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Abstract—Optimization sequences are often employed in compilers to improve the performance of programs, but may trigger critical

compiler bugs, e.g., compiler crashes. Although many methods have been developed to automatically test compilers, no systematic

work has been conducted to detect compiler bugs when applying arbitrary optimization sequences. To resolve this problem, two main

challenges need to be addressed, namely the acquisition of representative optimization sequences and the selection of representative

testing programs, due to the enormous number of optimization sequences and testing programs. In this study, we propose CTOS, a

novel compiler testing method based on differential testing, for detecting compiler bugs caused by optimization sequences of LLVM.

CTOS first leverages the technique Doc2Vec to transform optimization sequences into vectors to capture the information of

optimizations and their orders simultaneously. Second, a method based on the region graph and call relationships is developed in

CTOS to construct the vector representations of the testing program, such that the semantics and the structure information of programs

can be captured simultaneously. Then, with the vector representations of optimization sequences and testing programs, a “centroid”

based selection scheme is proposed to address the above two challenges. Finally, CTOS takes in the representative optimization

sequences and testing programs as inputs, and tests each testing program with all the representative optimization sequences. If there

is an output that is different from the majority of others of a given testing program, then the corresponding optimization sequence is

deemed to trigger a compiler bug. Our evaluation demonstrates that CTOS significantly outperforms the baselines by up to 24:76% �
50:57% in terms of the bug-finding capability on average. Within seven month evaluations on LLVM, we have reported 104 valid bugs

within 5 types, of which 21 have been confirmed or fixed. Most of those bugs are crash bugs (57) and wrong code bugs (24). 47 unique

optimizations are identified to be faulty and 15 of them are loop related optimizations.

Index Terms—Compiler testing, optimization sequences, LLVM, program representation, software testing

Ç

1 INTRODUCTION

AS an important infrastructure for software develop-
ment, compilers (e.g., GCC, LLVM) usually provide

many optimizations to improve the performance of pro-
grams, e.g., running time, code size, and throughput. With
these optimizations, many studies [1], [2], [3], [4], [5], [6]
have been conducted on the compiler phase-ordering prob-
lem [7], [8], namely how to select good optimization
sequences (i.e., a set of compiler optimizations in a certain
order) to achieve satisfactory performance for programs.
However, potential compiler bugs may be triggered when

optimizing programs with some optimization sequences,
which may lead to unintended application behavior and
disasters, especially for safety-critical domains [9]. In the
literature, Purini et al. [4] state that “there are optimization
sequences which crash the compiler”. Fursin et al. [1] and
Ansel et al. [2] have also reported some bugs that lead com-
pilers to crash or produce incorrect program execution
when applying some optimization sequences. We present
two examples as well in Section 2.1 that illustrate both a
crash bug and a wrong code bug of LLVM caused by cer-
tain optimization sequences.

Although some methods [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] have been proposed to automatically test
compilers in recent years, no systematic investigation has
been conducted on compiler bugs caused by optimization
sequences. To date, these existing methods to test compilers
can be roughly divided into three types, namely, Random-
ized Differential Testing (RDT) [10], [11], [12], [13], [14], Dif-
ferent Optimization Levels (DOL, a variant of RDT), and
Equivalence Modulo Inputs (EMI) [9], [15], [16], [17], [18],
[19], [20]. Given a program, RDT detects compiler bugs by
comparing the outputs of distinct compilers implemented
based on the same specification. In contrast, DOL and EMI
only require one compiler. DOL determines whether a com-
piler contains bugs by comparing the outputs of a program
optimized by predefined compiler optimization sequences
(e.g., sequences represented by compiler flags O1, O2 and
O3), while EMI compares the outputs of some equivalent
variants of a seed program [19]. However, these existing

� He Jiang is with the School of Software, and Key Laboratory for Ubiquitous
Network and Service Software of Liaoning Province, Dalian University of
Technology, Dalian 116024, China, and also with the DUT Artificial Intel-
ligence Institute, Dalian 116024, China. E-mail: jianghe@dlut.edu.cn.

� Zhide Zhou and Zhilei Ren are with the School of Software, and Key Labo-
ratory for Ubiquitous Network and Service Software of Liaoning Province,
Dalian University of Technology, Dalian 116024, China.
E-mail: cszide@gmail.com, zren@dlut.edu.cn.

� Jingxuan Zhang is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China. E-mail: jxzhang@nuaa.edu.cn.

� Xiaochen Li is with the SnT Centre for Security, Reliability and Trust,
University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg.
E-mail: xiaochen.li@uni.lu.

Manuscript received 5 Mar. 2020; revised 6 Feb. 2021; accepted 6 Feb. 2021.
Date of publication 11 Feb. 2021; date of current version 18 July 2022.
(Corresponding author: He Jiang.)
Recommended for acceptance by G. Fraser.
Digital Object Identifier no. 10.1109/TSE.2021.3058671

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022 2339

0098-5589 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:31:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-8674-4948
https://orcid.org/0000-0001-6195-7605
https://orcid.org/0000-0001-6195-7605
https://orcid.org/0000-0001-6195-7605
https://orcid.org/0000-0001-6195-7605
https://orcid.org/0000-0001-6195-7605
https://orcid.org/0000-0002-8437-6640
https://orcid.org/0000-0002-8437-6640
https://orcid.org/0000-0002-8437-6640
https://orcid.org/0000-0002-8437-6640
https://orcid.org/0000-0002-8437-6640
https://orcid.org/0000-0002-5068-1938
https://orcid.org/0000-0002-5068-1938
https://orcid.org/0000-0002-5068-1938
https://orcid.org/0000-0002-5068-1938
https://orcid.org/0000-0002-5068-1938
mailto:jianghe@dlut.edu.cn
mailto:cszide@gmail.com
mailto:zren@dlut.edu.cn
mailto:jxzhang@nuaa.edu.cn
mailto:xiaochen.li@uni.lu


methods only focus on detecting bugs related to predefined
optimization sequences in certain orders, rather than arbi-
trary optimization sequences.

In this paper, we investigate how to detect compiler bugs
caused by optimization sequences for LLVM [21]. LLVM is a
mature and widely used compiler infrastructure. Hundreds
of analysis and transformation optimizations have been
implemented in LLVM [22]. Moreover, many compilers
(e.g., Clang [23], Rust [24], Swift [25], and WebAssembly
[26]) of different programming languages and tools (e.g.,
Klee [27], Phasar [28]) have been implemented based on
LLVM. In contrast to DOL and EMI, two challenges need to
be addressed. On the one hand, the number of potential opti-
mization sequences is extremely huge, such that it is intracta-
ble to test each optimization sequence. For example, more
than 150 optimizations exist in LLVM, and there are 15030

optimization sequences1 to be tested, when the sequence
length is set to be 30. Additionally, similar optimization
sequencesmay trigger duplicate bugs for a given testing pro-
gram. Hence, we need to address the challenge of the acquisi-
tion of representative optimization sequences, namely, how to
acquire a set of representative optimization sequences to
accelerate the testing of LLVM. On the other hand, there is
an almost infinite number of testing programs which may
incur compiler bugs, and it is impossible to test them all.
Moreover, distinct testing programs may incur duplicate
compiler bugs. Thus, we need to address the second chal-
lenge, namely the selection of representative testing programs.

In this paper, we propose a novel compiler testing method
based on differential testing, called Compiler Testing for
Optimization Sequences (CTOS), for detecting bugs caused
by optimization sequences for LLVM. CTOS first leverages
the representation technique Doc2Vec [29] in natural lan-
guage processing to transform optimization sequences into
vectors on the basis of its optimizations and their orders.
Then, a method based on the region graph and call relation-
ships of programs is presented to construct the vector repre-
sentations of testing programs. Next, with the vector
representations of optimization sequences and testing pro-
grams, we present a centroid based selection scheme to select
representative optimization sequences and testing programs,
thus addressing the above two challenges. Finally, CTOS uti-
lizes differential testing to validate all representative optimi-
zation sequences and testing programs. Specifically, CTOS
takes in representative optimization sequences and testing
programs as inputs and tests each testing program with all
the representative optimization sequences. If there is an out-
put that is different from themajority of others of a given test-
ing program, then the corresponding optimization sequence
is deemed to trigger a compiler bug.

