has minor changes in performance when
enlarging the tag candidate set. The reason is that the newly
involved design patterns appear rarely in the posts.

Generally, the performance of the DPWord2Vec-based
method is relatively close to that of FastTagRec. Nevertheless,
there are some advantages of our method. On the one hand,
the DPWord2Vec-basedmethod ismore efficient than FastTa-
gRec. As DPWord2Vec is based on the GloVe model, the time
complexity for calculating and updating the gradients is usu-
ally OðdðjCj1=a þ jDPTagsj1=bÞÞ for some a, b > 1 [13], where
d denotes the dimension of the vectors, jCj denotes the total
number of word tokens, and jDPTagsj denotes the total

TABLE 3
The Results on the Design Pattern Tag Recommendation Task
(Stack Overflow Posts for Training TagMulRec and FastTagRec,
the 74 Design Pattern Tags in Stack Overflow as Candidates)

Baseline TagMulRec FastTagRec DPWord2Vec

Recall@5 0.7369 0.5279 0.8167 0.8399
Precision@5 0.1618 0.1123 0.1786 0.1837
F1� score@5 0.2625 0.1838 0.2901 0.2984
Recall@10 0.7369 0.6954 0.8658 0.9230
Precision@10 0.0809 0.0749 0.0952 0.1017
F1� score@10 0.1448 0.1345 0.1704 0.1820
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number of design pattern tag occurrences in the training set.
As jDPTagsj ought to bemuch smaller than jCj, the time com-
plexity can be written as Oðd � jCj1=aÞ. For FastTagRec, the
time complexity is Oðd � jCj � logðjDPCandsjÞÞ [51], where
jDPCandsj denotes the size of the design pattern tag candi-
date set. Hence, the DPWord2Vec-basedmethod ismore scal-
able when involving more posts for training (jCj gets larger).
Moreover, enlarging the tag candidate set will make the
model of FastTagRec more complex, but not explicitly
increase the model complexity of the DPWord2Vec-based
method. On the other hand, the DPWord2Vec-based method
is more understandable. FastTagRec is essentially a classifica-
tion model. It regards each design pattern tag candidate as a
class and recommends tags by training the classifier. How-
ever, the classifier is somewhat a black-box for the users. In
contrast, DPWord2Vec represents the elements of the natural
language and the tag candidates as vectors, and ranks the tags
according to the similarities between them and the post. It
tends to be more intuitive and acceptant for humans. More-
over, by exploring the sentences or phraseswith high similari-
ties to the tags, the users could understand the motivation of
the recommendation better.

6.3.4 Conclusion

In the design pattern tag recommendation task, the
DPWord2Vec-based method performs better than TagMul-
Rec and FastTagRec in terms of Recall, Precision, and F1-
score, even when they are provided with the same data for
training. This shows that the learned word and design pat-
tern vectors could better express the relationships between
a post and a design pattern.

7 APPLICATION II: DESIGN PATTERN SELECTION

When developing a software (sub)system, the developer(s)
may be willing to leverage design patterns to facilitate the
development process. This is called a design problem. How-
ever, there exist a large number of design patterns [7] and
determining the applicability of these design patterns
heavily depends on the experience of a developer [53]. It is
usually difficult to find the right design pattern(s) for a
given design problem especially for novice developers [8].
To resolve this problem, several studies focus on selecting
appropriate design pattern(s) automatically based on the
textual description of the design problem [8], [54]. The tex-
tual description is a short text that may depict the main fea-
tures, requirements of the (sub)system, or how it works.

In this application, we attempt to solve this design pat-
tern selection problem by leveraging the learnt word and

design pattern vectors. Comparing to the previous task, i.e.,
design pattern tag recommendation, design pattern selec-
tion is usually a more challengeable task. In the previous
task, a post may involve explicit characteristics of design
patterns, e.g., design pattern names. However, in this task,
the description of the design problem cannot contain such
information as the suitable design pattern(s) is assumed to
be unknown. The semantic meaning of the description
should be explored and it should match the application sce-
narios of the selected design pattern(s).

7.1 General Method of Design Pattern Selection

In this part, we introduce the general framework of design
pattern selection in the existing studies.

