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Detecting C++ Compiler Front-End Bugs via
Grammar Mutation and Differential Testing
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Abstract—C++ is a widely used programming language and the
C++ front-end is a critical part of a C++ compiler. Although many
techniques have been proposed to test compilers, few studies are
devoted to detecting bugs in C++ compiler. In this study, we take
the first step to detect bugs in C++ compiler front-ends. To do so, two
main challenges need to be addressed, namely, the acquisition of test
programs that are more likely to trigger bugs in compiler front-ends
and the bug identification from complicated compiler outputs. In
this article, we propose a novel framework named CCOFT to detect
bugs in C++ compiler front-ends. To address the first challenge,
CCOFT implements a practical program generator. The generator
first transforms C++ grammars into a flexible structured format
and then utilizes an equal-chance selection (ECS) strategy to con-
duct structure-aware grammar mutation to generate diverse C++
programs. Next, CCOFT employs a set of differential testing strate-
gies to identify various kinds of bugs in C++ compiler front-ends
by comparing complex outputs emitted by C++ compilers, thus
tackling the second challenge. Empirical evaluation results over
two mainstream compilers (i.e., GCC and Clang) show that CCOFT
greatly improves two state-of-the-art approaches (i.e., Dharma and
Grammarinator) by 135% and 111% in terms of the numbers of
detected bugs, respectively. By running CCOFT for three months,
we have successfully reported 136 bugs for two C++ compilers, of
which 78 (57 confirmed, assigned, or fixed) for GCC and 58 (10
confirmed or fixed) for Clang.

Index Terms—Automated testing, compiler defect, compiler
testing, front-end, reliability, software testing.

I. INTRODUCTION

SOFTWARE systems developed by manifold programming
languages, such as C/C++, Java, Python, R, PHP, and
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Kotlin, are everywhere, and all of those languages are devoted
to building systems that satisfy the desired requirements of de-
velopers. Among the different kinds of programming languages,
C++ is a widely used and popular one that exits over 40 years
since its origin in 1979.1 It is not only a language defined by a
specification but also includes a set of rich toolsets [1]. The
authoritative surveys (e.g., from JetBrain [2]) show that the
population of C++ users is at least 4.5 million with a steady
growth of about 100 000 developers every year. Among the var-
ious phases during the compilation of programming languages,
passing the front-end (including lexical, syntactic, and semantic
analysis) is usually the initial step [3]–[5]. Therefore, compiler
front-ends play an important role in compilers. Specifically,
due to the complicated C++ grammars and hand-written C++
compiler front-ends in modern compilers [6], [7], C++-related
components are one of the buggiest components in GCC and
Clang (two widely used and mature C++ compilers) [8], [9].
Typically, the task of compiler front-ends is to report any er-
ror in an intelligible fashion and then output the intermediate
representation of the input, which will be used in the follow-
ing middle-end [10], [11]. Moreover, well-performed compiler
front-ends can protect software systems from talent attackers us-
ing compiler outputs to exploit potential security vulnerabilities
[12]–[15]. Thus, to ensure the correctness and reliability of C++
compilers, it is crucial to detect and fix bugs in C++ compiler
front-ends.

Although many studies have been conducted on compiler
testing in the literature [16]–[24], few studies focus on testing
C++ compiler front-ends. In general, an approach for compiler
testing first employs some program generators to generate test
programs and feeds them to stress-test compilers. Then, the
approach compares either the outputs of distinct compilers or
the execution results of compiled programs to detect incon-
sistencies in the outputs, and, thus, potential compiler bugs.
Csmith [19] and Yarpgen [25] are two well-known C++ program
generators, however, they mainly generate completely semantic
valid C++ test programs with limited C++ language features
(e.g., no “template” or “class”), which satisfy all grammar and
type-checking rules [26]. Such kind of C++ programs is difficult
to incur potential front-end bugs in compilers as they are all
assumed to be passed soon in compiler front-ends. Besides the
above tools, grammar-based approaches, such as Dharma [27]
and Grammarinator [28], can also be tuned to generate C++ test

1[Online]. Available: https://www.stroustrup.com/TechRepublic-interview-
Bjarne-Stroustrup.pdf
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programs with more features with the help of C++ grammars.
However, both Dharma and Grammarinator are limited in gener-
ating diverse test programs that are more likely to trigger bugs in
compiler front-ends. Specifically, Dharma is unable to cover all
grammar rules and alternatives, while Grammarinator struggles
to operate complex abstract syntax tree (AST) when the test
programs become complex (more details in Section III-A). The
above limitations may significantly obstruct the effectiveness of
discovering bugs in C++ compiler front-ends.

Due to the complexity of C++ grammars and the hardness
of testing hand-written C++ compiler front-ends, two technical
challenges need to be addressed to effectively test C++ compiler
front-ends. First, the ability to generate diverse test inputs is
key to any software testing-related activities [29]–[31]. In the
realm of compiler testing, it is significantly important as the
test inputs are high-structured test programs. Thus, we need to
address the challenge of the acquisition of test programs that are
more likely to trigger bugs in C++ compiler front-ends. Second,
compiler outputs are tricky. For example, as GCC and Clang have
different mechanisms in the diagnostic system, their compiler
outputs could be different when compiling the same program.
Furthermore, existing approaches are unable to dispose of the
complex compiler outputs, which will make it difficult to identify
potential bugs in C++ compiler front-ends. Thus, we need to
address the challenge of the bug identification (i.e., expose buggy
behaviors to identify potential bugs) from complicated compiler
outputs.

In this article, we propose a novel framework named C++
compiler front-end tester (CCOFT) to detect bugs in C++ com-
piler front-ends. To address the first challenge, CCOFT imple-
ments a practical program generator. More specifically, the
generator first transforms C++ grammars into a flexible struc-
tured format and then conducts structure-aware grammar muta-
tion with a strategy named equal-chance selection (ECS), thus
generating diverse C++ test programs. To address the second
challenge, CCOFT employs a set of differential testing strategies
to identify different kinds of bugs in compiler front-ends by
comparing inconsistent compiler outputs.

To assess the effectiveness of CCOFT, we conduct an extensive
empirical evaluation over two mainstream compilers, namely,
GCC and Clang. First, we compare CCOFT against two state-of-
the-art approaches, i.e., Dharma [27] and Grammarinator [28]
for evaluating the bug-finding capability of CCOFT. The results
show that CCOFT can detect 40 bugs, while Dharma and Gram-
marinator only detect 17 and 19 bugs within the same testing
period, achieving 135% and 111% improvement, respectively.
Second, the results also validate the impact of ECS in CCOFT.
By employing the ECS strategy, CCOFT is able to detect 18
more bugs than its variant without ECS, achieving over 82% im-
provement. Finally, we show the promising practical bug-finding
capability of CCOFT. Within three months, we reported 136 bugs
in C++ compiler front-ends, of which 78 bugs (57 confirmed,
assigned, or fixed) for GCC and 58 bugs (10 confirmed or fixed)
for Clang.

In summary, this article makes the following contributions.
1) We propose CCOFT, a testing framework aiming to detect

bugs in C++ compiler front-ends.

Fig. 1. Five bugs in C++ compiler front-ends. (a) Reject-valid (GCC Bug
#95597). (b) Accept-invalid (Clang Bug #46231). (c) Diagnostic (GCC Bug
#96103). (d) Crash (GCC Bug #95672). (e) Time-out (GCC Bug #96137).

2) We design a grammar mutation-based (equipped with
ECS) C++ program generator and leverage a set of dif-
ferential testing strategies to identify potential bugs.