To evaluate the effectiveness of CTOS, we conduct a com-
parative experiment that compares CTOS with 14 baselines.
Our evaluation demonstrates that CTOS significantly out-
performs the baselines by detecting 24:76% � 50:57% more
bugs on average. In addition, we conduct an experiment for
seven months to show the bug-finding capability of CTOS in
practice. After running CTOS on LLVM for seven months,
we have reported 104 valid bugs within 5 types (see

Section 4), of which 21 have been confirmed or fixed. Most of
those bugs are crash bugs (57) and wrong code bugs (24).
47 unique optimizations have been identified to be faulty
and 15 of them are loop related optimizations.

In summary, the main contributions of this paper are as
follows:

1) In this paper, we first investigate how to detect com-
piler bugs caused by optimization sequences. As to
the best of our knowledge, this is the first systematic
work for this problem.

2) We present a novel method CTOS to find compiler
bugs by optimization sequences. In CTOS, efficient
vector representation methods and a selection
scheme are designed to address two challenges,
namely the acquisition of representative optimiza-
tion sequences and the selection of representative
testing programs.

3) Extensive testing efforts have been conducted on
LLVM. We have reported 104 valid bugs within 5
types, of which 21 have been confirmed or fixed.
These bugs cover 47 unique optimizations, where 15
of them are loop related optimizations.

The remainder of this paper is organized as follows.
Section 2 shows the background of our study. Section 3
presents the testing process and the proposed methods. Next,
we describe the evaluation results in Section 4. Section 5
presents some discussions about this paper. The threats to
validity and related work are described in Sections 6 and 7.
Section 8 concludes our study.

2 BACKGROUND

2.1 Illustrative Examples

In this subsection, we present two concrete examples to
illustrate the compiler bugs in LLVM caused by optimiza-
tion sequences. Note that these examples in this section
only aim to show the phenomenon of the compiler bugs
introduced by optimization sequences.

Fig. 1a shows a program that triggers a crash bug by the
loop-vectorizer2 optimization when the program is optimized
by the optimization sequence “-functionattrs -loop-rotate -licm
-sroa -loop-vectorize.” An assertion fails when loop-vectorizer

Fig. 1. Programs in crash bug 41294 and wrong code bug 41720 of
LLVM (trunk 355281). (https://bugs.llvm.org/show_bug.cgi?id=41294,
https://bugs.llvm.org/show_bug.cgi?id=41720.).

1. It is valid for an optimization to appear multiple times in an opti-
mization sequence. 2. https://llvm.org/doxygen/LoopVectorize_8cpp_source.html.
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works on the Intermediate Representation (IR) file optimized
by “-functionattrs -loop-rotate -licm -sroa.” This bug occurs
because the loop invariant operands are scalarized, but they
are used outside the loop and should be ignored when com-
puting the scalarization overhead.3 However, when we
delete any optimization from {functionattrs, loop-rotate, licm,
sroa}, or change the order, or only use loop-vectorizer to opti-
mize the program, this bug disappears. In addition, there
does not exist any bugwhen the program is optimized by the
default standard optimization levels, e.g., O1, O2, and O3
provided by LLVM.

The second program in Fig. 1b incurs a wrong code bug
of LLVM when applying the optimization sequence “-gvn
-licm -loop-rotate -loop-vectorize”. Variable a is a global vari-
able and is initialized to 0. If the program executes correctly,
the output should be 9. However, after optimization, the
output is 15, which is caused by incorrectly optimizing the
calculation of variable a on line 5 with loop-vectorizer. Similar
to the first example, this bug cannot be reproduced when
we remove any optimization in the optimization sequence,
or change the order of them, or use the default standard
optimization levels.

From the above two examples, it is evident that optimiza-
tion sequences may heavily affect the behavior of LLVM
and potential bugs of LLVM may be exposed by employing
certain optimization sequences to optimize programs. This
is important for ensuring the correctness of the behavior of
a program when developers tune the compiler optimiza-
tions for specific programs to achieve better performance
(e.g., size or speed), especially for safety-critical programs.

Compiler testing, currently, is the dominant technique
for detecting compiler bugs due to its simplicity and easy
application. However, there does not exist any work that
focuses on finding compiler bugs caused by optimization
sequences. Therefore, this motivates us to detect bugs of
LLVM by testing it with arbitrary optimization sequences.
To achieve this goal, we need to address two challenges,
namely the acquisition of representative optimization
sequences and the selection of representative testing pro-
grams, due to the enormous number of optimization
sequences and testing programs.

2.2 Doc2Vec

Doc2Vec is a fundamental component to represent the opti-
mization sequences and testing programs in our study. It
was originally designed to transform documents (sentences
or paragraphs) into low-dimensional vectors [29]. Doc2Vec
is an extension to Word2Vec [30] to extend the learning of
embeddings from words to word sequences. Similar to
Word2Vec that has two models, i.e., Continuous Bag-Of-
Words model (CBOW) and continuous Skip-gram model
(Skip-gram), there are also two approaches within Doc2Vec,
namely, Distributed Bag-Of-Words version of Paragraph
Vector (DBOW) and Distributed Memory model of Para-
graph Vectors (DMPV) [29]. DBOW and DMPV work in a
similar way as Skip-gram and CBOW, respectively. We take
the DMPV model as an example to explain Doc2Vec as it is

the default model in the tool that we use to implement our
methods.

Fig. 2 shows the framework of DMPV, which is similar to
the framework of CBOW. In Fig. 2, the top half of the figure
is the framework of CBOW. The only change for the DMPV
model is the additional document token [29]. DMPV con-
sists of an input layer, an output layer, and a hidden layer.
The hidden layer h is a 1� V vector to represent words in a
low dimensional space. Each column in the matrixWVoc�V is
a unique vector representation of a word; and the matrix
W 0

V�Voc is the parameter matrix of h; each column in the
matrix DT�V is the unique vector representation of a docu-
ment. V is pre-defined by users. T is the documents and Voc
is the vocabulary of the training set.

Initially, the matrix WVoc�V , W
0
V�Voc, and DT�V are ran-

domly initialized. Each word wx in Voc is represented as a
one-hot vector with the size of jVocj, which is a zero vector
with the exception of a single 1 to uniquely identify the
word. The document di in T is represented in a similar way
to the word.

Given a document di and its word sequences, DMPV
tries to predict the center word with its surrounding context
in a fixed window size k by using the vector representation
of a document as the context information [29]. Specifically,
DMPV takes in the vectors of the surrounding words wk

x ¼
fwx�k; . . . ; wx�1; wxþ1; . . . ; wxþkg in a 2k sized window and
the vector of the corresponding document di as inputs.
Then the vector of the center word wx is the expected out-
put. For example, if we want to obtain the vector of word
’sat’ and k ¼ 2, the surrounding words are ’the’, ’cat’, ’on’,
and ’the’. Based on WVoc�V and DT�V , the inputs are propa-
gated to the hidden layer

h ¼ 1

2kþ 1
sum wk

x

� � �WVoc�V þ di �DT�V

� �
:

Then, the prediction of wx is typically done via softmax
function

wx ¼ Softmaxðh �W 0
V�VocÞ:

Finally, the objective of the DMPV is to maximize the aver-
age log probability

1

jVocj
XjVocj

x¼1

log p wx

��wk
x

� �
:

Fig. 2. The framework of DMPV model for Doc2Vec.

3. https://reviews.llvm.org/D59995.
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After training, the column vectors in WVoc�V and DT�V are
the final vector representation of the words and documents,
respectively.