The existing design pattern selection approaches usually
use the problem definition of a design pattern as the oracle
for design pattern selection [8], [54]. The problem definition
describes what problems the design pattern solves and
where the design pattern can be applied. For example, in
the GoF book, the problem definition contains the intent,
motivation, and applicability Sections [8]. Given a design
problem description and a collection of design patterns, the
design pattern selection procedure can be detailed in the fol-
lowing three phases [8], [54].

Vectorizing the Documents. The documents, i.e., the design
problem description and the problem definitions of design
patterns, are preprocessed and vectorized by leveraging the
vector space model, in which each document is presented
as a feature vector and each feature indicates the weight of a
word in the document.

Determining the Design Pattern Class. This phase aims to
preliminarily find a set of design patterns that are likely to be
right for the design problem. It is motivated by the expert
classification of design patterns. For example, the 23 design
patterns in GoF are divided into three classes, i.e., Creational
Patterns, Structural Patterns, and Behavioral Patterns [2],
and each class focuses on one type of design problems.
Therefore, the goal is to determine the most suitable design
pattern class for the design problem. With this phase, the
design pattern selection process can leverage the expert clas-
sification information besides the similarity between the
design problem and the oracle of a design pattern. Hence,
this phase is a reinforcement for the similarity-based selec-
tion and the accuracy is expected to be improved.

To determine the design pattern class, text categorization
methods are applied to these vectorized text documents. For
example, [8] leverages supervised learning methods to build
a classifier for textual descriptions based on the expert clas-
ses of design patterns. Then the design problem description
is classified into a class by the classifier and the design pat-
terns in this class are delivered to the next phase. Similarly,
[54] uses clustering methods to group the problem defini-
tions of design patterns and the design problem description
into multiple clusters. This partition may be not consistent
with the expert classification, but the numbers of classes (or
clusters) in the two partitions are equal. The design patterns
whose problem definitions are in the same cluster with the
design problemdescription are retained for further selection.

Suggesting the Design Pattern(s). With the determined
class of design patterns, the appropriate design pattern(s) is
further suggested based on the similarities between the

TABLE 4
The Results on the Design Pattern Tag Recommendation Task
(Corpus C for Training TagMulRec and FastTagRec, All the 372

Design Patterns as Candidates)

Baseline TagMulRec FastTagRec DPWord2Vec

Recall@5 0.7358 0.5559 0.8322 0.8399
Precision@5 0.1615 0.1183 0.1826 0.1837
F1� score@5 0.2620 0.1936 0.2963 0.2984
Recall@10 0.7369 0.7040 0.8895 0.9224
Precision@10 0.0809 0.0758 0.0978 0.1017
F1� score@10 0.1448 0.1361 0.1750 0.1819
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design problem description and the problem definitions of
design patterns. Concretely, the ith design pattern in the
determined class is suggested if

jSij > u1
jSi � Smaxj � u2

;

�
(12)

where Si is the similarity between the problem definition of
the ith design pattern and the design problem description,
Smax is the maximum among the similarity Sj correspond-
ing to each design pattern in the determined class, and u1
and u2 are thresholds that should be specified manually. We
note that more than one design patterns may be selected
finally. The result relies on the values of the thresholds.

7.2 Refined Design Pattern Selection Method Based
on DPWord2Vec

With the learnt design pattern and word vectors, we show
how to refine the existing design pattern selection method.

As to the depictions above, the design pattern selection
method depends on the expert classification of design pat-
terns. However, this classification may involve inconsisten-
cies and anomalies [8]. In other words, the classification
may not be fully reflected by the problem definitions of the
design patterns. As a result, the determined class may be
unreliable. Therefore, we modify the second phase, i.e.,
Determining the Design Pattern Class, by leveraging the
learned word and design pattern vectors to refine the design
pattern selection method.

There are three steps for the modified phase:

1) Preprocess and tokenize the design problem descrip-
tion following the procedures in Section 3.2.

2) For each design pattern candidate, calculate the simi-
larity between the design pattern and the design
problem description as Formula (8).

