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Abstract—In crowdsourced mobile application testing, crowd
workers help developers perform testing and submit test reports
for unexpected behaviors. These submitted test reports usually
provide critical information for developers to understand and
reproduce the bugs. However, due to the poor performance of
workers and the inconvenience of editing on mobile devices, the
quality of test reports may vary sharply. At times developers
have to spend a significant portion of their available resources to
handle the low-quality test reports, thus heavily decreasing their
efficiency. In this paper, to help developers predict whether a test
report should be selected for inspection within limited resources,
we propose a new framework named TERQAF to automatically
model the quality of test reports. TERQAF defines a series of
quantifiable indicators to measure the desirable properties of test
reports and aggregates the numerical values of all indicators to
determine the quality of test reports by using step transformation
functions. Experiments conducted over five crowdsourced test
report datasets of mobile applications show that TERQAF can
correctly predict the quality of test reports with accuracy of up to
88.06% and outperform baselines by up to 23.06%. Meanwhile,
the experimental results also demonstrate that the four categories
of measurable indicators have positive impacts on TERQAF in
evaluating the quality of test reports.

Index Terms—crowdsourced testing, test reports, test report
quality, quality indicators, natural language processing

I. INTRODUCTION

Mobile devices grow dramatically and mobile applications
evolve rapidly, posing great challenges to the software test
activities. However, due to the typical characterizes of mobile
devices, such as limited bandwidth, unreliable networks, and
diverse operation systems, traditional testing (e.g., laboratory
testing) for desktop applications and web applications may
be not intrinsically appropriate to a mobile environment [1].
Recently, many companies or organizations tend to crowd-
source their software testing tasks for mobile applications to
an undefined, geographically dispersed large group of online
individuals (namely crowd workers) in a open call form
[2], [3]. Therefore, crowdsourced testing has received wide
attention from both academia and industry [4]–[7]. In contrast
to traditional testing, crowdsourced testing can be performed
anytime and anywhere [8], thus tremendously improving the
testing productivity. Meanwhile, crowdsouced testing recruits
not only professional testers, but also end users for testing
[3]. Developers can gain real feedback information, functional
requirements, and user experiences.

In crowdsourced testing, crowd workers from open plat-
forms help developers perform testing and submit test reports
for abnormal phenomena [4]. A typical test report usually
provides some critical field information, such as environment,
input, description, and screenshot for developers to understand
and fix the bug. One of the most important characteristics is
that crowdsourced testing is strictly limited in time, such as
several days or one week [4]. Thousands of test reports are sent
to developers in a short time and the quantity heavily exceeds
the available resources to inspect them. Meanwhile, due to the
poor performance of workers and the inconvenience of editing
on mobile devices, test reports may differ sharply with respect
to their quality, which seriously affects the understandability
and reproducibility for developers to fix the bugs.

Many studies focus on shortening the total inspection cost
by reducing the quantity of inspected test reports [4], [5], [8],
[9]. However, these studies neglect the impact of the quality
of test reports on the inspection efficiency. High-quality test
reports provide overall information and the contained contents
can be easily understood, developers can reproduce and fix
the bugs within a reasonable amount of time. In contrast, low-
quality test reports often lack of important details and consume
developers much time and efforts, thus heavily decreasing their
efficiency. It is perfect if the quality of test reports can be
reliably measured by automated methods so as to developers
select the high-quality test reports for inspection. Although no
study has been conducted to investigate how to automatically
measure the quality of test reports, some studies around quality
assessment for bug reports and requirement specifications have
thrown light on a practicable direction by defining a set of
indicators to quantify the desirable features or properties of
bug reports and requirement specifications [10]–[13].

In this paper, to help developers predict whether a test report
can be selected to inspect within limited resources, we attempt
to resolve the problem of test report quality assessment by
classifying test reports as either “Good” or “Bad”. We propose
a new framework named TEst Report Quality Assessment
Framework (TERQAF) to automatically model the quality of
test reports. First, Natural Language Processing (NLP) tech-
niques are applied to preprocess test reports. Then, we define
a series of quantifiable indicators to measure the desirable
properties of test reports and determine the corresponding
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value of each indictor according to the textual content of each
test report. Finally, we transform the numeric value of a single
indicator into the nominal value (namely Good, Bad) by means
of a step transformation function and aggregate the nominal
values of all indicators to predict the quality of test reports.

To evaluate the effectiveness of TERQAF, we perform five
crowdsourced test tasks for real industrial mobile applications
and collect five datasets with 936 test reports from crowd
workers. Developers have spent about one week to inspect
and evaluate these test reports. With the help of developers,
we form the ground truth for experiments. We employ the
commonly used accuracy as the metric and investigate three
research questions to evaluate the effectiveness of TERQAF
in test report quality assessment. Experimental results show
that TERQAF can achieve 88.06% of accuracy in predicting
the quality of test reports and outperform baselines by up to
23.06%. Meanwhile, the experimental results also demonstrate
that the four categories of measurable indicators have positive
impacts on TERQAF in test report quality assessment.

In this study, we make the following contributions:
1) To the best of our knowledge, this is the first work to

investigate the quality of test reports and resolve the
problem of test report quality assessment.

2) To automatically model the quality of test reports, we
propose a new framework named TERQAF by using
a taxonomy of quantifiable indicators to measure the
desirable properties of test reports.

3) We evaluate TERQAF over five real industrial crowd-
sourced test report datasets of mobile applications. Ex-
perimental results show that TERQAF can accurately
predict the quality of test reports.

The rest of this paper is structured as follows. Section II
details the background and the motivation. In Section III,
we systematically summarize some desirable properties that
an expected test report should meet. Section IV defines a
taxonomy of indicators for the desirable properties. In Section
V, we detail TERQAF for test report quality assessment. The
experimental setup and the experimental results are presented
in Section VI and Section VII, respectively. Section VIII
discusses the threats to validity and Section IX reviews some
related work. Finally, we conclude this study in Section X.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of crowdsouced
testing in detail and present several examples as the motivation
for resolving the problem of test report quality assessment.