Unlike Word2Vec that only learns the vector representa-
tions of words, Doc2Vec takes word order into consider-
ation and can learn the vector representations of word
sequences. Thus, we adopt Doc2Vec to represent the optimi-
zation sequences and the instruction sequences in our
study.

In the next section, we present CTOS, a method based on
differential testing [31] for catching compiler bugs caused
by optimization sequences of LLVM. Based on Doc2Vec, we
present efficient methods to resolve the challenges of the
acquisition of representative optimization sequences and
the selection of representative testing programs.

3 APPROACH

In this section, we first introduce the framework of CTOS.
Then, we present algorithms to address two challenges,
namely the acquisition of representative optimization
sequences and the selection of representative testing
programs.

3.1 Overview of CTOS

Fig. 3 shows the framework of CTOS. Generally, CTOS is
based on differential testing [31]. However, unlike other
studies (e.g., [10], [11], [13], [14]) that compare the outputs
of testing programs compiled by different compilers or opti-
mized by the different default optimization levels, CTOS
determines whether there are compiler bugs by comparing
the outputs of testing programs optimized by distinct opti-
mization sequences. In Fig. 3, the front-end and the back-
end indicate the compiler front-end and the compiler back-
end that are used to transform the source code of a testing
program into its LLVM IR and generate executables, respec-
tively. We adopt Clang [23] as the front-end, a widely used
language front-end and compiler driver based on LLVM for
C language family (e.g., C and C++), since C programs are
used as the testing programs in our study. As the front-end,
Clang takes in the source code and outputs the

corresponding IR of a program. For the back-end, many
tools are utilized to generate the final executables from IRs,
such as assembler and linker. For simplicity, we also use
Clang as a driver to schedule and execute the tools (e.g.,
linker) of back-end, and it can take in LLVM IRs to generate
executables. The optimizer Opt of LLVM is in charge of
scheduling and executing optimizations.

CTOS is composed of 5 steps. (1) The first step is to select
representative optimization sequences and testing pro-
grams. (2) Then, the front-end of a compiler is used to emit
the IR file of a given testing program without optimizations.
(3) The third step is to optimize the IR produced in the pre-
vious step using the optimizer Opt of LLVM with the
selected optimization sequences. For the IR of a testing pro-
gram, if there are n selected optimization sequences, n opti-
mized IRs (i.e., IRopt1, IRopt2, . . . , IRoptn) will be produced
by the optimizer Opt. (4) In the fourth step, the n optimized
IRs are loaded by the back-end of a compiler to generate n
executables (i.e., exe1, exe2, . . . , exen). (5) The final step is to
obtain the outputs (i.e., O1, O2, . . . , On) of n executables and
compare them to determine whether there are bugs. The
outputs may be different, but the majority of them should
be identical. Thus, if there is an output Oi that is different
from the majority of {O1, O2, . . . , On}, 1 � i � n, then the ith
optimization sequence is deemed to trigger a compiler bug
for the given testing program.

From Fig. 3, the first step clearly is the foundation of
CTOS. Generally, we can randomly generate optimization
sequences and testing programs. However, this random
strategy may not be efficient due to the huge space of opti-
mization sequences and testing programs. Meanwhile,
many duplicate bugs may be triggered by similar optimiza-
tion sequences and testing programs. Thus, we need to
select representative optimization sequences and testing
programs.

In Sections 3.2 and 3.3, we first introduce the vector rep-
resentations of optimization sequences and testing pro-
grams, respectively. Some optimizations in a certain order
constitute an optimization sequence. Thus, if optimization
sequences have similar optimizations in a similar order,
they may trigger duplicate compiler bugs. In addition, the
semantics and structure information of a testing program is
the key to distinguish different testing programs. Thus, if
testing programs have similar semantics and structure
information, they may also incur duplicate compiler bugs.
Therefore, a Doc2Vec based method is introduced to trans-
form an optimization sequence into a vector, which cap-
tures optimizations and their orders of the corresponding
optimization sequence simultaneously; a method based on
the region graph and call relationships of a program is pro-
posed to represent testing programs as vectors, such that
the semantics and structure information of a program can
be captured by vectors. With the vector representations of
optimization sequences and testing programs, we assume
that similar optimization sequences and testing programs
are close to each other in their corresponding vector spaces,
respectively. Hence, we present a centroid based selection
scheme to select representative optimization sequences and
testing programs in Section 3.4, such that the distances
among the selected representative optimization sequences
and testing programs are maximized, respectively.

Fig. 3. Framework of CTOS for catching compiler bugs caused by optimi-
zation sequences of LLVM.
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3.2 Representation of Optimization Sequences

An optimization sequence is constituted of some optimiza-
tions in a certain order. Thus, the representation of an opti-
mization sequence should reflect the specific optimizations
and their orders contained in the sequence. Intuitively, an
optimization sequence is similar to a sentence in natural lan-
guage, which consists of some words in a certain order.
Hence, in this study, we treat optimization sequences as
sentences, such that efficient representation methods of sen-
tences can be adopted to transform optimization sequences
into vectors. However, many state-of-the-art representation
methods of sentences, such as the bag-of-words [32], cannot
reflect the word order. They fail to distinguish different sen-
tences with the same words. For capturing optimizations
and their orders of an optimization sequence simulta-
neously, we employ Doc2Vec [29], a popular and widely
used sentence vector representation technique to represent
optimization sequences as vectors. Doc2Vec is an unsuper-
vised method for learning continuous distributed vector
representations of sentences or documents. Doc2Vec takes
word orders into consideration such that the sequences
with different orders of the same words have different vec-
tor representations. In addition, Doc2Vec can be applied to
variable-length word sequences, so variable-length optimi-
zation sequences can be easily transformed into vector
representations.

In this study, Doc2Vec is applied in a relatively straight-
forward way. That is, optimizations and optimization
sequences are viewed as words and sentences, respectively.
We leverage the DMPV model (see Section 2.2) of Doc2Vec
as the representation method of optimization sequences.
Then we input optimizations and optimization sequences
into the DMPVmodel of Doc2Vec to obtain the vector repre-
sentations of optimization sequences.

For example, if we only take five optimizations in LLVM
into consideration, i.e., {-functionattrs, -gvn, -loop-rotate,
-loop-vectorize, -sroa}, and set the max length of optimization
sequences to 5, we can obtain 51 þ 52 þ 53 þ 54 þ 55 ¼ 3905
optimization sequences. Take the following three optimiza-
tion sequences as an example: (a) “-functionattrs -loop-rotate
-sroa -gvn -loop-vectorize”; (b) “-functionattrs -sroa -loop-vector-
ize -loop-rotate -gvn”; (c) “-loop-rotate -sroa -gvn -loop-
vectorize”. If we can only test two sequences among them
due to the limitation of resources (e.g., time), testing sequen-
ces (a) and (b) may uncover more bugs, since sequence (c) is
a subsequence of sequence (a) only without the optimiza-
tion “-functionattrs”. However, in this case, the order of opti-
mizations is hard to be captured by some bag-of-words
methods. For instance, we can calculate the similarity
between optimization sequences utilizing the Jaccard simi-
larity coefficient,4 which is defined as the size of the inter-
section divided by the size of the union of two sample sets
A and B, i.e., JðA;BÞ ¼ jA \Bj=jA [Bj. For the sequences
(a) and (b), they have the same optimizations, i.e., Jða; bÞ ¼
1; while Jða; cÞ ¼ 4=5 for the sequences (a) and (c). It indi-
cates that sequences (a) and (b) are identical, and sequences
(a) and (c) should be tested. This contrasts with the observa-
tion, since the order of optimizations in the sequence (a) is

completely different from that in the sequence (b). By using
Doc2Vec, we can resolve the difficulty, which captures opti-
mizations and their orders of optimization sequences
simultaneously.