3) Perform k-means clustering [55] on the design pattern
candidates to group them into the “relevant” class
and “irrelevant” class based on their similarities with
the design problem description. The initial centroids
of the two clusters are the maximum and minimum
of the similarities, respectively. The “relevant” class
is considered as the candidate design pattern class for
the design problem.

This new phase doesn’t use any information of the expert
classification but leverages the relatedness between the
design problem and design patterns inferred from the word
and design pattern vectors. The design patterns with very
weak relatedness to the design problem are unlikely to be
the appropriate ones and eliminated, the rests are retained
for further selection. Except for the second phase, the first
and third phases of the method keep unchanged.

7.3 Evaluation of the DPWord2Vec-Based Method

7.3.1 Motivation

To investigate whether the refined method based on
DPWord2Vec is effective, we set up this evaluation.

7.3.2 Approach

We compare the refined method based on DPWord2Vec
against the existing ones on design pattern selection

benchmarks. In the following parts, we depict the bench-
marks, the methods for comparison, the evaluation metrics,
and the settings of all the methods, respectively.

Benchmarks. The benchmarks we use are the same as
those used in [54], which involve 80 design problems and
three design pattern collections, namely GoF [2], Secu-
rity [56], and Douglass [57]. The GoF collection includes 23
object-oriented design patterns which are divided into three
classes. The Security collection includes 46 design patterns
used in integrating security systems and presented in eight
classes. There are 34 real-time system relevant design pat-
terns in the Douglass collection and they have been divided
into five classes. The numbers of design problems corre-
sponding to the three collections are 30, 30, and 20, respec-
tively. For each design problem, only one design pattern in
the collection is regarded as correct.17

Following [54] and [8], for each collection, the evalua-
tion is deployed independently. Only the design patterns
in this collection are considered as the original candidates
for selection.

State of the Arts. As to our knowledge, there are two stud-
ies, [54] and [8], that propose completely automatic design
pattern selectionmethods based on publicly available textual
descriptions of design patterns. The methods in these two
studies all follow the three-phases framework mentioned
above. In this evaluation, we take them for comparison.

Metrics. Following [54] and [8], the design pattern selec-
tion methods are evaluated by the Ratio of Correct Detection
of Design Pattern (RCDDP)metric, which is calculated as

RCDDP ¼ 1

N

XN
i¼1

jSDPi \ CDPij
jSDPij ; (13)

where N is the number of design problems for the design
pattern collection, CDPi is the set of correct design pattern
(s) to solve the ith design problem (contains only one design
pattern in the dataset), and SDPi is the set of suggested
design pattern(s) by the design pattern selection method.

As to the definition above, the RCDDP metric depends
on the values of the thresholds u1 and u2, as they will deter-
mine which design pattern(s) is finally suggested, i.e., SDPi.
It may make the comparisons complicated, since the appro-
priate values of the thresholds for different design pattern
selection methods may be not unified. Actually, our refined
method only modifies the phase of determining the design
pattern class, but does not deal with the settings of the
thresholds. Without losing the reasonability, we leverage
another metric for evaluation, namely Mean Reciprocal
Rank (MRR) [58], which is not affected by the thresholds.
MRR is a standard evaluation metric in information
retrieval and used in several software engineering related
studies [59]. Specifically,

MRR ¼ 1

N

XN
i¼1

1

rankic
; (14)

17. The 80 design problems and the corresponding correct design
patterns can be found on https://github.com/WoodenHeadoo/
dpword2vec.
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where rankic denotes the position of the correct design pat-
tern to the ith design problem in the rank based on the simi-
larities in the third phase. The expression 1=rankic is called
as reciprocal rank. If the correct design pattern is eliminated
in the second phase, then the reciprocal rank is 0. As to the
definition, the value of MRR is low if most of the correct
design patterns are omitted; and high if the irrelevant
design patterns ranked before the correct ones are elimi-
nated. Therefore, MRR is able to evaluate the candidate
design pattern class produced in the second phase.

Settings of the Methods. The methods in [54] and [8] are
more like frameworks rather than concrete algorithms. That
means, the concrete algorithms for each step should be spec-
ified according to the realities. Therefore, we unify the set-
tings for all methods and leverage the moderate ones that
perform best in the most cases according to the results in
[54] and [8].