3) We implement CCOFT and empirically evaluate its effec-
tiveness against two state-of-the-art approaches. More-
over, we reported 136 (67 confirmed, assigned, or fixed)
bugs for GCC and Clang, which clearly demonstrates the
practical bug-finding capability of CCOFT.

The rest of this article is organized as follows. Section II
presents illustrative examples and a quantitative study to mo-
tivate the study. Section III describes the framework of CCOFT.
Empirical evaluation results are presented in Section IV. The dis-
cussion, threats, and related work are described in Sections V–
VII. Finally, Section VIII concludes this article.

II. MOTIVATION

In this section, we first present five examples to illustrate
potential bugs in C++ compiler front-ends. Then, we conduct
a quantitative study of historical compiler bugs to show the
prevalence and importance of those bugs.

A. Illustrative Examples

Fig. 1 presents five bugs in C++ compiler front-ends found
by CCOFT. For the sake of clarity, in the rest of this article, we
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use the term “valid” to refer to a test program that is semantic
valid and use the term “invalid” to represent a test program that
is syntactic or semantic invalid. Based on the description of the
task of a compiler front-end [10], we categorize those bugs into
five types as follows.

Reject Valid: A C++ compiler front-end may reject a valid
program. Fig. 1(a) describes a GCC bug, where the C++ com-
piler front-end of GCC rejects this valid program and emits an
unacceptable error message. The reject valid bug has a high
priority and should be considered equally important to fix as
those that lead to the wrong-code (the most important bug in
compilers) issue.2

Accept Invalid: In contrast to the reject valid bug, a C++
compiler front-end may accept an invalid program. Fig. 1(b)
shows a Clang bug, where the C++ compiler front-end of Clang
accepts an empty declaration in a template declaration, which
violates the C++ standard and is correctly rejected by the C++
compiler front-end of GCC.

Diagnostic: Diagnostic messages are important to help de-
velopers find and fix mistakes in their programs, while a C++
compiler front-end may emit unclear or duplicated error mes-
sages and even miss the exact location of an error diagnostic.
Fig. 1(c) describes a bug that the C++ compiler front-end of GCC
outputs an unclear error message for the error of deduced return
type in C++, while the C++ compiler front-end of Clang exactly
reports the real reason. If developers compile this program by
GCC, it may be hard for them to debug and fix the error based on
the confusing compiling outputs, which may delay the schedule
of software development.

Crash: Given a valid or an invalid program, a C++ compiler
front-end may crash during compilation. Crash bugs can be
divided into two subtypes, namely, crash-on-valid and crash-on-
invalid. Fig. 1(d) describes an invalid program, which includes
an incomplete template pack expansion. This case makes the
C++ compiler front-end of GCC crash. This bug exists in almost
all versions of GCC before we reported it.

Time Out: A C++ compiler front-end may spend much time
analyzing a valid program. Fig. 1(e) shows a time-out bug, which
makes the C++ compiler front-end of GCC stuck and conducts
an endless analysis.

All the five types of bugs in C++ compiler front-ends may
deeply impact the usability of compilers and even cause an
obstacle for developers to quickly learn and fix programming
errors [32], [33]. Even worse, as aforementioned in Section I,
they can also yield the compromise of critical software sys-
tems [12]–[15].

B. Quantitative Study of Historical Bugs

To further understand the importance of bugs in C++ compiler
front-ends and motivate our study, we conduct a quantitative
study of historical compiler bugs in this subsection. The previous
study [8] on understanding compiler bugs points out that the
components used to implement a C++ compiler in GCC and

2[Online]. Available: https://www.gnu.org/software/gcc/bugs/management.
html

Fig. 2. Top five bug types of all the bugs of C++-related components in GCC.

Clang are more buggy compared to other components. We fur-
ther investigate the composition of bugs ID with from 1 to 93 000
for the components related to C++. Specifically, we collect bug
reports from the GCC bug repository.3 Here, we only collect
GCC bug reports because GCC has long development history
and a clear keyword4 mechanism to show bug types. Among
all the collected 86 222 bug reports, 20 441 (23.7%) of them
belong to the components related to C++. Next, we categorized
bugs of C++-related components according to the keywords
in each bug report. Fig. 2 shows the Top-5 types of all bugs
of C++-related components in GCC, namely, crash-on-invalid,
reject-valid, diagnostic, crash-on-valid, and wrong-code, where
the wrong-code indicates the compiler produces a wrong com-
piled program.

According to compiler front-end bug categories mentioned in
Section II-A, we were surprised that the Top-4 bug types in Fig. 2
may relate to C++ compiler front-ends and we wanted to know
more details about bugs in compiler front-ends. However, to the
best of our knowledge, no prior study focuses on analyzing bugs
in compiler front-ends. Thereby, to investigate how many bugs in
the Top-4 bug types in Fig. 2 are indeed in the compiler front-end
rather than other components in the compiler, we conducted
a small-scale analysis of the bugs in these Top-4 bug types.
Specifically, we randomly selected 100 fixed bugs for each type.
Then, we manually checked whether each bug in the selected 400
bugs is a front-end bug. Due to our limited knowledge, we only
confirmed bugs that are definitely inside the compiler front-end.
Even so, the results showed that there are 69, 63, 52, and 72
bugs that are bugs in the compiler front-end in 100 bugs of
each type, respectively. Thus, we can know that at least 64% of
bugs on average belong to the C++ compiler front-end of GCC.
Therefore, more advanced techniques and tools are needed to
help test C++ compiler front-ends and improve their quality.

Summary: Due to the importance of ensuring the reliability
of C++ compilers and the prevalence of bugs that are relevant to
C++ compiler front-ends, in this study, we design a novel frame-
work named CCOFT. Specifically, as mentioned in Section I, it is
nontrivial to generate test programs that are more likely to trigger

3[Online]. Available: https://gcc.gnu.org/bugzilla/
4[Online]. Available: https://gcc.gnu.org/bugzilla/describekeywords.cgi
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Fig. 3. CCOFT Framework.

bugs in C++ compiler front-ends. To address this challenge, we
adopt a grammar mutation-based program generation approach
to generate diverse C++ test programs, such as the sampled
programs presented in Fig. 1. Then, the compiler outputs can be
complicated, and directly identifying potential bugs from them
is difficult. For example, as shown in Fig. 1, test programs (a)
and (b) make GCC and Clang yield inconsistent outputs and
on test program (c), two compilers produce different diagnostic
messages. We then leverage a set of differential testing-based
strategies to address such a challenge.

III. FRAMEWORK OF CCOFT

In this section, we describe the design of our proposed CCOFT

framework. Fig. 3 shows the overall workflow of CCOFT, which
includes two parts, namely, C++ program generation and bug
identification. The first part aims to generate test programs that
are more likely to trigger bugs in C++ compiler front-ends, while
the second part conducts differential testing strategies to identify
potential bugs.

As aforementioned in Section I, one of the most challenging
parts of testing compiler front-ends is the effectiveness of gen-
erated test programs. We acknowledge that generating lexical
or syntactic invalid test programs are trivial and those programs
can also detect some bugs in compiler front-ends to some extent.
However, those bugs are too shadowed in compilers. In this
study, we target generating test programs that are more likely to
pass syntactic analysis and are possible to pass semantic analysis
thus detecting various bugs in C++ compiler front-ends. To do
so, we opt for mutation-based program generation approach as
they are proven to be effective in software testing [21], [31],
[34]. Specifically, we design a grammar mutation that mutates
grammar directly rather than test programs. The major benefit
behind this is that grammatical validness is guaranteed compared
with existing mutations on test programs directly. With the as-
sistance of effective C++ test programs, we conduct differential
testing strategies to identify bugs thus addressing the second

challenge. To our knowledge, this is the first work to leverage the
differential testing techniques to detect various kinds of compiler
bugs in front-ends.