In crowdsouced testing, companies or organizations are
responsible for preparing software under test and testing tasks
for crowdsouced testing. Workers passing an evaluation select
test tasks according to their mobile devices, perform testing,
and edit test reports for the observed abnormal behaviors [4],
[5]. These test reports are written in natural language together
with some screenshots based on the predefined format. A
typical test report is usually composed of different fields, such
as environment, input, description, and screenshot, some of
which may vary slightly in different projects from different

crowdsourced platforms, but are generally similar in the con-
tent [8], [9]. In our experiments, we perform five crowdsourced
test tasks for mobile applications with our industrial partners
on the Kikbug crowdsourced testing platform1.

Table I arrays several examples of crowdsouced test reports
from the real industrial data. Notably, in our experiments, all
test reports are written in Chinese. In order to facilitate un-
derstanding, we translate them into English. Field environment
is the basic configurations of used mobile devices, including
phone type, operation system, screen resolution, and system
language. Field input lists the concrete test steps which are
well designed by workers in performing testing based on the
actual test requirements. Developers precisely follow these test
steps to reproduce the bugs possibly. Field description contains
the detailed descriptions of bugs and occasionally involves real
user experience. By reading the descriptions, developers can
understand the content and make an initial decision for fixing
the bugs. Field screenshot sometimes provides some necessary
images to capture the system symptoms when the bugs occur.

However, for crowdsourced mobile application testing, test
reports are generally short and uninformative. For example,
TR1 in Table I only contains two words which may make
developers confused to understand the bug. Meanwhile, work-
ers do not strictly comply with the given format to write
test reports. They may describe their work details or reveal
system bugs in Field input. For example, the input of TR2

provides the bug description rather than concrete test steps,
thus seriously hampering developers to reproduce the bug. At
times, for saving time or other motivations, workers may report
multiple bugs in the same test report which is called a multi-
bug test report. Generally, multi-bug test reports carry more
natural language information but relatively marginal for each
contained bug. Also, the test steps may be not sufficiently
exact to reproduce each bug. For example, TR3 is a multi-bug
test report which reveals two distinct software bugs. Lines 1
to 3 detail that the system does not work well to remind users
how to open the downloaded pictures. Line 4 briefs a sharing
problem using only two words. Meanwhile, the test steps are
not clearly distinguished to reproduce the two bugs.

In aggregate, test report inspection and evaluation are a
significant part of mobile application maintenance. However,
the widely varied quality of test reports obviously influences
the efficiency of developers. In particular, low-quality test
reports usually need more time and efforts to understand, thus
some test reports are dealt with extremely slowly or not at all
constrained by the limited available resources. In practice, test
reports usually contain many duplicates. When facing multiple
test reports revealing the same bug, developers should select
the high-quality one for inspection. In this paper, to help
developers predict whether a test report should be selected
to inspect, we attempt to resolve the problem of test report
quality assessment. Inspired by existing studies around quality
assessment for bug reports and requirement specifications, we

1http://kikbug.net
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TABLE I: Examples of crowdsourced test report

No. Environment Input (test steps) Description Screenshot

TR1

Phone type: Meizu MX 5
Operating System: Android 5.1
Screen Resolution: 5.5 inch
System Language: Chinese

Click on the search button at the bottom, select a theme.
Horizontally scroll the screen to the end to check the
reminder function. Then vertically scroll the screen to the
end to check the reminder function.

No prompt function.

TR2

Phone type: GiONEE GN9000
Operating System: Android 4.4.2
System Language: Chinese
Screen Resolution: 4.6 inch

It is failed to share pictures to friends or circle of friends by
WeChat. Sharing operation fails by WeChat

TR3

Phone type: Xiaomi MI 4LTE
Operating System: Android 4.2.2
System Language: Chinese
Screen Resolution: 4.6 inch

1. Click on the category list.
2. Select a category and enter it to view pictures.
3. Horizontally scroll the screen to check the feature of “no
more pictures”.
4. Download pictures and share pictures.

1. When the pictures are downloaded, the system
recommends no applications for opening the down-
loaded pictures.
2. Sharing problem.

define a series of quantifiable indicators to measure the quality
of test reports based on the textual contents.

In software engineering, requirement engineering is the first
stage which captures the expected demands of clients and an-
alyzes what functions the system must achieve [14]–[16]. The
requirement engineering processing mainly concentrates on
producing and refining the software requirement specifications
which play a critical role in determining the overall quality
of software. However, manually performed quality evaluation
for requirement specifications is a tedious and burdensome
task. Therefore, researchers have developed various automated
methods and tools to help developers evaluate the quality of
requirement specifications. The most generic method is to
define a series of indicators to quantify the desirable properties
of requirement specifications [11], [12], [17]. For example,
size (i.e., text length) directly measures the atomicity of a
requirement specification and indirectly reflects the complete-
ness and conciseness. However, some indicators may be not
applicable in test reports due to the specific characterizes, such
as short text and many images. Therefore, we need to develop
new indicators to measure the quality of test reports.

III. DESIRABLE PROPERTIES OF TEST REPORTS

Admittedly, quality is an ambiguous concept which is
related to distinct evaluation criteria [11]. Different developers
usually have a disagreement over the quality of the same test
report. Given a crowdsouced test report, we clearly discrimi-
nate qualitative desirable properties based on individually sub-
jective opinions and quantitative quantifiable indicators relying
on intrinsically objective characteristics. In this section, we
explicitly define what desirable properties we should measure
for the quality of test reports.