Specifically, the TF-IDF technique is used for the vectori-
zation of the documents in the first phase. In the second
phase, the improved global feature selection scheme [60] is
used to reduce the dimension of the document vectors. The
support vector machine [55] classification algorithm and
fuzzy c-means clustering [61] algorithm are leveraged to
determine the candidate design pattern class for the method
in [8] and the method in [54], respectively. The number of
classes (clusters) is consistent with that of the expert classifi-
cation in each design pattern collection. In the third phase,
the cosine similarity is applied to measure the correlation
between the vectorized problem definitions of design pat-
terns and design problem descriptions.

For the refined method, the TF-IDF technique and cosine
similarity are also used in the first and third phases, respec-
tively. But the second phase is replaced by the modified one.

According to [54] and [8], the effective values of the
thresholds and the number of features (dimension of the
document vectors after feature selection) rely on the design
pattern collections. Hence, we attempt to find the most suit-
able settings for each collection and report the optimal
results. For the methods in [54] and [8], we try various fea-
ture numbers from 50 to the vocabulary size at an interval
of 50 and the best one in terms of MRR is recorded. Then,
for each method, we find the highest value of RCDDP by
traversing all the combinations of u1 and u2 from the range
{0, 0.1, 0.2,..., 1.0} and the range {0, 0.01, 0.02,..., 0.10} [8],
respectively.

7.3.3 Results

The metric values and the corresponding parameter settings
are displayed in Table 5. As shown in the table, the refined
method achieves the best performance on all three collec-
tions. Averaging across the three collections, the refined
method outperforms the method in [54] (M1) by 6.3 and 6.5
percent in terms of RCDDP and MRR, respectively. The per-
formance of the method in [8] (M2) is overall unsatisfactory.
For example, the refined method improves M2 by over 70
percent in terms of the mean value of MRR.

The possible reason for the bad results of M2 is that too
many correct design patterns are eliminated when deter-
mining the design pattern class. To show this observation,
for each method on each collection, we calculate the ratio of

cases in which the correct design pattern is eliminated after
the second phase. The results are also shown in Table 5,
namely Erroneously Eliminating Ratio (EER). From the
results, we notice that the EERs of M2 are very high for all
the collections. For example, the EER of M2 is 63.33 percent
for the GoF collection. That means, the correct design pat-
terns of the 19 among the 30 design problems are mistak-
enly eliminated. Meanwhile, the EERs of the refined
method are the lowest among all the methods on the three
collections.

Notably, the performance of the refined method is not
much better than that of M1 on the Douglass collection.
The MRR values are respectively 0.7058 and 0.6917, which
are quite similar. Generally, the quality of the learnt design
pattern vectors relies on the design pattern relevant docu-
ments. However, in the corpus C, the number of docu-
ments relevant to each design pattern in the Douglass
collection seems to be too few. Counting all the 20 design
patterns mentioned in the benchmarks, nine of them relate
to less than 10 documents each, eight design patterns
occupy 10 to 49 documents each, and each of the other
three ones involves 50 to 73 documents. It could be the rea-
son for the nonsignificant improvement in the Douglass
collection.

The main difference among M1, M2, and the refined
method is the way of determining the candidate design pat-
tern class. M2 chooses one class of the expert classification
as the candidate class but this way does not work well. M1
does not completely follow the expert classification but use
it during the feature selection. The performance of M1 is
much better than that of M2, but not as good as that of the
refined method. It implies that the way by leveraging the
learnt word and design pattern vectors is more appropriate
to find a candidate set of design patterns than the way by
using the expert classification.

7.3.4 Conclusion

The refined method based on DPWord2Vec is superior to
the methods in [54] and [8] on the benchmarks. Therefore,
DPWord2Vec contributes to accomplish the task of design
pattern selection.