A. C++ Program Generation

As C++ programs are highly structured, it may be ineffec-
tive when using random generation methods or well-known
mutation-based fuzzers (i.e., AFL [35] or LibFuzzer [36]) to
generate C++ test programs. Specifically, existing state-of-the-
art approaches, such as Dharma [27] and Grammarinator [28],
also have major limitations on generating compiler front-end
bug-revealing test programs. For example, Dharma has trouble in
handling the use of undefined identifiers and can hardly manifest
the appearance of production rules. For small-scale grammars,
such as XML5 or JSON,6 it is possible to adjust it to generate
required test programs, but it is nontrivial to do so when meeting
the extremely sophisticated C++ grammars. It is worth noting
that the capability of handling undefined identifiers could be
key to effectively detecting bugs in compiler front-ends [28].
As the errors of undefined identifiers often happen in the very
early stage of a compiler front-end, the following logic, such
as syntactic or semantic analysis, will not be reached. This is
also the reason why we aim to generate those test programs
that are more likely to pass in syntactic analysis but maybe fail
in semantic analysis. Second, an alternative approach, Gram-
marinator, provides a configurable distribution of the grammar
rules. Unfortunately, it suffers from the following limitations.
First, the undefined identifiers problem is not fully solved as it
only supports a simple symbol table to maintain trivial variables.
However, there are many types of identifiers in complex C++
grammars. Second, it struggles in dealing with deeper recursion
as it generates test programs based on the AST construction and

5[Online]. Available: https://github.com/antlr/grammars-v4/blob/master/
xml/XMLcompilerfront-end.g4

6[Online]. Available: https://github.com/antlr/grammars-v4/blob/master/
json/JSON.g4
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Fig. 4. C++ Grammar of a simplified template declaration.

operation, which is a time-consuming process (our experience
shows that it gets stuck if the recursive depth is large than 50),
and, thus, impeding the generation of complex test programs.
We next detail how our proposed approach works and addresses
the limitations.

In this article, we adopt a simple and effective approach to
facilitate the process of C++ program generation, which includes
two stages, i.e., the preparation stage and the mutation stage. The
preparation stage transforms C++ grammars into a structured
format file, the mutation stage executes the structure-aware
grammar mutation and then produces C++ test programs. To
clarify how the C++ program generator works, we take a simpli-
fied C++ grammar for template declaration (as shown in Fig. 4)
as an example to describe the details of the above two stages.

1) Preparation stage: To successfully generate test pro-
grams, we employ a C++ grammar and transform it into a
structured format file. Although the C++ grammars are often
publicly available (e.g., in ANTLR’s community [37]) and the
structured formats are usually easy to obtain (e.g., JSON [38],
Cpn’s Proto [39], and Protobuf [40]), not every of the format can
meet our requirement, i.e., it should be flexible enough so that
can be combined with existing mutation engines. Therefore, in
this article, the C++ grammars are finally transformed into the
Protobuf format [40] (a language-neutral, platform-neutral, ex-
tensible mechanism for serializing structured data, but smaller,
faster, and simpler). We choose Protobuf for two reasons. First,
it has a corresponding field relationship with a normal grammar
definition. For example, it can transfer normal text to “required,”
“?” to “optional,” and “|” to “oneof,” respectively. Besides
the field of “required,” other fields are alternative options in
which we can choose the probability to control whether a field
(“optional” or “oneof”) is selected. Second, the Protobuf format
can be easily combined with a structure-aware mutator, e.g.,
libprotobuf-mutator. The libprotobuf-mutator is able to effec-
tively mutate “Protobuf” inputs, as demonstrated for Compres-
sion and PNG. 7

For example, Fig. 4 describes a piece of C++ grammars about
template declaration, which includes five elements, i.e., “Tem-
plate,’,’ “<,” “Templateparameter,” “>,” and “Declaration.” Ac-
cording to the corresponding relationship between the grammar
and the structured format, we obtain the structured format file
in Fig. 5. Each element in Fig. 4 is represented as a standalone
“message,” followed by the body under special fields, such as
“required,” “optional,” or “oneof,” numbering sequentially from
1. More specifically, in Fig. 4, the “Template,” “<,” and “>” are

7[Online]. Available: https://github.com/google/fuzzing/blob/master/docs/
structure-aware-fuzzing.md

Fig. 5. Simplified example of the structured format.

three fixed elements when transforming, while “Templatepa-
rameter” and “Declaration” are two variable elements that can
be replaced by other elements. To simplify the representation
of the grammar of template declaration, we break down the
“Templateparameter” into two elements, corresponding to two
messages (i.e., TemplateParameter1 and TemplateParameter2)
in Fig. 5. For the “Declaration,” for the sake of simplicity, we
assume it can be replaced by three basic elements, i.e., “;,” “class
A {};,” or “void foo(){}.”

2) Mutation stage: In this stage, as shown on the left side
in Fig. 3, we first take the structured format file as input
and then mutate it to various mutants. Each mutant will cor-
respond to a test program. Since there are three fields in a
structured format file, how to choose suitable alternative fields
(i.e., “oneof” and “optional”) is important to ensure the effective-
ness of the structure-aware mutation. Here, we apply a strategy,
called the ECS strategy, which uses the equal probability to select
alternative fields in the relationship of “optional” and “oneof.”
For “required” fields, we choose all of them; for “optional”
fields, we have a probability of 0.5 to choose; for “oneof” fields,
we choose them with a probability of 1/n (n is the number of
total elements in the “oneof” field). Finally, the mutated file is
delivered to the program producer, where the C++ programs can
be generated. The rationale behind this strategy is that we give a
relative equal possibility to each element in grammar specifica-
tion, which will potentially improve the diversity of generated
test programs. Note that the probability of the selection can be
easily changed to satisfy other requirements, which addresses
the main limitation in Dharma [27].

As the program producer, we take the following guidelines to
conduct the generation.

1) Each element could be converted to one real C++ code
snippet, e.g., “Class” is converted to the keyword “class.”

2) For variable identifiers, we give fixed names in different
basic types (e.g., char, int, long) and reuse them in arith-
metic expressions. For other types of identifiers, e.g., class
name or template name, we maintain different recording
lists to catch them and fetch different identifiers in those
lists when needed. Since we provide the management of
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various types of identifiers and guarantee the free of unde-
fined variables while Grammarinator [28] only supports a
subset of variable identifiers, our approach could perform
better in generating required test programs.

3) We set an upper bound during the mutation to avoid infinite
recursion.

By performing the above guidelines, we can finally generate
multiple test programs for our requirements. For example, in
Fig. 5, the mutator takes the message “TemplateDeclaration”
as input. After employing the ECS strategy, the mutated file is
delivered to the program producer to generate a C++ program.
According to the generation guidlines, each part in the “Tem-
plateParameter” grammar can be constructed by the following
basic elements: Class — “class,” Typename — “typename,”
Identifier — “T,” and Declaration — “;,” “class A {};,” or “void
foo(){}.”

After the mutation stage, we can produce numerous C++ test
programs. For the above example, we can obtain the following
unique 12 real C++ code snippets

code 1: template <class> class A {};
code 2: template <class> void foo() { }
code 3: template <class>;
code 4: template <typename> class A { };
code 5: template <typename> void foo() { }
code 6: template <typename>;
code 7: template <class T> class A { };
code 8: template <class T> void foo () { }
code 9: template <class T>;
code 10: template <typename T> class A { };
code 11: template <typename T> void foo() { }
code 12: template <typename T>;

In this way, code snippets 3, 6, and 9 will trigger the “accept-
invalid” bug illustrated in Fig. 1(b) in Section II-A.