Since only several studies focus on crowdsourced testing
and this study is the first work on investigating the quality of
test reports, no referable desirable property is available for
test report quality assessment. In practice, test reports can
be regarded as special bug reports, the desirable properties
of bug reports are also able to adopt to test reports. In the
literature, researchers have conducted a series of empirical
studies to investigate the quality of bug reports [10], [18],
[19]. Some complementary desirable properties are explored,
including atomicity, correctness, completeness, conciseness,

understandability, unambiguity, and reproducibility [10], [19]–
[22]. We explain these desirable properties as follows in detail:

• Atomicity: A test report reveals only a bug without
information of other bugs.

• Correctness: A test report reveals a real bug and each
field in a test report provides the specified information.

• Completeness: A test report contains all field information
predefined in the format.

• Conciseness: There are not two or more sentences con-
veying the same information.

• Understandability: The content is correctly understood
without difficulty and the described bug can be easily
identified from the content.

• Unambiguity: There is only one interpretation for each
test report.

• Reproducibility: The provided test steps are effective to
reproduce the described bug.

IV. TAXONOMY OF INDICATORS

As mentioned in the literature, quantitative indicators are
more or less associated with the qualitative properties [11],
thus either directly or indirectly reflecting the quality of
textual content. Compared against test reports, requirement
specifications contain more contents which are evaluated with
more desirable properties, such as traceability, verification, and
validation [11]. Existing studies have systematically presented
a overall taxonomy of indicators for the quality measurement
of requirement specifications. Based on these studies [11], [12]
and the typical characteristics of test reports, we define some
quantifiable indicators to measure the desirable properties of
test reports and classify them into four categories:

• Morphological indicators, such as size and readability,
which primarily reveal the surface characteristics of text
of a test report without caring the content.

• Lexical indicators, such as the number of imprecise terms,
which try to lexically evaluate the textual content of a test
report according to the user-defined term lists.

• Analytical indicators, such as the usage of domain terms,
which leverage some specific domain terms to semanti-
cally analyze the textual contents of test reports.
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• Relational indicators, such as itemization, which measure
the structured properties of a test report or reveal whether
a test report provides each field of information.

In this section, we detail each indicator and clearly clarify
what desirable properties it measures. A noticeable point is
that test reports consists of four fields of information, namely
environment, input, description, and screenshot. Since screen-
shot is independent of natural language information meanwhile
environment can be understood relatively simply, we focus on
measuring description and input which are the most important
information for developers to fix the bug. Therefore, the fol-
lowing indicators serve the purpose of evaluating description
and input except for special declarations.

A. Morphological Indicators

Size and readability are the most frequently used and the
most intuitive morphological indicators. Besides, punctuation
is taken into account.

1) Size: In general, size refers to the numbers of characters,
words, text lines, sentences, and paragraphs in a document
[11], [12]. It directly measures the atomicity and conciseness
and indirectly reflects all other properties of test reports.
Taking the extremely short text in test reports into consid-
eration, we only adopt the number of characters as the metric.
Empirically, long test reports spend much reading time and
short test reports lack of necessary details. Therefore, a good
test report should keep the size in a moderate length.

2) Readability: Readability is an important quality indi-
cator which aims to measure the degree of difficulty of
reading a text [11], [12]. In the literature, researchers have
conducted extensive studies to investigate the readability of
Chinese documents and propose various readability formulas
[23]. The first recognized formula for readability measurement
is Y = 14.9596 + 39.07746X1 + 1.011506X2 − 2.48X3

[23], where X1 is the ratio of difficult words (excluded
by 5,600 commonly used words), X2 and X3 denote the
number of sentences and the average stroke count, respectively.
As for English documents, many readability formulas have
been modeled in the literature [24], [25]. For example, the
Flesch readability index [24] is calculated by the formula
RFlesch = 206.835 − (1.015 × WPS) − (84.6 × SPW )
, where WPS and SWP represent the average number of
words within a sentence and the average number of syllables
of a word, respectively. Certainly, there exist formulas for
measuring the readability of text written in other languages.

3) Punctuation: Another representative indicator is punc-
tuation marks [11] which are used to divide a long sentence
into relatively short ones to efficiently improve the understand-
ability of test reports. Lacking of punctuation usually leads to
the difficulty of understanding a long sentence. Meanwhile,
excessive punctuation may cause the missing of semantics. In
practice, the number of punctuation marks is directly related
to the average length of sentences. When the size of a test
report and the expected average length of sentences are given,
the number of punctuation marks is consequently determined.

B. Lexical Indicators

Different from morphological indicators, lexical indicators
require additional information namely term lists to compute
the quality of test reports. Existing studies have summarized
overall term lists for the processing of English documents [11],
[12]. Aiming at Chinese documents, we reuse the term lists
and translate them into Chinese. Meanwhile, we add some
synonyms to form the eventual term lists for Chinese. In
practice, these terms can be easily defined and collected.

1) Imprecise Terms: When describing a bug, due to the
uncertainty, workers tend to use imprecise terms which convey
ambiguous information, thus introducing risks to the under-
standing of the bug. Therefore, prohibitively using imprecise
or subjective terms can effectively improve the understandabil-
ity of test reports. Based on the characteristics of imprecise
terms, we partition them into six different groups [11]:
• Quality: Good, bad, moderate, medium, efficient, etc.
• Quantity: Enough, abundant, massive, sufficient, etc
• Frequency: Generally, usually, typically, almost, etc.
• Enumeration: Several, multiple, some, few, little, etc.
• Probability: Possibly, can, may, perhaps, optionally, etc.
• Usability: Experienced, familiar, adaptable, easy, etc.
2) Anaphoric Terms: Anaphoric terms refer to the words

which are used to replace the frequently used or complicated
words or phrases in the same text. Typical anaphoric terms
include personal pronouns (e.g., it, them), relative pronouns
(e.g., that, which, where), demonstrative pronouns (e.g., this,
that, these, those) [11], etc. Although the usage of anaphoric
terms is grammatically acceptable, they would impose a threat
of imprecisions and ambiguities to the quality of test reports
with respect to the understandability. Ideally, a test report
should be explicit without an anaphoric term.