3.3 Representation of Testing Programs

Testing programs are another critical factor to trigger com-
piler bugs caused by optimization sequences. Different test-
ing programs may trigger different bugs. Thus, we need to
select representative testing programs to improve the test
efficiency for finding more distinct bugs. Our study focuses
on finding compiler bugs caused by optimization sequences
of LLVM, which makes us decide to construct vector repre-
sentations of testing programs using LLVM IR. LLVM IR is
a light-weight and low-level while expressive, typed, and
extensible representation of programs [21]. In this subsec-
tion, we present a vector representation method based on
the region graph and call relationships generated from the
unoptimized IR to transform a testing program into a vec-
tor. With this approach, we can capture the semantics and
structure information of programs, which are useful for
selecting representative testing programs. We divide the
vector representation of a testing program into two parts,
namely, the representation of a function and the representa-
tion of the whole program. First, we transform the instruc-
tion sequences of each edge in the region graph of a
function into vectors using the Doc2Vec technique; then a
deep region-first algorithm is employed to aggregate vec-
tors of each edge under two constraints to construct the vec-
tor representation of a function. Second, after obtaining the
vector representations of all functions, we aggregate them
according to their call relationships to form the vector repre-
sentation of the whole program.

3.3.1 Representation of a Function

A function consists of basic blocks, branches, and loops.
Basic blocks contain the basic semantics of a function, while
branches and loops control the structure of a function [33].
Thus, we use the region graph [34], [35] of a function to con-
struct its vector representation, since the region graph could
simultaneously capture the semantics and structure infor-
mation of a function [34], [35]. Definition 1 shows the gen-
eral definition of a region graph.

Definition 1. A region graph is a special control flow graph, in
which each node (i.e., basic block) exactly belongs to a region.
Specifically, a region is a connected subgraph of the control
flow graph that has exactly two connections to the residual
graph [34], [35], [36].

In a region graph, each node (i.e., basic block) exactly
belongs to a region. Fig. 4 shows an example of the region
graph. This graph is derived from a simple bubble sort algo-
rithm using the tool Opt in LLVM. We remove the contents
(i.e., statement sequences) of some basic blocks for simplic-
ity. Clearly, there are 10 basic blocks, 12 edges, and 4
regions colored by four colors in Fig. 4. The number next to
each edge is its index. In these basic blocks, blocks “%11”
and “%15” are entry nodes of the outer loop and the inner
loop respectively, and block “%19” is the entry node of a
branch. From Fig. 4, the structure information (e.g., the4. https://en.wikipedia.org/wiki/Jaccard_index.
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outer loop, the inner loop, and the branch) of the program
are clearly captured by each region.

To obtain the semantics of a function, we use the
instruction sequences of each basic block [21] to represent
the behavior of a function. This is because the proposed
representation method of a program is based on LLVM IR
and each instruction has precise and fine-grained seman-
tics. In addition, the order of instructions significantly
impacts the semantics of a function. For example, we can
easily know that the behavior of the basic block “%11” is
to load a variable and compare it with 0 through the
instructions “load” and “cmp”. However, we do not simply
translate all the instruction sequences of each basic block
to vectors and aggregate them (e.g., sum or average), since
this will lose the structure information of a function. For
instance, the block “%58” has no influence on the block
“%19”. Simply aggregating these vectors diminishes the
importance of the blocks introduced by the structure of a
function. Therefore, in this study, we present a deep

region-first algorithm to aggregate the information on each
edge of the region graph.

Specifically, the information of an edge is the concatena-
tion of the instruction sequences from its start node (i.e.,
basic block) to the end node. The reason for this is that if the
program executes from the start node to the end node
through this edge, the code in these two nodes will be exe-
cuted. For instance, the information of the first edge in
Fig. 4 is “alloca alloca alloca alloca alloca store store bitcast bit-
cast bitcast store br load icmp br”. After obtaining the informa-
tion of each edge, we also leverage Doc2Vec to transform
the information into vectors. The reason for this is that the
instructions and instruction sequences can also be treated as
words and sentences in natural language, respectively. In
addition, the instruction sequences are also order sensitive
like the optimization sequences.

Then, the deep region-first algorithm is utilized to aggre-
gate the information of each edge to form the final vector
representation of a function. Algorithm 1 presents the
details of the proposed aggregation algorithm. Given a
region graph of a function with vector representations of
edges, we first recognize the entry node (entry node), the
exit node (exit node), and the loop entry nodes (loop entry
nodes) of the region graph in lines 2 to 4. Then all outgoing
edges of entry node are marked as visited in line 7, since the
entry node does not have incoming edges. The work list
(work list) initialized by entry node in line 9 is used to store
the candidate nodes. Next, from line 10 to 35, the vectors of
incoming edges of a node are aggregated to its outgoing
edges until work list is empty.

In the aggregation process, two constraints need to be
satisfied in the proposed aggregation algorithm. The first
constraint (line 11) is called a deep region-first constraint. It
means the node in the innermost region will be first selected
to aggregate the vectors of incoming edges to the outgoing
edges. The reason is that the semantics of the outer region is
based on the inner region. In Fig. 4, after propagating infor-
mation to edges 2 and 12, nodes “%14” and “%59” are two

Fig. 4. Example of a region graph.
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candidate nodes. However, the region of node “%14” is con-
tained in the region of node “%59”, i.e., the previous region
is “deeper” than the later one, thus node “%14” is selected.
When the current node (cur node) within the deepest region
in work list is selected, we delete it from work list and add
it into the list visited nodes that stores the visited nodes
(line 12 and 13).

Next, the second constraint is employed to aggregate the
vectors of incoming edges and outgoing edges of each suc-
cessor node of cur node in line 15 to 35. The second con-
straint indicates that, for a node with predecessors and
successors in a region graph, such as node “%54” in Fig. 4,
if the information on its incoming edges can be propagated
to the outgoing edges, the information before its predeces-
sors must have been propagated to the incoming edges.
This constraint is valid by line 19, i.e., all incoming edges of
a node must have been visited. For example, if we want to
propagate the information on the incoming edges 6 and 7 to
the outgoing edge 8, the information on edges 5 and 4 must
have been propagated to edges 6 and 7, respectively. In our
study, to aggregate the information of incoming edges and
outgoing edges, we average their sum and assign it to the
outgoing edges (line 22 to 25). Then the successor node of
cur node is added into work list if it does not exist in
work list and visited nodes (line 25 and 26).

However, for the loop entry node, the second constraint
must be relaxed due to the back edge of a loop. For instance,
edge 9 is a back edge and it is also an incoming edge of the
loop entry node “%15”. We cannot propagate any informa-
tion to the outgoing edges of node “%15”, since the informa-
tion before node “%55” has not been propagated to edge 9
under the second constraint. Thus, we propagate the infor-
mation on the incoming edges of the loop entry node sepa-
rately. That is, if the information has been propagated to
edge 3, we will propagate it to edges 4 and 10. Similarly, the
information on edge 9 will be propagated to edges 4 and 10.
Thus, in line 17, we verify that whether a node belongs to
loop entry nodes. Lines 29 to 35 in Algorithm 1 are the corre-
sponding pseudocode for processing the loop entry node.

Therefore, starting from the entry node (e.g., “%2”) of a
region graph, when all nodes have been processed, the vec-
tor representation of the edge related to the exit node (e.g.,
“%59”) is treated as the vector representation of a function.
In particular, if there is only one basic block in the region
graph, the vector representation of the instruction sequence
in this basic block is treated as the vector representation of a
function.

3.3.2 Representation of the Whole Program

Generally, a programmay containmany functionswith call-
ing relationships. In our study, we construct the vector repre-
sentation of a program based on its call graph. Algorithm 2
presents the procedure to generate the vector representation of
a program. Given a call graphwith the vector representation of
each function of a program, the key idea of Algorithm 2 is to
propagate the vectors of callees to their callers. This is because
the callee should have different weights due to the call relation-
ships. For example, in Fig. 5, the function “func6” is only called
by functions “func1” and “func2”. It has no any direct impact
on other functions. Thus, if we only simply aggregate (e.g., sum
or average) all the vectors of functions, we lose the impact of
the weight of each function. However, one constraint must be
satisfied in the propagation process. That is, all vectors of call-
ees of a caller must be the final results, i.e., there is not any vec-
tor that needs to be propagated to these callees. Specifically, the
vectors of end nodes are their final results that have been
marked in line 9.