As a brief summary, through the above two stages, many
test programs that are likely to trigger bugs in C++ compiler
front-ends are generated by CCOFT. Such test programs follow
the grammar rules well, but they could be invalid because of
lacking type-checking or including invalid semantics. Note that
a compiler cannot exactly tell whether a test program is syntactic
valid or not, it only successfully compiles a program when it is
semantic valid (if no bugs). Therefore, most of our generated
test programs can not be successfully compiled. However, after
using the strategies in Section III-B, a filtered and reduced small
code snippet that follows the grammar rules can be compiled and
further used to expose bugs in compilers. Overall, compared with
the state-of-the-art approaches, CCOFT is first equipped with a
full set of variable records to avoid the undefined identifiers
problem. Then, we provide a configurable option to enable the
grammar rule controlling with a little effort. Overall, the above
capabilities make CCOFT much more effective in generating
test programs that are more likely to trigger bugs in compiler
front-ends.

B. Bug Identification

Bug identification aims to identify potential bugs through
differential testing strategies. Specifically, bug identification
includes five components, including

1) differential testing strategies, which are based on two
different compilers c1 and c2 to produce error outputs o1
and o2 if one of the compilers does not crash or time out;

2) an error decomposer Decomposer to decompose o1 and
o2 to error records e1 and e2;

3) an error aligner EAligner to align to find the inconsistent
records based on the above two error records;

4) a bug filtering Filter to filter potential bugs to real ones;
and

5) a bug reducer Reducer to reduce the programs to small
code snips that can trigger the same symptoms.

Our bug identification assumes that the two compilers c1 and
c2 should emit the same or similar set of compiler output records
(i.e., e1 and e2) for the same input p in the ideal situation. This
assumption is critical for the effectiveness of differential testing
because any detected inconsistent compiler outputs between two
compilers would be considered as a bug in either c1 or c2 (or
both).

1) Differential testing strategies: In this study, we adopt the
following strategies to identify potential bugs in C++ compiler
front-ends.

Crash or Time-out Detecting (CTD): This strategy detects
crash or time-out bugs when the compiler c1 or c2 crashes or
times out during the compilation of a program p.

Cross-Version Strategy (CVS), and Cross-Compiler Strategy
(CCS): The above two are widely used differential testing strate-
gies in compiler testing [18], [31], [41]. CVS selects different
versions of a compiler for differential testing. CCS chooses
different compilers that have been maintained independently.
We do not apply the cross-optimization strategy because we
focus on bugs in compiler front-ends.

Cross-Standard Strategy (CSS): This strategy compiles a pro-
gram p by a single compiler under different ISO C++ standards
(a program language standard provided by the international
organization for standardization). For example, we can compile
a program by GCC with the C++11 standard (i.e., -std=c++11)
enabled in c1 and with the C++14 standard (i.e., -std=c++14)
enabled in c2. Here, we assume that inconsistent compiler
outputs are either caused by the ISO C++ standard upgrade, or
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C++ compiler front-ends should emit upgrade prompt diagnostic
messages. Otherwise, there might be a bug, e.g., the Diagnostic
bug in Fig. 1(c) is caused by an unclear upgrade indication of
compiler outputs.

2) EDecomposer: The EDecomposer is designed to decom-
pose the complex compiler output. It takes the original error
messages as input and gives out the records which can be easily
applied in EAligner.

It is challenging to compute the symmetric differences of
e1 and e2 directly because compiler errors are in natural lan-
guage and different compiler emits error diagnostic messages
in different ways. To resolve this problem, we design a specific
EDecomposer to decompose error messages for each compiler.
Algorithm 1 describes the general workflow of decomposing the
error outputs of a given compiler. The function EDecomposer()
obtains a string containing all the error messages (between
lines 4 and 6) and then splits it into a list (between lines 7
and 10). Thus, each element, e.g., the line number, the column
number, and the error description line, in the text format can
be represented as an individual error record. Specifically, the
function decomposes the output string into a dictionary-like
record by extracting the line number, the column number, and
the error description.

For example, the error message under GCC compilation
in Fig. 1(b) or cases 3, 6, or 9 from the collection stage in
Section III-A2 can be decomposed into one record as follows:
{“line” : “1,” “column” : “18,” “message” : “error: expected
unqualified-id before ‘;‘ token ”}.

3) EAligner: The objective of EAligner is to obtain inconsis-
tent records. In this component, two sets of decomposed error
records are taken as inputs. After aligning, the missing records
will be the outputs. The missing records may be duplicated, so
we filter them in the next step.

By aligning errors in e1 and e2, we can obtain the inconsisten-
cies among compilers, compiler versions, or ISO C++ standards.

The output of the aligner is a list of pairs, of which the first
element is either an error in e1 or ⊥ (i.e., nothing) and the other
is either an error in e2 or ⊥. The process of the aligner produces
the following two categories of pairs (a,b).

1) Equivalence: a ∈ e1 ∧ b ∈ e2, and both have the same
location (i.e., the line number and the column number)
and do not consider the description of two error messages.
This category does not indicate compiler front-ends bugs
and we ignore it.

2) Missing records: (a ∈ e1 ∧ b =⊥) ∨ (a = ⊥ ∧ b ∈ e2).
This category includes the main body of inconsistencies
for users to investigate.

Algorithm 2 presents the workflow of EAligner. It first cuts
down all equivalent pairs from e1 and e2 (between lines 5 and
7), then it constructs the inconsistent pairs from the remaining
errors in e1\rm1 and e2\rm2 (between lines 9 and 13). From
the given example in Section III-B2, as Clang emits nothing
under the program, i.e., occurring inconsistent outputs, the pair
will save the missing record “(e1,⊥).”

4) Filter: After obtaining the crashes or time-out cases and
inconsistent missing records from EAligner, we cut out duplicate
cases or records in the filter.

Algorithm 3 describes the overall procedure to filter
out duplicates. For crashes or time-out programs, we ex-
ecute each program that makes the compiler crash. If
the crash point (i.e., specific place crashed or assertion
failed) is not in crash_set, we add it to the set (be-
tween lines 4 and 6). For example,“internal compiler er-
ror: in cxx_incomplete_type_diagnostic, at cp/typeck2.c:584”
and “TextDiagnostic.cpp:1026 Assertion ‘StartColNo <= End-
ColNo “Invalid range!”’ failed” are two different records in
crash_set for GCC and Clang. As the number of time-out cases
is small (only two cases), we do not filter them.

For inconsistent error diagnostic programs, we first remove
the duplicates according to the message part in the e1or e2 record
(between lines 7 and 9). Specifically, due to the incompatibilities
between GCC and Clang, one error in GCC may correspond to
two or more errors in Clang and vice versa. We record every
inconsistent recording after we manually analyze them, then we
use those records to filter the same corresponding error records
automatically. With the assistance of such an incremental pro-
cess, we only need to analyze the new inconsistent records to
improve the capability of identifying real bugs. In practice, the
number of recordings is less than 100. For example, cases 3, 6,
and 9 collected in Section III-A2 will produce three duplicated
missing records in EAligner. We filter the above three cases into
a unique one to make the process of Reducer more efficient.