3) Directive Terms: Differing from imprecise terms and
anaphoric terms, directive terms are an positive indicator
to help developers understand test reports better [12]. In
general, the words following directive terms probably add
a concrete example or provide more additional information
from a complementary aspect to illustrate and strengthen the
bug description. In some cases, a high ratio of the usage of
directive terms is conducive to the understanding of bugs. In
crowdsourced test reports, the commonly used directive terms
include “e.g.”, “i.e.”, “for example”, “note”, etc.

C. Analytical Indicators

Analytical indicators aim to implement the textual analysis
based on the contents of test reports. Existing studies for
requirement specification quality assessment show that verbal
tense and mood terms as well as domain terms are adopted
as analytical indicators [11]. However, test reports written in
Chinese contain no verbal tense and mood terms, we only
consider domain terms in this study.

Domain terms are typically organized either as a simple
glossary of terms or in complicated structural form such as
thesauri or ontologies [11]. They are usually used to reflect the
correctness and the completeness. An obvious problem is that
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TABLE II: The corresponding relationship between measurable indicators and desirable properties

Category Indicator
Desirable property

Atomicity Correctness Completeness Conciseness Understandability Unambiguity Reproducibility

Morphological
size X • • X • • •

Readability X •
Punctuation X •

Lexical
Imprecise term X • • • X

Anaphoric terms X • X X •
Directive terms • • • X

Analytical

Negative terms X X •
Behavior terms X X •
Action terms X • • X

Interface elements X • • • X

Relational
Itemizations X • • • X • X
Environment • X • X
Screenshots • X X • •

domain terms may differ immensely in different areas, thus it
is hard to define and acquire the domain terms for a specific
area. Fortunately, some studies have summarized overall lists
of domain terms for bug report quality assessment [10], [26].
In this paper, we reuse the term lists defined by Ko et al. [26]
and combine negative terms to measure the quality of test
reports. When a test report contains a corresponding domain
term, the indicator is considered as Good.

1) Negative Terms: For mobile applications, an incorrect or
missing function will cause a software bug. Therefore, in test
reports, workers usually use some negative terms to describe
the lacking of system functions, such as no, not, fail, lack, etc.

2) Behavior Terms: A software bug is an error, defect,
failure, or fault in a computer program or system. Therefore,
the descriptions of test reports generally contain the terms
which represent the observed behaviors, such as error, bug,
defect, problem, failure, etc.

3) Action Terms: To be exact, test steps are a series of
actions which are triggered by clicking on users interfaces
(e.g., button, menu) of mobile applications in perform testing.
Hence, test steps should contain some action terms, such as
open, select, click, enter, check, etc.

4) Interface Elements: If the input of a test report is related
to test steps, it must contain some action terms followed by
corresponding user interface elements, such as button, toolbar,
menu, dialog, window, etc.

Notably, negative terms and behavior terms adopt to the
descriptions of test reports, while action terms and interface
elements focus on the inputs.

D. Relational Indicators

A test report is a structural document composed of multiple
fields of which each provides specified information for devel-
opers to understand or reproduce the bug. Ideally, a complete
test report contains all field information and the content in
each field is correct and relevant. For example, field input
should provide detailed test steps for reproducing the revealed
bug. However, the same as bug reports [10], workers are hard
to provide test steps and screenshots for developers in test
reports. Therefore, we use the following three indicators to
detect the correctness and completeness of test reports.

1) Itemizations: Test steps are usually orderly itemized
with itemizations or enumerations (such as TR2 and TR3 in
Table I). Instead, if the input in a test report is organized
with itemizations or enumerations, it is related to test steps
with a very high probability. To distinguish itemizations in
test reports, we search the lines starting with an itemization
character, e.g., “·”, “∗”, or “+”. Similarly, we also identify
enumerations by detecting each line whether it starts with
numbers or serial numbers in which numbers are enclosed by
parentheses or brackets or followed by a single punctuation
character [10].

2) Environment: In test reports, environment is a structured
field which describes the basic configuration of a mobile
device. By reading the environment, developers can clearly
realize the adaptations of mobile applications. Therefore, a
complete test report should provide environment information.
Compared against other fields, the field environment can be
easily detected by the specific keywords, namely phone type,
operation system, screen resolution, and system language.

3) Screenshots: A complete test report provides not only
natural language information but also screenshots. At times
screenshots can effectively help developers realize the system
states when the bug occurs. In crowdsourced test reports,
screenshots are uniformly enclosed in attachments. Different
from bug reports, the attachments for test reports contain no
text. Therefore, we easily identify screenshots without any
complex tool, i.e., if detecting an attachment, we recognize
the test report with screenshots.

In summary, the above defined indicators can measure the
desirable properties of test reports to some extent. Based
on existing studies [11] and our experience, we summarize
the corresponding relationship between quantifiable indicators
and desirable properties in Table II, where “X” represents a
direct influence and “•” denotes an indirect influence between
the indicator and the desirable property. For example, the
indicator readability directly influence the understandability
of test reports and indirectly reflect the unambiguity.

V. TEST REPORT QUALITY ASSESSMENT FRAMEWORK

In this section, we detail TERQAF shown in Fig.1.
TERQAF is composed of three components, namely pre-
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Fig. 1: TERQAF framework.

processor, step transformation function, and classifier which
are used to preprocess crowdsourced test reports by NLP
techniques, transform the numerical values of indicators into
nominal values using step transformation functions, and clas-
sify test reports as either “Good” or “Bad”, respectively.