In the algorithm, we first remove edges of recursive calls
in line 2, such that the call graph is a directed acyclic graph.
On the one hand, the recursive calls make it impossible for
the algorithm to decide which nodes have the final result.
For example, there is an indirect recursive call between
“func1” and “func4” in Fig. 5. According to the constraint, if
we want to aggregate the vector of “func4” to “func1”, the
vector representation of “func4” should be the final results.
However, at this moment “func1” is the successor of

Fig. 5. Example of call graph.
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“func4”, it does not have the final vector representation. On
the other hand, the recursive calls have almost no effect on
improving the representation of functions. For instance,
“func7” recursively calls itself. Its vector representation
does not change after the aggregation.

Then, the start nodes (start nodes) and the end nodes
(end nodes) in the call graph are recognized in lines 3 and 4.
start nodes are the nodes without predecessors, while
end nodes are the nodes without successors in the call graph.
We add a node “start” (i.e., a fake function with the name
“start”) to the call graph with a zero vector as its representa-
tion. Next, we add edges from the node “start” to
start nodes. The reason is that theremay exist some functions
(besides the “main” function) which are not called by any
other functions. Notably, the function without any caller can
also be split into an independent program, but in our study,
we treat the functions in a program generated by Csmith in a
uniform way for simplifying the processing of the program.
The work list (work list) is initialized with end nodes. Thus,
from line 12 to 25, we propagate the vectors of callees to call-
ers until work list is empty. In line 13, the current node
(cur node) is randomly picked up from work list. In line 14,
the predecessor nodes (pre nodes) of (cur node) are selected.
Thus, for each node in pre nodes, we propagate the vectors of
its successors to it from line 15 to 24. The constraint is verified
in line 18. If all nodes in suc nodes of a node have been vis-
ited, we average the sum of its vector and those of its succes-
sors (line 19 and 20). Then this average value is assigned to
the node as its final vector representation in line 22.

In Fig. 5, when the recursive calls are deleted, “func4”,
“func5”, “func6”, and “func7” are the nodes with final vector
representations. Thus, we can propagate these vectors back
to “func1”, “func2”, and “func3” according to their calling
relationships. After obtaining the final vector representa-
tions of “func1”, “func2”, and “func3”, the vector representa-
tions of “func2” and “func3” can be propagated back to
function “main”. However, we cannot propagate the vector
representations of “func1” and “main” back to “start”, since
the vector representation of “main” is not the final result.
Lastly, the vector representation of “start” is treated as the
vector representation of the whole program.

3.4 Selection Scheme

With the vector representations of optimization sequences
and testing programs, we present a selection scheme in this
subsection to select representative optimization sequences
and testing programs.

Given a set of instances (i.e., optimization sequences and
testing programs), we aim to select a small set of instances
with better diversity, since the space of instances is huge
and duplicate bugs may be triggered by the instances with
high similarities. Algorithm 3 presents the proposed selec-
tion scheme. The central idea is to select instances one by
one such that the total distances among the selected instan-
ces are maximized. First,M instances will be generated by a
random generator (for the generation of initial optimization
sequences and testing programs, see Section 4.2). We then
cluster these M instances into groups. After that, the central
instances of each group are selected as the initialization of
the set of selected instances selected insts, which leads at

least one instance in each group to be selected. This is
because the distribution of instances may be unbalanced,
which causes that some instances with special features that
can trigger bugs may be lost. In this paper, we use the
X-means algorithm [37] to cluster the target instances, since
it can automatically determine the best number of groups.
Next, from line 7 to 18, we select the best candidate instance
in each iteration until k required instances are selected.

Specifically, the selection procedure is a “centroid” based
scheme. Suppose the solar system is a set of instances, the
task is to select some instances around the center “Sun”. For
a candidate instance, we first calculate the distance
dist2center from this instance to the center, such that the
instances with different orbits can be distinguished like the
“Earth” and “Mars”. In addition, the minimum distance
min dist2sel from the candidate instance to the selected
instances is calculated for avoiding similar instances in the
same or similar orbits. For example, if the instances “Earth”
and “Mars” are selected, the instance “Moon” cannot be
selected since it is very close to “Earth”. Therefore, to balance
the effect of these two distances, we leverage the product of
these two distances as the score of a candidate instance. The
larger the score a candidate instance has, the better it will be.
In this study, we utilize the euclidean distance function
distðu; vÞ to calculate the distance between two instances.
Suppose ~u ¼ ðu1; u2; . . . ; unÞ and ~v ¼ ðv1; v2; . . . ; vnÞ are two
candidate instances represented by n dimensional vectors,

distð~u;~vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 � v1Þ2 þ � � � þ ðun � vnÞ2

q
. In Algorithm 3,

for a candidate instance that has not been selected,we first cal-
culate the distance from it to the centroid in line 11; then the
minimum distance from it to the selected instances is calcu-
lated in line 12, the score of the current instance is calculated
via the product of these two distances in line 13. In lines 10 to
16, the current best instance with the maximum score is
selected. This process repeats until k instances are selected.
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4 EVALUATION

In this study, we conduct experiments on LLVM to evaluate
the effectiveness of CTOS. Specifically, our evaluation aims
at answering the following two Research Questions (RQs).

� RQ1. Can the proposed selection scheme help to detect
bugs?

This RQ investigates whether the proposed selection
scheme for selecting representative optimization sequences
and testing programs is helpful for detecting compiler bugs
of LLVM. Besides the proposed selection scheme, we also
consider two alternative methods for acquiring optimiza-
tion sequences and four alternative methods for selecting
testing programs (see details in Section 4.3). Thus, we con-
duct an experiment for comparing the results of CTOS
under three kinds of optimization sequences and five kinds
of testing programs.

� RQ2. How is the bug-finding capability of CTOS in
practice?

In this RQ, we investigate the capability of CTOS for
detecting LLVM bugs caused by optimization sequences in
practice. Specifically, we evaluate CTOS from three aspects,
namely, the number of reported bugs, the type of bugs, and
the number of buggy optimizations.

4.1 Implementations

We implemented CTOS with approximately 2,000 lines of
Python code.5 In our study, the used Doc2Vec [29] model is
implemented in Gensim [38], which is a widely used Python
library for the representation of natural language. For the
vector representation of optimization sequences, we set
vector size ¼ 100, window ¼ 3, alpha ¼ 0:05, and epochs ¼
20 to train the Doc2Vec model. All the parameters of Doc2-
Vec are set according to the documents of Gensim and the
suggestions by [39]. Algorithms 1 and 2 for the vector repre-
sentation of a given program are implemented based on
NetworkX [40]. First, a C program is transformed into its IR
using Clang without any optimization. Then the optimizer
Opt of LLVM takes in this IR to generate the corresponding
region graph and the call graph. Similarly, we employ Doc2-
Vec to obtain the vector representation of instruction
sequences on each edge of a region graph, and the parame-
ters of Doc2Vec are the same as those in the representation
of optimization sequences except that window ¼ 5.

Note that in this study, we train two Doc2Vec models in
each iteration to obtain the vector representations of optimi-
zation sequences and testing programs, respectively. A typi-
cal Doc2Vec model usually requires a large number of
training data to solve the out-of-vocabulary problem which
may be time-consuming. Since the space of optimization
sequences is extremely huge, the out-of-vocabulary problem
may also negatively affect the representation of optimiza-
tion sequences (or testing programs). To alleviate this prob-
lem, in each iteration of testing, we train local Doc2Vec
models specialized to learn the knowledge of current opti-
mization sequences and testing programs. That is, we train
two new Doc2Vec models using the new randomly gener-
ated optimization sequences and testing programs. After

training, we obtain the vector representations of the optimi-
zation sequences and testing programs (For vector represen-
tations of testing programs, we still need the aggregations
shown in Algorithms 1 and 2). These vectors are then taken
as the inputs of the selection algorithm to select representa-
tive optimization sequences and testing programs. By this
setting, CTOS can efficiently learn the representation of
optimization sequences and testing programs and be less
influenced by the out-of-vocabulary problem.