TABLE 5
The Results and Parameter Settings on the Design

Pattern Selection Task

M1 = the method in [54], M2 = the method in [8], Refined = the refined method
based on DPWord2Vec
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8 THREATS TO VALIDITY

8.1 Internal Validity

There are several threats to internal validity of our work.
First, the size of the corpusmay restrict the effectiveness of

DPWord2Vec. The corpus in this paper is relatively small
comparing with those used in other word embedding meth-
ods [11], [13]. This may influence the quality of the learnt
word and design pattern vectors. However, we believe this
problemwould be alleviated as more design pattern relevant
documents could be extracted in the coming future due to the
popularity of programming forums. Second, only the default
values of the parameters are used to build the word and
design pattern vectors. However, the empirical study shows
that the performance of DPWord2Vec is not very sensitive to
the settings of the main parameters, i.e., the context window
size for words and the dimension of vectors. Third, the
human judgment process of the dp-word pairs may contain
uncertainties, since it may be not easy to judge whether a
design pattern and a word is related sometimes. However,
such procedures are common practice in similarity tasks of
various domains [18], [23], [24], [25]. We try to mitigate the
uncertainties by involving a new label, i.e., “somewhat
related”.Moreover, the Fleiss’ Kappameasure shows that the
annotators reach a substantial agreement. Finally, the way of
determining design pattern relevant posts for constructing
the crowdsourced corpus is not completely precise. This fac-
tor is in the scope of our previous study. We have performed
a validation to ensure the reliability of the results [12].

8.2 External Validity

The threats to external validity relate to the generalization of
DPWord2Vec. We sample 2,000 dp-word pairs to evaluate
DPWord2Vec in terms of dp-word similarity and employ
two applications to evaluate DPWord2Vec in terms of
design pattern - words (document) similarity. It is unclear
whether DPWord2Vec still works well on other tasks. More
datasets or applications will be investigated to reduce this
threat in the future.

9 RELATED WORK

9.1 Word Embedding for Software Artifacts

Similar to our work, numbers of studies leverage word
embedding methods on software artifacts to aid in software
engineering relevant tasks.

Some studies focus on mapping APIs into vector space.
Nguyen et al. propose API2Vec that learns API vectors based
on API usage sequences extracted from code corpora [62].
Similarly, Li et al. embed natural language words and APIs
at the same time by leveraging both API sequences and the
method comments [40]. To establish API mappings between
third-party libraries, Chen et al. present an unsupervised
deep learning-based approach to map both API usage
semantics andAPI description semantics into vectors [63].

Meanwhile, some studies aim to learn the representa-
tions of programs. Alon et al. produce general representa-
tions of programs based on the paths in abstract syntax
trees [64]. Henkel et al. represent programs as abstractions
of traces obtained from symbolic execution and learn the
vectors of the abstractions using word embedding [22].

Piech et al. introduce a neural network method to learn the
feature embedding of a whole program and give automatic
feedback based on the representation [65].

Moreover, some studies directly use word embedding
methods on software-related documents to support some
other tasks. Ye et al. train the word embeddings on API rele-
vant documents and aggregate them to estimate semantic
similarities between documents [59]. Calefato et al. exploit
word embedding on Stack Overflow posts to help to analyse
the sentiments of developers [66]. Guo et al. attempt to gen-
erate trace links among software artifacts by utilizing word
embedding and recurrent neural network trained on clean
text from related domain documents [67].

Different from these studies, our work concentrates on
associating natural language words and design patterns by
embedding them into one vector space. To the best of our
knowledge, no previous studies have ever considered the
general relatedness between words and design patterns.

9.2 Tag Recommendation in Software Information
Sites

In the first application, we apply DPWord2Vec to the design
pattern tag recommendation task. There exist a series of tag
recommendation methods specified for software informa-
tion sites.

To automatically recommend tags in software informa-
tion sites, Xia et al. propose TagCombine which ranks each
tag candidate by integrating three ranking component [47].
After that, EnTagRec is proposed and outperforms TagCom-
bine on four software information sites in terms of Recall [48].
To adopt tag recommendation methods in large-scale soft-
ware information sites, Zhou et al. propose a more scalable
approach called TagMulRec [49]. TagMulRec outperforms
EnTagRec in terms of Precision and F1-score on four soft-
ware information sites. Then Wang et al. enhance EnTagRec
to a new version, namely EnTagRec++, by leveraging the
information of users of software information sites [50]. EnTa-
gRec++ improves TagCombine by over 10 percent on five
software information sites in terms of Recall. Recently, Liu
et al. propose FastTagRecwhich recommends tags using neu-
ral network-based classification [51]. An evaluation on ten
software information sites shows FastTagRec is more accu-
rate than TagMulRec.