A. Preprocessor

Since test reports are almost written in Chinese and lexical
indicators and analytical indicators analyze test reports based
on segmented text, we need a Chinese NLP tool to implement
the word segmentation for test reports. Fortunately, there are
many efficient NLP tools for the processing of Chinese doc-
uments, such as Language Technology Platform (LTP)2, ICT-
CLAS3, and IKAnalyzer4. In this study, we adopt IKAnalyzer
which can provide efficient services and is widely applied in
many studies [27]. Certainly, different natural languages have
different characteristics which require different processing. For
example, English words are naturally segmented by spaces
and presented in different grammatical forms, stemming is the
most important step to process English documents.

Next, we proceed to process the test reports and extract the
defined indicators based on the segmented text to generate a
vector for each test report in which each element is a numerical
value of the corresponding indicator. Since the size of input
varies in a large range, a good input is hard to determine.
Therefore, size refers to the textual length of a description.

B. Step Transformation Function

Once the vector is generated, we need to determine the
quality level of each quantifiable indicator by the numerical
values in this component. In general, quality measurement is
classified into two discrete levels: Good, Bad; High, Low;
Cheap, Costly; etc. [11]. To transform the numerical values
of indicators into nominal values (namely Good, Bad), we
introduce step transformation functions.

Typically, step transformation functions are divided into four
major kinds: increasing, decreasing, convex, and concave [11],
where the first two step functions involve one parameter while
the last two contain two parameters. As shown in Fig. 2, four
kinds of step functions can regularize heterogeneous numerical
indicators and transform their values into corresponding nom-
inal values by setting suitable bounds. For example, a good

2http://www.ltp-cloud.com/
3http://ictclas.nlpir.org/
4http://www.oschina.net/p/ikanalyzer

Fig. 2: Four kinds of step transformation functions.

TABLE III: The corresponding step function and interval setting for
each measurable indicator

Category Indicator Function Intervals

Morphological
Size Convex 0-x1-x2

Readability Convex 0-x3-x4

Punctuation Convex 0-x5-x6

Lexical
Imprecise term Decreasing 0-1

Anaphoric terms Decreasing 0-1
Directive terms Increasing 0-1

Analytical

Negative terms Convex 0-1-2
Behavior terms Convex 0-1-2
Action terms Increasing 0-1

Interface elements Increasing 0-1

Relational
Itemizations Increasing 0-1
Environment Increasing 0-1
Screenshots Increasing 0-1

test report should keep the size of text neither too long nor
too short. Therefore, the indicator size needs a convex step
function to implement the transformation. If the numerical
value is between x1 and x2, the size is considered as Good.
In contrast, if the value is smaller than x1 or greater than
x2, the size is considered as Bad. Again, imprecise terms
use an increasing function, if the value is greater than x1,
the indicator is considered as Good. Otherwise, the indicator
is considered as Bad. Similarly, other indicators can also
leverage one of four kinds of step functions to implement
the transformation. However, the crucial difficulty is how to
exactly set the parameter values for each indicator.

Table III lists the corresponding step transformation function
for each indicator and presents the parameter settings. In the
table, the intervals are defined as closed in the lower bound
and open in the upper bound. For example, 0-x1-x2 represents
three intervals [0, x1), [x1, x2), and [x2, ∞). Obviously, the
increasing and convex step functions are the most frequently
used for the defined indicators. Meanwhile, many indicators
use either increasing or decreasing step functions and their in-
tervals are defined by 0-1. Given that multi-bug test reports are
usually regarded as low-quality ones which may be identified
by multiple negative terms or behavior terms based on their
descriptions. Therefore, negative terms and behavior terms use
convex step functions and their parameter intervals are set to
0-1-2. Moreover, morphological indicators require convex step
functions and the parameters can be determined empirically.
For example, by an in-depth investigation on test reports, the

373



TABLE IV: Five crowdsourced test report datasets

Dataset Version #R #B #Rm #Rg #Rb

UBook 2.1.0 201 30 53 89 112
JustForFun 1.8.5 230 25 55 92 138
SE-1800 2.5.1 201 32 35 62 139

iShopping 2.5.1 215 65 28 56 159
CloudMusic 1.3.0 89 21 8 37 52

Totals 936 173 179 336 600

moderate size of a description may be 15 to 30 characters. As
for punctuation, we replace it with average sentence length
since its parameters can be defined empirically. Based on
the style of Chinese, a moderate sentence should keep the
length between 8 to 15 characters. To gain the appropriate
parameter values, we will experimentally tune the parameters
for morphological indicators.

C. Classifier

By using step functions, the numerical values of quantifiable
indicators are transformed into corresponding nominal values.
Next, we leverage the classifier to predict the quality of test
reports by aggregating the nominal values of all indicates.
In fact, a good test report does not mean all indicators with
Good results. Meanwhile, in crowdsourced testing, due to the
poor performance of workers, the number of high-quality test
reports is obvious less than that of low-quality test reports in
the same dataset. Therefore, we consider a test report as Good
if there are at least 60% (which is determined by experiments)
of indicators with the result Good.

VI. EXPERIMENTAL SETUP

In this section, we detail the experimental setup, including
experimental platform, evaluation metrics, and experimental
datasets.

A. Experimental Platform

All the experiments are conducted with Java JDK 1.8.0 60,
compiled with Eclipse 4.5.1, and run on a PC with 64-bit
Windows 8.1, Intel Core i7-4790 CPU, and a 8G memory.

B. Evaluation Metrics

In quality assessment for requirement specifications, accu-
racy is generally adopted to evaluate the effectiveness of auto-
mated methods. In this study, we also employ accuracy as the
metric to evaluate the performance of TERQAF. Assuming that
m represents the number of test reports which are correctly
predicted by TERQAF and n is the number of test reports in
the dataset, the calculation formula is as follow:

Accuracy =
m

n
(1)

C. Experimental Datasets

From October 2015 to January 2016, crowdsourced test
tasks are performed with our industrial partners for the five
mobile applications, including UBook, Justforfun, CloudMu-
sic, SE-1800, and iShopping. The brief descriptions for the
five applications are presented as follows:

• UBook: An online education application developed by
New Orientation.