For the selection scheme presented in Section 3.4, the
used clustering algorithm X-means is implemented in
PyClustering [41], which is a data mining library that pro-
vides a wide range of clustering algorithms. The parameters
of X-means are set to the default values. In Algorithm 3, the
total numbers of initial optimization sequences and testing
programs (i.e., M) are 300,000 and 100,000, respectively,
they reach the limitation of memory of our system on proc-
essing optimization sequences and testing programs. The
numbers of optimization sequences and testing programs
(i.e., k) that should be selected by Algorithm 3 are 3,000 and
1,000, respectively. This is because given the testing period
(i.e., two weeks for one testing process on LLVM in prac-
tice), we can test about 3,000 optimization sequences and
1,000 testing programs. Besides, we set a single testing
period to two weeks, because we hope to timely update and
test the latest development version of LLVM.

4.2 Testing Setup

Hardware. Our evaluation is conducted on an x86_64 com-
puter running Ubuntu 18.04 Linux with an Intel

�
CoreTM i7-

7700 CPU @ 3.60GHZ x 8 processor and 16 GB of memory.
Compilers. In our study, we only conduct our experiments

on LLVM. The reason is that, as to our knowledge, only
LLVM currently can allow developers to adjust the orders
of optimizations. For GCC, another mature and widely
used compiler in both industry and academia, the orders of
optimizations are fixed.6 Although any order of optimiza-
tions can be passed as command-line arguments to GCC,
the orders of these optimizations cannot affect the behavior
of GCC. The same case also occurs for CompCert that is a
verified and high-assurance compiler for the C language.7

The fixed order of optimizations is beneficial for the rapid
implementation and safety of compilers. However, there is
no doubt that the fixed order of optimizations limits the
capabilities of compilers to optimize programs for different
requirements. In contrast, as a compiler providing support
for arbitrary orders of optimizations, LLVM has been
widely used to implement many compilers and tools. Our
study aims to improve the reliability of optimizations with
arbitrary orders for LLVM, which helps to guarantee the
correctness of different LLVM-based compilers and tools.

Optimizations. In our study, C programs are used as the
inputs of LLVM. Thus we mainly focus on testing the
machine independent optimizations of LLVM that are use-
ful for the C programming language. We currently do not
consider the optimizations for object-oriented programming
languages (e.g., C++ and Objective-C), profile guided

5. All the source code of CTOS will be publicly available after the
publication.

6. https://stackoverflow.com/questions/33117294/order-of-gcc-
optimization-flags

7. https://github.com/AbsInt/CompCert/issues/287
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optimizations, and results visualization of optimizations.
Finally, 114 optimizations are selected.8 In LLVM, each opti-
mization may depend on certain other optimizations as the
preconditions. LLVM provides a mechanism to manage the
dependencies, i.e., PassManager.9 Thus, we do not need to
manually manage the dependencies of optimizations.

For generating the initial optimization sequences, we
assign an index to each optimization. The length of an opti-
mization sequence is randomly selected in the range from
50 to 200. This is because there are 84 unique transformation
optimizations in the -O3 optimization level of the current
released LLVM 7.0.1 (the optimizations in -O3 optimization
level may be different in different versions of LLVM). The
range from 50 to 200 could guarantee that the generated
optimization sequences have different lengths. Then we
leverage a uniform random number generator to randomly
generate the indexes of optimizations until the length of the
current optimization sequence is reached. Next, the index
sequence is translated into the corresponding optimization
sequence. In addition, the parameters of optimizations are
set to the default values.

Testing Programs. We use Csmith [13], a widely used pro-
gram generator that supports most features of the C pro-
gramming language to generate initial testing programs. To
detect compiler bugs caused by optimization sequences, the
testing program needs to be valid, free to undefined behav-
iors, diverse, and executable. However, other program gen-
erators (e.g., CCG [42], Yarpgen [43], Orion [9]) can not
meet our requirements. For example, CCG can not generate
runnable testing programs, and the maintenance of CCG
has stopped for a long time. Yarpgen is a generator to pro-
duce correct runnable C/C++ programs, but it only sup-
ports a few C/C++ features. Orion is a mutation-based tool
to generate new programs for seed programs by deleting
the dead code in the seed programs. For the mutation-based
tools (e.g., Orion), the diversity of the programs generated
by these tools is limited by the seed programs. In addition,
some grammar-based program generators (e.g., Grammari-
nator [44]) can also be utilized to generate testing programs,
but the generated programs always are invalid and contain
undefined behaviors. Thus, we employ Csmith to generate
testing programs in this paper. The minimum size of the
generated programs is set to 80KB as suggested in [13].
Other parameters of Csmith are set to the default values. In
addition, we leverage LLVM warnings and Frama-C10 to
detect undefined behaviors of the generated programs,
since the undefined behavior may cause invalid compiler
bugs.

Test Case Reduction. Similar to other related studies (e.g.,
[9], [13], [17]), all test cases that trigger compiler bugs
should be reduced before we report them to the developers,
such that the developers can quickly locate the real reasons
of the bugs and fix them. Test case reduction includes two
parts in our study, namely, optimization sequence reduc-
tion and testing program reduction. For the reduction of

optimization sequences, we remove each optimization in
the optimization sequence one by one. If the bug still occurs,
which indicates that this optimization has no impact on the
bug, we delete it from the optimization sequence; otherwise,
the removed optimization will be put back into the original
position. This process continues until no optimization can
be deleted. Additionally, similar to the related work [9],
[13], [17], we also use Creduce [45], a widely used tool for
reducing C, C++, or OpenCL programs, to reduce the test-
ing programs that have triggered bugs. LLVM warnings
and Frama-C are used to detect undefined behaviors during
the reduction process to ensure that the resultant program
is valid.

Note that, we first reduce the optimization sequences.
This is because the reduction of testing programs always
takes more time than the reduction of optimization sequen-
ces. The developers of LLVM think that “the passes are mostly
designed to operate independently, so if we see an assert/crash,
then we can always blame the last pass in the sequence. And if the
test ends with the same assertion and backtrace in the last pass in
the sequence, then we can assume that it is a duplicate.” (see
LLVM Bug#40927 [46]) Thus, if the last optimizations of
the reduced sequences are identical (for the crash bug, the
failed assertion or backtrace also should be identical), the
corresponding bugs are treated as a duplicate. Therefore,
reducing optimization sequences first can save the total
time to reduce test cases.

Duplicate Bug Identification. In our study, we also adopt
the above strategy to filter out duplicate bugs. We treat the
last optimization in a reduced optimization sequence as a
buggy optimization. Thus, if the last optimizations in the
two reduced optimization sequences of two bugs are the
same, these two bugs are treated as a duplicate. Besides, for
crash bugs, to improve the accuracy of duplicate bugs iden-
tification, we further use the failed assertion or backtrace to
determine duplicate crash bugs. That is, when two crash
bugs have the same failed assertion or backtrace, we treat
them as duplicate crash bugs. The reason for adopting this
strategy rather than just distinct optimization sequences to
identify duplicate bugs is because many duplicate bugs can
be triggered even though the reduced optimization sequen-
ces are distinct. This is also the strategy applied by the
LLVM developers, as can be seen in LLVM Bug#40926 [47],
#40927 [46], #40928 [48], #40929 [49], and #40933 [50], which
are marked as duplicates of LLVM Bug#40925 [51].
Although the optimization sequences of these bugs are dis-
tinct, they are marked as duplicates because the root causes
of these bugs are introduced in the same last optimization
in the sequences. Through this strategy, we may avoid
reporting too many duplicate bugs to developers.