5) Reducer: As concluded in [8], the bug-revealing test cases
are typically small, with 80% having fewer than 45 lines of code.
Thus, we adopt it and try to reserve the smaller code snippet.
Once a test program triggers a bug in compilers, it is critical
to reduce the program to a smaller size by removing irrelevant
programs before submitting the bug into GCC or Clang bug
repository. In this process, we reduce test programs into small
ones as the reduced programs not only help us to understand the
issue and avoid reporting a duplicate but also assist developers
in triaging or fixing the bug.
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For crashes and time-out programs, we use C-Reduce [42]
to reduce them. For the program that triggers inconsistent er-
ror diagnostic bugs, we reduce the programs manually since
C-Reduce can not deal with these cases well. For example,
when we only need to reserve a specific error message for a
test program, the reduced test program by C-Reduce always
triggers many error messages, which is not helpful to analyze
the root causes of a bug for developers. In our study, each
test program generated by CCOFT is relatively small, thus this
manual reduction does not need a lot of time (one at most ten
minutes). In the manual process, we try to keep the unique error
message, while compiling a code snippet and adjust the code by
the author’s experience. The goal is to make GCC produce one
error message, while Clang does not, and vice versa. Thus, one
reject-valid, accept-invalid, or diagnostic bug can be detected.

Even though we use the above manual process, our reduction
process is effective in practice, as a test program can be finally
reduced to a few lines (usually within five lines). We will
investigate more about autoreduction in future work.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the effectiveness of CCOFT. In par-
ticular, we seek to investigate the following research questions
(RQs).

1) RQ1: Can CCOFT find more bugs in compiler front-ends
compared with state-of-the-art approaches?

2) RQ2: Can the proposed ECS strategy help CCOFT detect
more bugs in compiler front-ends?

3) RQ3: How is the bug-finding capability of CCOFT in
practice?

RQ1 evaluates the bug-finding capability of CCOFT com-
pared with two state-of-the-art approaches (i.e., Dharma and
Grammarinator). In particular, we run CCOFT, Dharma, and
Grammarinator in the same testing period and compare them
from two aspects, i.e., the number of detected bugs and the
number of unique bugs (that can be detected by one approach
but cannot be detected by other approaches). RQ2 investigates
the impact of the proposed ECS strategy on the bug-finding
capability of CCOFT. We compare CCOFT with its variant (one
with the default selection strategy) to examine how the ECS

strategy contributes to CCOFT. RQ3 evaluates the capability of
CCOFT for detecting bugs in C++ compiler front-ends in practice.
Specifically, we run CCOFT on the newly developed versions of
compilers, and evaluate the practical bug-finding capability of
CCOFT from three aspects, i.e., the number of detected bugs,
the bug type of confirmed bugs, and the bug importance (i.e.,
severity and priority).

A. Experimental Setup

Our evaluation is performed on a Linux PC with Intel(R)
CoreTM i7-7700 CPU @3.60GHZ × 8 processor and 16 GB
RAM running Ubuntu 18.04 operating system. In the study, we
use two popular mainstream compilers as subjects, i.e., GCC
and Clang, following the existing compiler testing studies [18],
[20], [21], [26], and[43].

CCOFT Implementation: For the implementation of C++
program generator, we take the C++ grammar file in Grammar-
v4 [44] as input, which is a collection of various ANTLR [37]
grammars. The grammars in Grammar-v4 are publicly available
and are contributed by developers around the world. The pro-
posed structure-aware mutation strategy ECS is implemented
by Google libprotobuf-mutator [45], which is a useful library
to randomly mutate structured format (e.g., Protobuf [40]) file
and has good scalability in supporting a user-defined mutation
strategy. Specifically, we provide a standard structured format
file (i.e., protobuf-specification file) that describes the structure
of the inputs (i.e., C++ grammars). This structured format file is
then compiled into a C++ class C. A program input corresponds
to an object of class C; the mutator generated via libprotobuf-
mutator operates on such objects: it modifies a given object into
a mutant object. Further, we also provide a producer function
that transforms an object of class C into a C++ test program,
as aforementioned in Section III-A2. For the implementation of
the bug identification, each part, i.e, EDecomposer, EAligner,
Filter, and Reducer, is written by Python or Shell.

Baseline Approaches for RQ1: To illustrate the bug-finding ca-
pability of CCOFT, we compare CCOFT with two state-of-the-art
approaches, i.e., Dharma [27] and Grammarinator [28]. Dharma
is a grammar-based fuzzer provided by Mozilla, which allows a
user to define a grammar file and then generate programs under
the given grammar. Grammarinator is a random test program
generator that creates test programs according to the grammar
in Grammar-v4 [44]. We choose Dharma and Grammarinator
since 1) they are the most directly related to our study as both
of them use a grammar-aided method to generate test programs,
and 2) they are relatively state-of-the-art approaches and have
been widely used in recent researches (e.g., [46] and [47] both
use the above two approaches in their experiments).

CCOFT Variant for RQ2: To show the effectiveness of the pro-
posed ECS strategy, we compare CCOFT with CCOFT(¬ECS), a
variant of CCOFT without ECS, to examine how the ECS strategy
contributes to CCOFT. Here, we use the default mutation strategy
provided by libprotobuf-mutator to conduct the structure-aware
mutation in CCOFT(¬ECS). This default strategy selects the
“required” and “oneof” fields with a high probability (99%),
while applying the “optional” field in a structured format file
with a low probability (1%). This is because the default mutation
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Fig. 6. Number of unique bugs in GCC and Clang found by CCOFT, Dharma [27], and Grammarinator [28].

strategy of libprotobuf-mutator is also efficient when users do
not customize the mutation strategy for their applications.

Differential Testing Scenarios: In the bug identification pro-
cess, we consider four strategies to differentially test C++ com-
piler front-ends, i.e., CTD, CVS, CCS, and CSS. For CVS and
CCS, we use two versions of GCC (GCC-10.1 and a developed
version of GCC) and Clang (Clang-10.0 and a developed version
of Clang). In the CSS scenario, we use a few well-known ISO
C++ standard versions, i.e., C++11, C++14, and C++17, to
detect bugs in C++ compiler front-ends among different C++
standards, on the development (trunk) versions of GCC and
Clang at the time of our study are used in our study. For CTD, we
detect bugs if the above three strategies get stuck, i.e., crash or
time out, when compiling a test program. CCS, CVS, and CSS
strategies target detecting bugs caused by inconsistent compiler
outputs, i.e., reject-valid, accept-invalid, and diagnostic bugs,
while CTD aims to detect crash or time-out bugs.

B. Answer to RQ1

Motivation: This RQ aims to investigate the bug-finding capa-
bility of CCOFT compared with two state-of-the-art approaches,
i.e., Dharma and Grammarinator.

Approach: To evaluate RQ1, we run CCOFT, Dharma, and
Grammarinator under the same testing period of ten days (the
same as [48]). Both Dharma and Grammarintor cannot directly
run with C++ grammars defined in the grammar-v4 repository.
To set up Drama, we follow the instruction8 and transfer the
C++ grammars into the “.dg” format to generate test programs.
The running setup of Grammarinator can be found here.9 Note
that Grammarinator cannot handle a deeper depth (e.g., 50) as
we aforementioned, therefore, we set the recursion depth to 30
for all the three tools. In order to verify whether the detected
bugs are real bugs by analyzing them in the bug repositories of
GCC and Clang, we opt for two developed compilers that are
committed on 2020-05-31 of GCC10 and Clang.11 Further, we
analyze the bug-finding capability of CCOFT compared with two
state-of-the-art approaches from two aspects, i.e., the number of
all detected bugs and the number of unique bugs.

Results: Table I shows the number of detected bugs by each
approach and Fig. 6 presents the number of detected unique

8[Online]. Available: https://github.com/MozillaSecurity/dharma
9[Online]. Available: https://github.com/renatahodovan/grammarinator/

issues/21
10[Online]. Available: GCC commit by 05430b9b6a7c4aeaab595787ac1fbf6f

3e0196a0
11[Online]. Available: Clang commit by f4b0ebb89b3086a2bdd8c7dd1f5d14

2fa09ca728

TABLE I
NUMBER OF BUGS [TOTAL BUGS (GCC BUGS + CLANG BUGS)] DETECTED BY

CCOFT AND THE COMPARATIVE APPROACHES

bugs. In Table I, the first column is the type of detected bugs
in RQ1, and the following three columns are the number of all
detected bugs for Dharma, Grammarinator, and CCOFT. Specifi-
cally, “n(x+y)” indicates that the corresponding approach totally
finds “n” bugs, and “x” and “y” mean the certain number of
detected bugs in GCC and Clang, respectively. From Table I,
we can see that the total number of detected bugs by CCOFT is
40, which is much larger than those detected by Dharma (i.e.,
17) and Grammarinator (i.e., 19), achieving 135% and 111%
improvement, respectively.