• JustForFun: An interesting photo sharing application
developed by Dynamic Digit.

• CloudMusic: A music playing and sharing application
developed by NetEase.

• SE-1800: An electrical monitoring application developed
by Panneng.

• iShopping: An online shopping guideline App developed
by Alibaba.

In our experiments, workers are recruited and evaluated
by the Kikbug platform, a specialised crowdsourced Android
testing platform. The workers are mostly students who have
already acquired some knowledge of software testing and have
completed some preliminary tasks recorded in our platform,
i.e., they are qualified for the testing task. For each testing
task, we stipulate the testing time within 2 weeks. Students
elaborately design test steps to perform testing according to the
test requirements prescribed by developers. When detecting a
bug, workers are required to write a test report to describe
the abnormal behavior in descriptive natural language together
with some necessary screenshots on their mobile devices.
These test reports are submitted to the Kikbug platform with
a small application installed in the mobile devices.

We collect five datasets and invite 15 developers who
develop the applications to evaluate the test reports. Each test
report is scored by three developers on a scale of 100 points
based on some predefined criteria. If the average score of a test
report is greater than 60, it is marked as “Good”, otherwise, it
is marked as “Bad”. The workers who submitted good quality
test reports would be financially compensated. With the help of
developers, we gain the detailed statistical information about
the five crowdsourced datasets, as shown in Table IV, where
#R represents the number of test reports, #B is the number of
revealed bugs in the dataset, Rm denotes the number of multi-
bug test reports, Rg and Rb are the numbers of good and bad
quality test reports, respectively. Five datasets contain 89, 92,
62, 56, and 37 good quality test reports, and 112, 138, 139,
159, and 52 bad quality test reports, respectively.

VII. EXPERIMENTAL RESULTS

In this section, we investigate three research questions to
verify the performance of TERQAF.

A. Investigation to RQ1

RQ1. How do the parameters impact the performance of
TERQAF?

In TERQAF, we leverage step transformation functions to
transform the numerical values of indicators into the cor-
responding nominal values. However, step functions usually
require appropriate parameter settings. Fortunately, only the
parameters of morphological indicators are hard to determined.
In this RQ, we mainly focus on the parameter tuning of
the morphological indicators (namely size, readability, and
punctuation) and try to seek suitable parameter values which
can be applied to all datasets.
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UBook UBook

SE-1800

Fig. 3: Results of TERQAF
with different x1 values.

SE-1800

Fig. 4: Results of TERQAF
with different x2 values.

In this experiment, we tune the parameters of one indicator
and fix the parameters of other indicators in default values.
Given that the details of parameter tuning are the same,
we take the indicator size as an example to present the
tuning details. Size involves two parameters x1 and x2. Our
investigation on test reports over the UBook dataset shows that
the minimum, average, maximum size of the descriptions are
4, 18.4, and 46. Thus we predefine that x1 varies from 5 to
20 and x2 varies from 20 to 35. In this experiment, we set a
tuning step to 1 and run TERQAF over UBook and SE-1800
datasets. We gradually change the value of one parameter and
keep the other one unchanged.

Fig. 3 uses two sub-figures to present the tuning results
with respect to x1 over the UBook and SE-1800 datasets,
respectively. Obviously, TERQAF achieves different accuracy
results with the growth of x1. When x1 changes from 5
to 20, TERQAF first increases slowly and then turns to be
stable over the UBook dataset. When x1 is between 14 and
16, TERQAF achieves the best result 88.06% of accuracy.
Similarly, TERQAF presents the basically similar trends over
the SE-1800 dataset and achieves the best result when x1 is
between 12 and 16. Combining the two sub-figures, when x1

is set to 14, 15, or 16, TERQAF achieves the best accuracy
results over the two dataset, which indicates that x1=14 may
be a good choice. Fig. 4 also uses two sub-figures to present
the tuning results when x2 varies from 20 to 35 and x1 is equal
to 14 over the UBook and SE-1800 datasets, respectively. We
observe that TERQAF achieves the best result when x2 falls
between 21 and 23 over the UBook dataset. When x2 is greater
than 23, TERQAF shows a strong downward trend. As to the
SE-1800 dataset, when x2 is between 22 and 23, TERQAF
achieves the best result 83.08% of accuracy. Therefore, x2=22
may be a feasible choice. In addition, we also observe that
TERQAF achieves the same result in some continuous values
with respect to x1 and x2, which indicates that TERQAF is
not very sensitive to x1 and x2.

In summary, TERQAF achieves different results about dif-
ferent parameter values. We implement the same strategy to

tune the parameters for the indicators readability and punctu-
ation. Based on the results, the appropriate parameter values
are x1=14, x2=22, x3=-4, x4=10, x5=7, and x6=11 which
approximate the empirical values. In following experiments,
we use them as the default parameter values.

B. Investigation to RQ2
RQ2. Can TERQAF outperform some baseline methods in
measuring the quality of test reports?

In this study, we explore a new framework named TERQAF
to automatically quantify the quality of test reports. Since this
work is the first study to investigate test report quality, no state-
of-the-art technique is available to validate the effectiveness
of TERQAF. Given that test reports can be viewed as special
bug reports, we select CUEZILLA [10], an automated tool for
measuring the quality of bug reports, as a baseline method.
Also, we compare TERQAF with the WORST method, which
predicts all test reports as either Good or Bad. In this RQ, we
experimentally investigate whether TERQAF can outperform
CUEZILLA and WORST.