Bug Types. In our study, we mainly find the following
five types of compiler bugs caused by optimization sequen-
ces of LLVM.

(1) Crash. The optimizer Opt of LLVM crashes when
optimizing the IR of a program.

(2) Invalid IR. In LLVM, each optimization takes in the
valid IR of a program as input, and its outputs also
should be a valid IR. However, invalid IR may be
generated by some optimizations due to the interac-
tion among optimizations. In our evaluation, we

8. The full list of 114 optimizations can be found on the website,
https://github.com/CTOS-results/LLVM-Bugs-by-Optimization-
sequences

9. https://llvm.org/docs/WritingAnLLVMPass.html
10. http://frama-c.com/
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tune on the option “-verify-each11” of the optimizer
Opt to verify whether the output IR is valid after
every optimization. If the IR is invalid after an opti-
mization, the optimizer Opt will be stopped and will
output some error messages.

(3) Wrong code. The optimized IR produced by the opti-
mizer Opt may contain different semantics to the
original program, which makes the corresponding
executable produce wrong outputs, or occur seg-
mentation faults or floating point exceptions.

(4) Performance. When the out-of-memory of the opti-
mizer Opt occurs, we treat it as performance bugs. It
could slow the compilation of programs. In the worst
case, the computer system may be jammed due to
the performance bug. Generally, we set the maxi-
mum size of the memory of an optimizer process to
4 GB, since it is sufficient to optimize a testing pro-
gram using 4 GB memory in most cases. Thus if the
maximum memory of the optimizer Opt is greater
than 4 GB, the optimizer will be stopped like a crash
bug. We also try not to limit the size of the memory,
but it has the same results as the 4 GB limitation.

(5) Code generator bug. The code generator in the back-
end is used to generate the assembly code of a pro-
gram from the corresponding IR. However, the IR of
a program optimized by some optimizations may
trigger some bugs in the code generator. Currently,
we only find one bug for this type, it makes the code
generator not emit a machine instruction and stops
the code generator.

4.3 Answer to RQ1

To evaluate the effectiveness of the proposed selection
scheme, we design an experiment for comparing the results
of CTOS with three kinds of optimization sequences and
five kinds of testing programs. The experiment is conducted
on the recently released version of LLVM 7.0.1, such that we
can verify the detected bugs using the latest development
version of LLVM. For a detected bug, if it does not exist in
the latest development version of LLVM, we then think it
has been fixed; otherwise, we report it to the developers of
LLVM to further identify whether it is a valid bug.

Specifically, there are three kinds of optimization sequen-
ces. Besides the optimization sequences selected by the pro-
posed selection scheme (SS) in CTOS, we adopt a random
strategy and a combinatorial testing technique [52] to gener-
ate optimization sequences. For randomly generating opti-
mization sequences (RS), an index is assigned to each
optimization, and then a uniform random number genera-
tor is utilized to randomly generate the indexes of optimiza-
tions until the length (that is randomly selected in the range
from 50 to 200) of the current optimization sequence is
reached. Next, we translate the index sequence into the cor-
responding optimization sequence. This random strategy is
identical to the strategy described in Section 4.2. The mini-
mum and maximum lengths of RS are the same as those of
SS, and the number of SS and RS is identical (i.e., 3,000). In
addition, we utilize the combinatorial testing techniques

implemented in ACTS [53] to generate optimization sequen-
ces. ACTS is a widely used test generation tool for con-
structing t-way combinatorial test sets to detect failures
triggered by interactions of parameters in the software [52].
However, we can only generate 2-way combinatorial opti-
mization sequences 2W since there are too many optimiza-
tions. In our study, we set the length of the optimization
sequences generated by ACTS to 200 for simplicity, and
then ACTS generates 34,473 2-way combinatorial optimiza-
tion sequences.

In addition, besides the testing programs selected by the
proposed selection scheme (SP) in CTOS, four alternative
methods are used to select testing programs. Similar to
other studies (e.g., [13]), we also use Csmith with the default
configuration to randomly generate testing programs (RP).
Additionally, the swarm testing technique [54] is utilized to
guide Csmith to generate diverse testing programs by ran-
domizing test configurations. As in the study [55], we also
consider two versions of swarm testing: an original version
of swarm testing [54] that randomly sets the value of each
configuration option to be 0 or 100, and a variant of swarm
testing that randomly sets the value of each configuration
option to be a floating-point number ranging from 0 to 100
[55]. Thus, we obtain two kinds of testing programs by
swarm testing, namely the testing programs generated by
the original swarm testing (RPS) and the testing programs
generated by the variant of swarm testing (RPSv). More-
over, apart from the proposed vector representation of test-
ing programs, the static features of programs presented in
[20] are used to select testing programs with the proposed
selection scheme (SPS). The static features of programs
include language features, operation features, and structure
features (see [20] for details). The optimization sequences
and testing programs used in RQ1 are summarized in
Table 1. Therefore, besides CTOS that takes in SP and SS as
inputs in this study, we obtain 14 variants of CTOS, namely,
(1) CTOS(RP+RS), (2) CTOS(RP+SS), (3) CTOS(RP+2W), (4)
CTOS(RPS+RS), (5) CTOS(RPS+SS), (6) CTOS(RPS+2W), (7)
CTOS(RPSv+RS), (8) CTOS(RPSv+SS), (9) CTOS(RPSv+2W),
(10) CTOS(SP+RS), (11) CTOS(SP+2W), (12) CTOS(SPS+
RS), (13) CTOS(SPS+SS), (14) CTOS(SPS+2W).

For CTOS and its 14 variants, we run each 10 times and
the timeout is 90 hours in each time as the setting in [19].

TABLE 1
Optimization Sequences and Testing Programs for RQ1

RS Optimization sequences generated by the random
strategy

SS Optimization sequences selected by the proposed
selection scheme

2W Optimization sequences generated by the
combinatorial testing technique

RP Testing programs randomly generated by Csmith
RPS Testing programs randomly generated by the swarm

testing
RPSv Testing programs randomly generated by the variant

of swarm testing
SP Testing programs selected by the proposed selection

scheme
SPS Testing programs selected by the proposed selection

scheme with the static features of programs

11. http://llvm.org/docs/CommandGuide/opt.html
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Therefore, it takes nearly 50 days to run these experiments.
Notably, the 10 runs of CTOS and its 14 variants are inde-
pendent, i.e., the optimization sequences and testing pro-
grams are different in each time except the 2-way
combinatorial optimization sequences, which are identical
in each variant of CTOS since the optimization sequences
generated by ACTS are constant. In addition, the testing
programs and optimization sequences for CTOS and its 14
variants are prepared before we carry out the experiments.
The initial number of testing programs for each experiment
is 1,000, because we cannot know how many testing pro-
grams can be tested before the experiments. It is rapid to
generate RS and RP. While the time for generating RPS and
RPSv needs about 3 hours, since some random values of
configuration options may cause Csmith takes more time to
generate a testing program.12 Generating SS, SP, and SPS
takes 3 to 6 hours in our system, respectively. Hence, com-
pared to the testing period, the time for preparing optimiza-
tion sequences and testing programs is relatively short. The
most time-consuming part is to generate 2W, which takes
about 10 hours in our system. But we only need to generate
2W once, all the experiments use the same 2W.