To show the relationships among bugs detected by the three
approaches, we draw five Venn diagrams in Fig. 6. In particular,
Fig. 6(a) to (e) show the Venn diagrams of detected bugs by each
approach categorized by bug types, and Fig. 6(f) is the number
of overall bugs detected by each approach. From Fig. 6, we
can see that CCOFT always detects the largest number of unique
bugs. However, Grammarinator only detects a unique Crash bug
and Dharma is not able to detect any unique bugs in our testing
period. In particular, from Fig. 6(d), the total number of unique
bugs detected by CCOFT is 13, which is much larger than those
detected by Dharma (i.e., 0) and Grammarinator (i.e., 1). Also,
CCOFT can detect 98% (40 out of 41) of bugs during a ten-day
testing period.

Conclusion: The results demonstrate that CCOFT has a
better bug-finding capability compared with Dharma and
Grammarinator, achieving an improvement of 135% and
111% in the number of detected bugs, respectively.

C. Answer to RQ2

Motivation: It is unknown how the proposed ECS strategy
affects the effectiveness of CCOFT. This RQ evaluates the impact
of the proposed ECS strategy on the bug-finding capability of
CCOFT.
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TABLE II
NUMBER OF BUGS [TOTAL BUGS (GCC BUGS + CLANG BUGS)] DETECTED BY

CCOFT AND CCOFT(¬ECS)

Approach: To investigate the impact of the proposed ECS
strategy, we conduct an experiment to compare CCOFT and
CCOFT(¬ECS), a variant of CCOFT which uses the de-
fault selection strategy. Specifically, we run CCOFT and
CCOFT(¬ECS) with the same compiler versions during the same
testing period as in RQ1. Then, we compare the bug-finding
capability of CCOFT and CCOFT(¬ECS) in terms of the number
of detected bugs.

Results: Table II shows the comparative results of the number
of detected bugs during a ten-day testing period on CCOFT and
CCOFT(¬ECS). From Table II, we can observe that CCOFT with
ECS strategy can always detect more bugs than the default
selection strategy. In particular, CCOFT can detect 16 Crash bugs,
whereas the CCOFT(¬ECS) is only able to detect four crash bugs,
achieving a 300% improvement in detecting crash bugs. Totally,
CCOFT can detect 40 bugs, while CCOFT(¬ECS) can only find 22
bugs. In other words, CCOFT achieves an improvement of 82%
in terms of the number of detected bugs over CCOFT(¬ECS).
The reason is apparent. Without more chances to select different
kinds of grammar elements, the generated programs can only
consist of the shadow piece of code snippets, which are less
likely to trigger bugs in compilers. This is also the reason why
our mutation strategy performs well in generating diverse test
programs, thus significantly increasing the bug-finding capabil-
itiy.

Conclusion: The results show that our proposed equal-
chance selection strategy is effective to help CCOFT detect
more bugs in C++ compiler front-ends. Specifically, under
the same testing period, CCOFT can detect 82% more bugs
than CCOFT(¬ECS).

D. Answer to RQ3

Motivation: Detecting real bugs in mature compilers is dif-
ficult. This RQ assesses the practical bug-finding capability of
CCOFT for detecting bugs in C++ compiler front-ends.

Approach: To evaluate the bug-finding capability of CCOFT

in practice, we choose the daily built trunk version of GCC and
Clang on the noncontinuous period within three months (from
early June to mid-August in 2020) as the developed version. This
is because compiler developers always fix bugs in the develop-
ment trunk more promptly than in stable versions [20], [21], [43].
In detail, we evaluate the practical bug-finding capability of

TABLE III
NUMBER OF ALL THE REPORTED BUGS FOR GCC AND CLANG

TABLE IV
NUMBER OF BUG TYPES OF CONFIRMED BUGS

CCOFT from three aspects, i.e., the number of detected bugs,
the bug type of confirmed bugs, and the bug importance.

Results: In this subsection, we first describe the quantitative
and qualitative results of our reported bugs and then assort some
impactful bugs found by CCOFT.

1) Quantitative and qualitative results: This subsection de-
scribes some statistical properties of the discovered bugs, in-
cluding the number of reported bugs and their quality.

Basic statistics of detected bugs: Table III shows the detail
of all the reported bugs so far. In total, we have reported 136
bugs, of which 67 are confirmed/assigned/fixed (the first three
rows in the table) by developers. It may take some time before
developers consider our reported bugs. During this time, the
trunk has changed and these changes may suppress the bug.
Developers mark such bug reports as “WorksForMe” in Clang,
and we have three Clang bugs of this kind. We do not expose
this kind of bug in GCC because GCC developers responded to
our bugs much more quickly. Note that for Clang, only 10 out
of 58 bugs are confirmed or fixed, which is likely due to limited
human resources as active Clang developers went to the Swift
project [18]. Besides, we have reported a few duplicate invalid
reports, which were rejected by the developers (see more details
about the false positive rate below). All the reported bugs can
be found in the summarized table here.12

Table V further lists the details of all confirmed or fixed bugs,
including their identities (ID), priorities (Prio.), current status
(Status), bug types (Type), identification strategies (Stra.), and
affected versions (Affe.Vers.). We do not list the severity status
here because only one bug is marked as “minor” and two bugs
are marked as “enhancement” in all confirmed bugs. Note that
we only list affected versions in our tested compilers. There

12[Online]. Available: https://github.com/haoxintu/CCOFT/blob/main/
reported-bugs.md
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TABLE V
DETAILS OF CONFIRMED/ASSIGNED/FIXED BUGS REPORTED BY CCOFT

can be many bugs that affect older versions. For example, the
first bug listed in Table V affects all versions from GCC-4.1 to
current trunk versions. Those long lurking bugs also confirm the
usefulness of our reported bugs.

False Positive Rate: We adopt the following mechanism to
calculate the false positive rate (same as [18])

[
rejected
reported

,
rejected + pending

reported

]
.

In our evaluation, the range is [ 4
136 ,

4+49
136 ] = [3%, 39%]. Note

that 39% is simply an upper bound of the false positive rate,
which is mainly due to a relatively large number of pending bugs
(especially for Clang). For each potential bug, we have carefully
checked its validity before we reported it, so we believe most of
the pending bugs will be accepted.

Bug Types: We categorize the bugs reported by our study into
five classes as mentioned in Section II-A, namely, reject-valid,
accept-invalid, diagnostic, crash, and time-out. Table IV shows
the number of each type of confirmed bug detected by CCOFT.
From Table IV, we can see that the number of crash bugs is larger
than those of other types of bugs. There are 39 crash bugs out
of the 67 confirmed/assigned/fixed bugs, which indicates that
crash bugs currently are the most prominent cause of reducing
the quality of C++ compiler front-ends. For the implications of
those crashing bugs, please refer to the discussion in Section V
for more details.