Similarly, CUEZILLA measures the quality of bug reports
based on seven desired features [10]) of the contents. However,
test reports provide no code samples, stack traces, and patches.
Hence, we only focus on itemizations, keyword completeness
(including action items, expected and observed behaviors,
steps to reproduce, build-related, and user interface elements
[10]) to measure the quality of test reports. We adopt the
same method to calculate the numerical values of indicators
for CUEZILLA. As for WORST, if the number of good quality
test reports is smaller than that of bad quality test reports, all
test reports are predicted as Bad. Otherwise, all test reports
are predicted as Good.

Table V shows the accuracy results of different methods
over all datasets. As shown in the table, we observe that
TERQAF outperforms WORST and CUEZILLA over all
datasets but SE-1800. For example, TERQAF achieves 88.06%
of accuracy over the UBook dataset and improves WORST and
CUEZILLA by 32.34% and 9.85%, respectively. The potential
reason is that TERQAF uses more indicators to measure the
quality of test reports and the results obtained by TERQAF are
not influenced by a single indicator. In contrast, CUEZILLA
uses only several desired features to predict the quality of test
reports and thus a single feature may have great impact on its
performance. Nevertheless, CUEZILLA achieves higher accu-
racy than WORST over all datastets. For example, CUEZILLA
achieves 86.07% of accuracy over the SE-1800 and improves
WORST by up to 12.48%. Surprisingly, CUEZILLA achieves
better result than TERQAF over this dataset. This may be that
some of the defined indicators do not work well to measure
the quality of test reports over this dataset. This fact also
demonstrate that not all indicators adapt to all datasets. That
is, the same indicator may be ineffective in this dataset but
effective in another dataset.

In summary, TERQAF works well in test report quality
assessment and significantly outperforms both WORST and
CUEZILLA.
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TABLE V: Accuracy results of different methods over all datasets

Dataset TERQAF WORST CUEZILLA
UBook 88.06% 55.72% 78.11%

JustForFun 80.43% 60.00% 75.65%
CloudMusic 86.52% 69.15% 70.79%

SE-1800 83.08% 73.95% 86.07%
iShopping 82.79% 41.57% 82.33%

C. Investigation to RQ3

RQ3. How do the four categories of indicators impact the
performance of TERQAF?

In TERQAF, we define a series of indicators and classify
them into four categories to measure the quality of test re-
ports based on the textual content from different perspectives.
Undoubtedly, different categories of indicators have different
impacts on the performance of TERQAF. Also, we are not
clear whether each category plays a positive role in evaluating
the quality of test reports and which category is the most im-
portant. In this RQ, we experimentally investigate the impacts
of four categories of indicators on the quality measurement of
test reports.

Empirically, to investigate the impact of each category of
indicators, we should leverage all indicators of the category
to independently evaluate the quality of test reports. However,
each single category only includes several indicators which
may make a bias. Therefore, based on a complementary ideal,
we leverage the other three categories of indicators to perform
quality assessment for test reports to validate the effects of
each category of indicators. In such a way, four variant meth-
ods are produced and named as TERQAF-LAR, TERQAF-
MAR, TERQAF-MLR, and TERQAF-MLA for convenience,
where M, L, A, and R represent the morphological, lexical,
analytical, and relational indicators, respectively.

Table VI presents the results of different methods over
the five datasets. Obviously, TERQAF outperforms TERQAF-
LAR, TERQAF-MAR, TERQAF-MLR, and TERQAF-MLA
over all datasets but JustForFun, which indicates that four cat-
egories of indicators have good effects on quality assessment
for test reports. For example, TERQAF achieves 88.06% of
accuracy over the UBook dataset and improves TERQAF-
LAR, TERQAF-MAR, TERQAF-MLR, and TERQAF-MLA
by up to 7.96%, 0.50%, 6.47%, and 22.89%, respectively. In
particular, TERQAF-MLA achieves the poorest results over
all datsets, which demonstrates that the relational indicators
play the most important role in determining the quality of test
reports. The potential reason is that the relational indicators
reveal whether a test report is complete or not. In contrast,
TERQAF-MAR outperforms TERQAF-LAR, TERQAF-MLR,
and TERQAF-MLA over all datasets but JustForFun. For ex-
ample, TERQAF-MAR achieves 86.52% of accuracy over the
CloudMusic dataset and improves TERQAF-LAR, TERQAF-
MLR, and TERQAF-MLA by up to 7.87%, 10.12%, and
11.24%, respectively. The fact shows that the lexical indicators
work poorly to evaluate the quality of test reports. The reason
may be that most of test reports contain no defined lexical

TABLE VI: Impacts of different categories of indicators on TERQAF

Dataset TERQAF
-LAR

TERQAF
-MAR

TERQAF
-MLR

TERQAF
-MLA TERQAF

UBook 80.10% 87.56% 81.59% 65.17% 88.06%
JustForFun 66.52% 80.87% 82.61% 56.09% 80.43%
CloudMusic 78.65% 86.52% 76.40% 75.28% 86.52%

SE-1800 81.09% 82.59% 82.59% 67.66% 82.59%
iShopping 80.93% 82.33% 81.40% 73.02% 82.79%

terms. Comparatively, TERQAF-MLR outperforms TERQAF-
LAR over all datasets but CloudMusic, which indicates that
the morphological indicators are more important than the
analytical indicators in test report quality assessment.

In summary, different categories of indicators contribute
differently for quality assessment of test reports. The relational
indicators are the most important and the lexical indicators
work poorly. Moreover, the role of morphological indicators
outperforms that of analytical indicators.