Most of these methods can also be used in the design
pattern tag recommendation task. In the evaluation, the
DPWord2Vec-based design pattern tag recommendation
method is compared against the state-of-the-art ones, i.e.,
FastTagRec and TagMulRec, to show its effectiveness.

9.3 Design Pattern Selection Based on Text

The related work for the second application is about design
pattern selection. We focus on the methods leveraging tex-
tual descriptions here. These works can be roughly catego-
rized into two types.

The first type is based on design pattern use cases and
recommend design patterns by exploring the most similar
use cases to the current design problem. Gomes et al. pro-
pose a case-based reasoning approach for design pattern
selection and index cases by using WordNet [68]. Similarly,
Muangon et al. present a design pattern searching model by
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combining case-based reasoning and formal concept analy-
sis techniques [10]. Bouassida et al. integrate case search and
questionnaire strategy to create an interactive design pat-
tern selection method [69]. These approaches are based on
the assumption that there exists a case library. However,
few such libraries are publicly available.

The second type is based on general textual descriptions
of design patterns. Palma et al. provide an expert system for
design pattern recommendation and parses design pattern
descriptions to formulate questionnaires for designers [9].
In [70], Pavli�c et al. document the knowledge of design pat-
terns by building an ontology for design pattern advise-
ment. The studies [54] and [8] automate the process and
only utilize the original descriptions in design pattern books
for design pattern selection.

In this application, we follow the automatic design pat-
tern selection framework in [54] and [8] but refine the
design pattern class determining phase by DPWord2Vec.
The refined method outperforms the methods in [54] and
[8] on the benchmarks.

10 CONCLUSION

In this work, we propose DPWord2Vec, a framework that
maps both natural language words and design patterns into
one vector space. With the word and design pattern vectors,
each design pattern is associated with English natural lan-
guage. DPWord2Vec leverages the word embedding method
to learn the word and design pattern vector representations
based on two built corpora with our redefined context win-
dows. An evaluation on a dp-word pair dataset shows that
DPWord2Vec is more effective than the baseline methods in
measuring the dp-word similarity.Moreover, two design pat-
tern relevant applications are leveraged to investigate the use-
fulness of DPWord2Vec. The experimental results indicate
that DPWord2Vec can outperform the state-of-the-art algo-
rithms on the specific tasks.

In the future, on one hand, we will extract more design
pattern relevant documents from other sources to enrich the
corpora; on the other hand, we will attempt to apply
DPWord2Vec to more design pattern relevant tasks. More-
over, it is also worth investigating the effectiveness of
DPWord2Vec on the corpora of non-English languages.

ACKNOWLEDGMENT

This work was supported by the National Key Research
and Development Program of China under Grant No.
2018YFB1003903, and the National Natural Science Foun-
dation of China under Grant Nos. 61722202, 61772107,
and 61751210.

REFERENCES

[1] C. Alexander, A Pattern Language: Towns, Buildings, Construction.
New York, NY, USA: Oxford Univ. Press, 1977.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley, 1995.

[3] C. Zhang and D. Budgen, “What do we know about the effective-
ness of software design patterns?” IEEE Trans. Softw. Eng., vol. 38,
no. 5, pp. 1213–1231, Sep./Oct. 2012.

[4] H. Zhu and I. Bayley, “On the composability of design patterns,”
IEEE Trans. Softw. Eng., vol. 41, no. 11, pp. 1138–1152, Nov. 2015.

[5] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Detecting the
behavior of design patterns through model checking and dynamic
analysis,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 4, pp. 1–41,
Feb. 2018.

[6] D. Faitelson and S. Tyszberowicz, “UML diagram refinement
(focusing on class and use case diagrams),” in Proc. 39th Int. Conf.
Softw. Eng., 2017, pp. 735–745.
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