Bug Importance: In the bug repository of GCC and Clang,
the importance of bugs is described as a combination of priority
and severity. Priority means the level of priority to fix a bug, and
severity measures the impact of bugs, ranging from the most
severe, release blocker, to the least severe, enhancement. Both
fields are adjusted by developers when they debug bugs. As
shown in the online summarized table,13 most of our confirmed
bugs have the default priority P3, i.e., 42 (69%) of them are
marked as P3 and above. Only one reported bug is labeled as
“Minor” and two are labeled as “Enhancement” by developers,
and the rest have the normal severity. Compiler developers are
also concerned about bugs in compiler front-ends, 19 of our
reported bugs have been fixed in the latest released versions of
GCC and Clang. Note that one bug is confirmed as “ASSIGN,”
which means that they are on the way to fixing the bug.

It is worth noting that our reported bugs are important
for improving the quality of two mainstream compilers. The
evidence is that six bugs are marked as “P1” (i.e., https://gcc.gnu.
org/bugzilla/show_bug.cgi?id=96045GCC#96045, https://gcc.
gnu.org/bugzilla/show_bug.cgi?id=96137GCC#96137, https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=96623GCC#96623)
or “P2” (i.e., https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
96184GCC#96184,https://gcc.gnu.org/bugzilla/show_bug.
cgi?id=96380GCC#96380, and https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=96462GCC#96462), which are treated as
the most severe and urgent level bugs in the GCC community.
It is also worth mentioning that these bugs obtained high
appraisals, as a GCC developer said, “This case is useful and
it shows that the change in somewhere has a corner case that
I didn’t consider.” 13 and a Clang developer also convinced
“These are useful bug reports. Thank you for filing them!.”14

Furthermore, we can notice that a vast number of bugs are
crashes caused by invalid test programs. Those bugs can have
important implications in practice (more details are discussed
in Section V). The above positive feedbacks confirm that our
reported bugs are indeed important and useful.

13[Online]. Available: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
96137#c2

14[Online]. Available: https://bugs.llvm.org/show_bug.cgi?id=46487#c2
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2) Assorted Confirmed Bug Samples: This subsection sam-
ples some bugs detected by CCOFT to demonstrate its ability to
find a broad range of bugs in C++ compiler front-ends. These
bugs have a real impact on developers and some are even marked
as the highest severity “P1” or “P2,” such as GCC bug #96137,
which was discussed in Section II-A.

GCC Reject-Valid Bug #96068: The following program is
rejected by the compiler front-end of GCC but accepted by the
compiler front-end of Clang. The problem in GCC’s compiler
front-end is that an extra semicolon outside of a function should
be allowed after C++11, but GCC rejects this in almost all
versions.
1 void foo() { };
GCC Reject-Valid Bug #95610: In the following code, the

compiler front-end of GCC cannot deal with global variables in
a class definition. This situation also occurs when replacing the
class with other class specifiers, i.e., struct, union.
1 class s;
2 class :: s { } ss;
GCC Accept-Invalid Bug #96116. The following invalid pro-

gram is accepted by the compiler front-end of GCC. “enum
struct/class” can only be used when defining an enumeration or
as the part of a standalone forward declaration, but GCC accepts
it to be a “using declaration.”
1 using alias1 = enum struct E1;
2 using alias2 = enum class E2;
Clang Accept-invalid Bug #46729. The following invalid pro-

gram is another case that the compiler front-end of GCC accepts
well. A template, a template explicit specialization, and a class
template partial specialization shall not have a C linkage, but
Clang treats it as a valid program.
1 template <class> void F() { }
2 extern ”C” {
3 template < > void F<int>();
4 }
GCC Diagnostic Bug #96045. The following program just

misses “;” in line 2, but the compiler front-end of GCC leaves
out the column number in the error diagnostic message. This
bug has been marked as “P1,” the most urgent level in the GCC
bug repository, and the GCC developer fixed it soon.
1 template <class> class A {};
2 struct A <int>
Clang Crash bug #46682: The following small program that

the compiler front-end of Clang compiling an invalid explicit
declaration, makes the compiler front-end of Clang crash. It
means that Clang could not successfully deal with the error
recovery in some cases.
1 int b = 0;
2 int foo () { explicit (&& b); }
GCC Crash Bug #95820. In the following code, the com-

piler front-end of GCC crashes, while compiling. According
to the developer’s experience, although the above program is
a crash-on-invalid program, it appears in various reduced test
cases from different situations. Thus, it is important to enhance
C++ compiler front-ends to output the error messages rather than
crashing directly.
1 constexpr (*a)()->bool,

GCC Time-out Bug #96137. The following program makes
the C++ compiler front-end of GCC stuck in an endless analysis
for the program. Time-out bug is important since it may waste
developers’ time in compiling their programs and is hard to find
the root cause in the long compilation time. Notably, such a small
test program triggers a corner case that the GCC developer did
not consider.15 and this bug has been marked as “P1” as well. The
above fact indicates our strategy for detecting bugs in compiler
front-ends is useful.
1 void a () {. operator b }

Conclusion: The above results clearly demonstrate that
CCOFT is effective in detecting bugs in C++ compiler front-
ends in practice. In three months, it has reported a total of
136 new bugs in five types for GCC and Clang. Among them,
67 bugs have been confirmed/assigned/fixed by developers.

V. DISCUSSION

In this section, we discuss the relationships among the
used differential strategies in our evaluation, the implication
of crashes caused by invalid code, comparison with existing
coverage-guided fuzzing tools, location of reported bugs, and
limitations of CCOFT.

Relationships among the used differential strategies: Each
strategy has a unique ability in detecting bugs in compiler front-
ends. Generally, CTD, CVS, and CSS have lower false-positive
rates because it is easy to detect the crash or time-out bugs,
as well as the bugs in different versions, different optimization
levels, and different standards. CCS can hunt more types of
bugs in compiler front-ends than others, but it can also report
more false positives. This is because of the difference between
two different compilers, e.g., GCC and Clang. Although the
design of Clang is to be a replacement for GCC, it still has
some incompatibilities with GCC. Thus, there would be false
positives if the compiler c1 and c2 support different sets of error
messages. For example, Clang allows narrowing conversion of
a value from “int” to “bool” by default, while GCC has no such
problem. In this article, the CTD, CVS, and CSS strategies may
serve as good complements to CCS, because they test compilers
from different perspectives and only require a single compiler.

Implication of crashes caused by invalid code: Among all the
reported bugs, it is clear to see a large portion of them belongs to
crashes, which indicates that the error handling or error recovery
capability in compiler front-ends is quite limited. Notably, the
flaws of incorrect error handling in compilers (especially for
compilers used in web applications [49]) can lead to severe
security vulnerabilities and even exploits by attackers [13], such
as XML compiler front-end [14]. The apparent behavior of such
crashes is that detailed internal error messages, such as stack
traces, database dumps, and error codes are displayed when the
crash is emitted. These messages reveal implementation details
that should never be revealed. Furthermore, such details can
provide hackers with important clues on potential flaws in the

15[Online]. Available: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
96137#c2
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site. In short, messages followed by crashing could lead to infor-
mation leakage [50], [51]. For example, in CVE-2017-5638,16

a compiler front-end bug caused by invalid test input has been
proved to be exploitable.

Although there are no such open exposes caused by crashes in
C++ compiler front-ends, by leveraging the detailed stack infor-
mation emitted from two compilers, e.g., in bug https://gcc.gnu.
org/bugzilla/show_bug.cgi?id=96359GCC#96359 and https://
bugs.llvm.org/show_bug.cgi?id=46560Clang#46560, we con-
jecture that it is possible to induce similar exploits in some
elegant manners by expert attackers. We leave it as future work.