VIII. THREATS TO VALIDITY

In this section, we discuss the threats to validity, including
parameter settings, natural language selection, and term lists.
Parameter settings. In TERQAF, step transformation func-
tions are leveraged to transform the numerical values of
indicators into nominal values. However, for each indicator,
the corresponding step function needs to specify the value of
each parameter, which may produce a bias in different projects.
However, we have conducted a detailed experiment to tune the
parameters over two projects and TERQAF can achieve good
results over all datasets with the tuned parameters. In addition,
the determined parameter values approximate the empirical
values. Therefore, this bias is minimized.
Natural language selection. In our experiments, all test re-
ports are written in Chinese and TERQAF is developed based
on Chinese text. As well known, Chinese is very different
from English and other Latin languages, which may generate
a threat to the generalization of TERQAF to other natural
languages. However, TERQAF mainly extracts the defined
indicators from the text of test reports by conducting simple
string matching. It is still a natural language technique which
has been proven to adopt to other natural languages [28].
Therefore, this threats will be greatly reduced.
Term lists. In quality assessment, some indicators (such as
lexical indicators) depend on the term lists defined by users,
which may impact the effectiveness of TERQAF in test report
quality assessment. However, many studies [11], [26] have
summarized the overall term lists and they have been reused
in some studies [10], [12]. In this paper, we fully use these
term lists and transform them into Chinese. Meanwhile, we
add some relevant terms by an extensive investigation on test
reports. Thus, the impact is negligible.

IX. RELATED WORK

In this section, we review some studies related to our
work, including crowdsouced testing and quality assessment
for textual documents.
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A. Crowdsourced Testing

The concept of crowdsourcing refers to the process of an
organization crowdsourcing their work to undefined, geograph-
ically dispersed online individuals in an open call form [2],
[3]. By combining human and machine power, crowdsourcing
achieves a rapid resolution for large-scale tasks.

As a newly emerging technique, researchers have conducted
extensively empirical studies to investigate the potentials of
crowdsourced testing [29], [30]. For example, Guaiani and
Muccini perform an empirical evaluation to demonstrate that
crowdsourced testing can complement traditional laboratory
testing [29]. Many studies also apply crowdsourced testing to
resolve software engineering problems [4]–[7], [31]–[33]. For
example, Gomide et al. propose an event detection algorithm
for crowdsourcing software usability testing by processing the
actions from mouse movements or touch events to identify
user emotions [32]. Considering the wide popularity of mobile
devices, Sun et al. try to collect as much as possible service
QoS data by a mobile crowdsourcing based testing framework
which invokes web service from mobile devices [34].

In contrast, some studies concentrate on resolving crowd-
sourced testing problems [4], [5], [35], [36]. Starov develops a
cloud testing of mobile system framework to achieve efficient
crowdsourced mobile application testing by providing cloud
services [35]. To improve the quality of crowdsourced test-
ing, Chen et al. introduce crowdsourced testing to education
platforms and propose Quasi-Crowdsourced Testing (QCT)
[36]. Given that developers have no plenty of time to inspect
each test report, Feng et al. leverage a text-based technique
and image understanding to prioritize test reports to help
developers detect more bugs when inspecting a given number
of test reports [4], [8]. To reduce unnecessary inspection,
Wang et al. attempt to identify the false positives from raw
test reports by adopting both a cluster-based classification
approach [9] and active learning [5]. Similarly, our study aims
to resolve crowdsourced testing problems.

B. Quality Assessment for Textual Documents

Quality is a ambiguous concept which depends on indi-
vidually subjective judgements. Different users may evaluate
differently over the same textual document. Many studies have
been conducted to investigate the quality of textual documents,
such as bug reports and requirement specifications.

In software maintenance, bug reposts are one of the most
important resources for developers to improve the software
[37]–[42]. However, low-quality bug reports usually need
much time to inspect. Zimmermann et al. have conducted
an empirical study to investigate what makes a good bug
report. They define seven desired features to detect the quality
of bug reports [10]. Meanwhile, some researchers have in-
vestigated the role of duplicate bug reports. Evidence show
that duplicates can provide additional useful information [19].
To determine whether a bug report should be selected to
inspect, Hooimeijer and Weimer propose a descriptive model
to evaluate the quality of bug reports based on external features
[21]. Taking a great amount of text in bug reports, another

body of studies try to summarize bug reports so that developers
consult the short and concise summaries instead of the entire
bug reports [20].

In requirement engineering, tremendous efforts are devoted
to produce and refine the requirement specifications for the
quality assurance of a software system [14]. Erroneous require-
ments that are not detected timely may cause severe problems.
Under this motivation, researchers attempt to automate the
quality assessment for requirement specifications [1], [17].
Génova et al. define a taxonomy of measurable indicators
to quantify the desirable properties of textual requirements
[11]. Parra et al. apply rule induction techniques to assess the
quality of requirements by leveraging the historical require-
ments classified by the expert [15]. In contrast, some studies
focus on evaluating a single desirable property of requirement
specifications, such as ambiguities [43], [44], inconsistencies
[45], and conflicts [46]. Similarly, we attempt to define some
quantifiable indicators to measure the quality of test reports
based on textual contents.

X. CONCLUSION

In this paper, to help developers predict whether a test
report can be inspected in a small amount of time, we try to
model the quality of test reports by classifying them as either
“Good” or “Bad”. We propose a new method towards resolving
the problem of test report quality assessment by defining a
series of indicators. Given a test report, the numerical value of
each indicator is determined according to the textual content.
Then, we aggregate numerical values of all indicators to form
a vector and use step transformation functions to transform
the numerical values into nominal values to determine the
quality of test reports. Experiments are conducted over five
crowdsourced test report datasets of mobile applications. Ex-
perimental results show that the proposed method can predict
the quality of test reports with high accuracy.

Although quantifiable indicators can measure the quality
of test reports from different aspects to some extent, quality
assessment still depends on manual judgments. Nonetheless,
this study not only helps developers automatically evaluate
the quality of test reports, but also provides some improvement
strategies for workers to write a good test report. For example,
test reports should contain more domain terms and exclude
ambiguous terms. In future, we try to seek more indicators
to measure the quality of test reports and investigate the
impact of each indicator. Meanwhile, we will develop a tool
implementing our approach to measure the quality of test
reports and deploy it in a real scenario, such as the National
Student Contest of Software Testing in China5.
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