Comparison with coverage-guided fuzzing tools: The inter-
ested readers may also be concerned about the comparison result
between our approach and coverage-guided fuzzing techniques.
We now discuss our experience when conducting the compari-
son. AFL [35] is a traditional coverage-guided fuzzing and has
a great impact in both academia and industry. It should be appli-
cable to test compilers to some degree. However, we cannot find
a single crash or performance issue during a seven-day testing
period while running AFL upon GCC compiler. We also run the
test programs using our differential testing strategies to identify
other types of bugs, however, we cannot find any possible bugs. It
is no surprise to us because the intrinsic bit/byte level mutation
operations make little sense for producing bug-revealing test
programs for testing compiler front-ends. We also compared
CCOFT with Prog-fuzz [52], which aims to find compiler crashes.
We run Prog-fuzz in ten days. Finally, Prog-fuzz only finds one
GCC crash, which can also be found by CCOFT.

Location of reported bugs: As stated in Section II-B, we
cannot exactly tell whether a reject-valid, accept-invalid, di-
agnostic, crash, or time-out bug is indeed inside the which
part of a compiler front-end, i.e., lexical analysis, syntactic
analysis (parsing), or semantic analysis. We can only know
the precise location of a bug until the bug is fixed. For exam-
ple, for the bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
96359GCC#96077, the developer fixed it on the source file
“parser.c.” Furthermore, from the code review conclusion “Fix
tentative parsing of enum-specifier,” we can know this bug
occurred in the parser (syntactic analyzer) of the GCC compiler
front-end indeed. Another reason comes from the implementa-
tion of GCC and Clang, as different phases in front-ends are
always interleaved. For instance, although one crash occurred
in semantic analysis, the root cause may come from the former
parsing errors. In our study, among 20 fixed bugs, with the assis-
tance of the fixed file name or the description from developers,
19 of them are in the parsers and one in semantic analysis.

Limitations: CCOFT randomly generates C++ test programs
and then tests compilers based on differential testing. We did
not use any coverage feedback information although not all
coverage measurements are equal [53]. Therefore, CCOFT may
have trouble in finding deeper semantic bugs in C++ compiler
front-ends. However, several automatic coverage-based fuzzing
approaches [54], [55] have been proposed, and we plan to inte-
grate such techniques for wider applications. Another limitation
in our approach may be the programs generated by CCOFT,

16[Online]. Available: https://nvd.nist.gov/vuln/detail/cve-2017-5638

which means those programs are not semantically valid thus may
be hard to trigger optimization bugs in compilers. Specifically,
we can mostly test the front-end in compilers in this study, as
the generated programs are most grammatically correct but still
could be invalid, for example, some type-checking mechanisms
are not satisfied. However, as the results show, these programs
indeed are more likely to trigger bugs in C++ compiler front-
ends, which is complementary to existing random program
generators (e.g., Csmith [19] or Yarpgen [25]).

VI. THREATS TO VALIDITY

In our evaluation, there are two major threats to validity.
Threat to Internal Validity: The internal threat to validity

mainly comes from the implementation of CCOFT. In our study,
an efficient implementation of the proposed mutation strategy
is key to successfully employing CCOPT to detect C++ bugs in
compiler front-ends. Hence, the implementation of the proposed
mutation strategy may influence the testing efficiency of CCOFT.
To alleviate this threat, we adopt libprotobuf-mutator [45], a
widely used library developed by Google to randomly mutate
protobuffers, to implement the proposed mutation strategy.

Threat to External Validity: The threat to external validity
mainly lies in the reduction of test programs. For the bugs
detected through inconsistent compiler outputs, we manually
reduced them. This is because C-reduce cannot work well for
these bugs. If we only want to preserve one certain error in
the reduced test program, some other errors besides the target
error are emitted during the reduction process. Thus, this re-
duction may depend on the researcher’s proficiency in the C++
programming language, such that the reduction process may
be time-consuming and the reduced test program may not be
minimized. To reduce this threat, the first two authors manually
reduce the corresponding programs, and the third author care-
fully checks the reduced bugs, because all of them have many
years of C++ development experience. Another threat comes
from the generality of our proposed framework. In general, it
could be easily adapted for testing other compilers for other
languages. For one thing, all the 100+ language grammars in
Grammar-v4 [44] can be tuned to generate other structured
test cases as CCOFT does. For another, the bug identification
strategy can be tailored for other compiler front-end targets,
e.g., Javascript [56], [57]. Javascript is widely used and issues
in these systems can cause severe security vulnerabilities.

VII. RELATED WORK

Compiler testing is currently the predominant approach to
guarantee the quality of compilers [22], [31]. The existing com-
piler testing techniques could be divided into three categories,
i.e., random differential testing (RDT), different optimization
levels (DOL), and equivalence modulo inputs (EMI) [31], [58].
RDT detects compiler bugs by comparing the outputs of different
compilers with the same specification, whereas DOL compares
the results produced by the same compiler with different opti-
mization levels. Most of techniques [19], [26], [59]–[65], [66]
based on RDT and DOL use randomly generated test programs
to test a compiler. Csmith [19] and Yarpgen [25] are two widely
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used C++ program generators to test C++ compilers. However,
the test programs generated by Csmith and Yarpgen are com-
pletely valid and free of undefined behavior, which makes it
hard or impossible to find bugs in C++ compiler front-ends as
the front-ends will be passed quickly. Dharma [27] and Gram-
marinator [28] are also two widely used test program generators
that generate C++ programs by taking the C++ grammar format
as inputs. To generate new test programs, some studies focus on
mutating the existing programs by employing a set of mutation
rules [20], [21], [52], [67], [43], [62], such as Prog-fuzz [52] and
Clang-fuzzer [67]. Prog-fuzz can generate a subset of semivalid
C++ test programs, while Clang-fuzzer [67] generates a subset
of valid C++ test programs to test Clang API.

Different from RDT and DOL, EMI [21] is derived from meta-
morphic testing [68], which detects bugs on a single compiler
by comparing the outputs of a set of semantically equivalent
test programs. The core idea of EMI is that the given equivalent
test programs should produce the same results when executing
under the given test inputs. Otherwise, there must be a com-
piler bug [21]. In particular, EMI has three instantiations, i.e.,
Orion [21], Athena [20], and Hermes [43]. Orion randomly
prunes unexecuted statements to generate variant programs [21],
while Athena uses the specific operation (e.g., delete or insert)
in code regions that are not executed under the inputs [20]. In
contrast, Hermes [43] generates variant programs via both live
and dead code regions mutation.

Our study is also based on RDT. However, we focus on
testing C++ compiler front-ends with test programs generated
by a structure-aware grammar mutation strategy. Besides, our
program generation approach enables the support of various
variable records to avoid the undefined identifiers problem
and a configurable option to control the selection of gram-
mar rules with little effort. In addition, we use a new differ-
ential testing strategy (i.e., cross-standard strategy) to detect
bugs in C++ compiler front-ends based on different ISO C++
standards.

VIII. CONCLUSION

In this article, we present a framework named CCOFT to
detect bugs in C++ compiler front-ends. Two challenges have
been addressed in CCOFT, namely, the acquisition of test pro-
grams that are more likely to trigger bugs in C++ compiler
front-ends and the bug identification from complex compiler
outputs. The empirical evaluation results showed that CCOFT

can detect 135% and 111% more bugs than two state-of-the-
art approaches, i.e., Dharma and Grammarinator, respectively.
Within three months, we have reported 136 bugs for two mature
C++ compilers, i.e., GCC and Clang, and 67 of them have been
confirmed/assigned/fixed by developers.

In the future work, we are actively pursuing to 1) extend
the proposed framework to test compiler front-ends for other
languages (e.g., Javascript), 2) combine it with coverage feed-
back in compiler source code to detect deeper semantic bugs,
and 3) integrate it with advanced techniques that can help
generate semantic valid test programs to disclose more tricky
optimization bugs in C++ compilers.
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