In RQ1, we do not include the time spent on generating
testing programs and optimization sequences into the test-
ing period for two reasons. On the one hand, we adopt this
evaluation strategy due to the limitation of computational
resources. Our experiments are conducted on a computer
with 16 GB of memory. Although we have tried our best to
optimize our programs to select representative testing pro-
grams from the initial set of 100,000 testing programs in our
experiments, the selection process can consume 4-8 GB of
memory. Besides, we need to run 150 experiments (CTOS
and its 14 variants, 10 runs for each experiment) in RQ1,
which makes us run many experiments simultaneously so
that we can finish all experiments in nearly 50 days. For
each experiment, the testing process will consume about
100M-4GB of memory. Thus, if we integrate the selection of

testing programs into the testing process, the testing effi-
ciency may be dramatically decreased due to the possible
memory swapping. However, under our current experi-
ment setting, we may only use a small fraction of the initial
1,000 testing programs to test different optimization sequen-
ces. This may be a threat of validity for our experiments,
which will be discussed in Section 6. On the other hand,
regarding the baselines using the combinatorial testing tech-
nique, it generates the same set of optimization sequences
(i.e., 2W) each time (taking about 10 hours). The experiment
reuses 2W for each run of different baselines. Thus, it may
bring unfair comparisons between the baselines with 2W
and without 2W, when the optimization sequence genera-
tion time is included.

Table 2 presents the experiment results of CTOS and its
14 variants. The second column is the average total number
of testing programs, and the following 5 columns are the
average number of unique bugs for each type. Actually,
many duplicate bugs can be found by CTOS and its 14 var-
iants. We filter out these duplicate bugs using the strategy
described in Section 4.2. Next, the eighth column is the aver-
age total number of unique bugs for CTOS and its 14 var-
iants. From Table 2, the numbers of testing programs for
CTOS(RP + 2W), CTOS(SP + 2W), and CTOS(SPS + 2W) are
smaller than those of CTOS and other variants, since the
number of 2-way combinatorial optimization sequences is
about 11 times larger than those of other type optimization
sequences. In addition, the six variants with RPS and RPSv
test a small number of testing programs compared to CTOS
and other variants. For example, for the variants with RS,
CTOS(RPS + RS) and CTOS(RPSv + RS) only test 28.8 and
61.4 testing programs on average, respectively. However,
the numbers of testing programs of CTOS(RP + RS), CTOS
(SP + RS), and CTOS(SPS + RS) are 113.3, 122.4, and 117.8,
respectively. The reason is that testing programs generated
by swarm testing may contain some complicated structures,
which cause a long time to optimize them and execute the
corresponding executables. Generally, the majority of time
for the whole testing process is utilized to optimize testing
programs and execute the corresponding executables. This

TABLE 2
Results of CTOS and its 14 Variants

Average Min. total Max. total P-value Effect
TP. Crash WC. Inv. IR Perf. CGB Total bugs imp. bugs bugs size (A12)

CTOS(RP+RS) 113.2 6.4 1.0 1.4 1.0 0.0 9.8 33.67% 7 12 <:001 0.955
CTOS(RP+SS) 100.7 6.7 1.7 1.0 0.9 0.0 10.3 27.18% 8 12 .001 0.905
CTOS(RP+2W) 9.2 7.2 1.3 0.4 1.0 0.0 9.9 32.32% 8 11 <:001 0.960
CTOS(RPS+RS) 28.8 5.2 1.0 1.4 1.0 0.1 8.7 50.57% 7 10 <:001 1.000
CTOS(RPS+SS) 27.5 5.4 1.4 1.2 0.9 0.0 8.9 47.19% 7 11 <:001 0.980
CTOS(RPS+2W) 3.9 5.6 1.3 0.9 1.0 0.0 8.8 48.86% 6 11 <:001 0.990
CTOS(RPSv+RS) 61.4 5.7 0.9 1.3 1.0 0.1 9.0 45.56% 7 12 <:001 0.965
CTOS(RPSv+SS) 53.0 5.7 1.7 1.4 1.0 0.1 9.9 32.32% 9 11 <:001 0.980
CTOS(RPSv+2W) 5.5 6.6 1.3 1.2 1.0 0.1 10.2 28.43% 8 13 <:001 0.915
CTOS(SP+RS) 122.4 6.6 1.4 1.2 1.0 0 10.1 29.70% 9 11 <:001 0.960
CTOS(SP+2W) 8.6 6.8 1.8 0.6 1.0 0 10.2 28.43% 8 12 <:001 0.935
CTOS(SPS+RS) 117.8 5.8 1.1 1.1 1.0 0 9.0 45.56% 7 10 <:001 1.000
CTOS(SPS+SS) 102.4 6.9 2.0 0.6 1.0 0 10.5 24.76% 9 12 .001 .0930
CTOS(SPS+2W) 8.2 7.0 1.5 0.5 1.0 0 10.0 31.00% 8 12 <:001 0.955

CTOS 109.9 7.4 3.5 1.2 1.0 0 13.1 – 11 15 – –

TP.: Testing Programs, Inv. IR: Invalid IR, WC.: Wrong Code, CGB.: Code Generator Bug.

12. https://github.com/csmith-project/csmith/blob/master/doc/
p-robabilities.txt
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time is decided by both of the corresponding program and
optimization sequence. Given a testing program, if it is com-
plicated (e.g., including many nest loops), the time for opti-
mizing and executing it could be longer than a simple
testing program. Besides, different optimization sequences
can also affect the time for optimizing and executing the
same testing program. In Table 2, the number of testing pro-
grams of CTOS is larger than CTOS(RP+SS) since there are
two experiments that CTOS tests more than 120 testing pro-
grams. Nevertheless, this result cannot suggest that CTOS
can always test more testing programs than its variants,
because the numbers of testing programs of the variants
(e.g., CTOS(RP+SS)) in some experiments are larger than
CTOS.

It is obvious from Table 2 that CTOS significantly outper-
forms its 14 variants in terms of the bug-finding capability.
CTOS can find 13.1 unique bugs on average, while the aver-
age total number of unique bugs for the best variant CTOS
(SPS+SS) is only 10.5. The ninth column shows the improve-
ment of CTOS over the baselines (i.e., the 14 variants of
CTOS) in terms of the average total number of unique bugs,
i.e., imp ¼ ðCTOS � baselineÞ=baseline � 100%. From the
ninth column of Table 2, we can see that CTOS can find
more unique bugs than the baselines by up to 24.76 to 50.57
percent. Specifically, CTOS can detect more crash bugs and
wrong code bugs. It finds 7.4 crash bugs and 3.5 wrong
code bugs on average. In addition, we could observe from
Table 2 that CTOS and its variants with the selected optimi-
zation sequences (SS) and testing programs (SP) can find
more bugs. On the one hand, CTOS and the variants with
SS outperform others when the testing programs are RP,
RPS, SP, and SPS, respectively. For example, CTOS(RP+SS)
finds 10.3 bugs on average which outperforms CTOS(RP+
RS) and CTOS(RP+2W). The only exception is RPSv, which
makes CTOS(RPSv+2W) detect more bugs than CTOS
(RPSv+SS). On the other hand, SP also leads CTOS, CTOS
(SP+RS), and CTOS(SP+2W) to detect more bugs than
others except CTOS(RPSv+2W). For instance, CTOS(SP+RS)
finds 10.1 bugs, while there are only 9.8 and 9.0 bugs for
CTOS(RP+RS) and CTOS(SPS+RS), respectively. The reason
is that the optimization sequences and testing programs
selected by the proposed selection scheme may have better
diversity.

From Table 2, almost all experiments can find the only
one unique performance bug.13 This performance bug is
caused by the optimization “-newgvn”. However, CTOS and
the 14 variants with RP, SP, and SPS fail to detect the code
generator bug in this experiment. Only some variants with
RPS and RPSv detect one code generator bug14 that has
been fixed. This is because testing programs generated by
the swarm testing may cover a larger portion of input space
than the other approaches due to the random mechanism of
swarm testing for constructing test configurations.
Although the proposed selection scheme aims to select
divers testing programs, in fact it may be limited by Csmith
with the default configuration within the given testing
period. Hence, the proposed selection scheme may miss

some corner cases, which means that there is still room to
further improving the selection scheme.

Additionally, most bugs found by CTOS and its variants
are the crash bugs. However, the difference between the
number of crash bugs for CTOS and each variant is not very
large. The reason is that there are some bugs which are rela-
tively easy to be triggered by some optimization sequences.
For example, LLVM Bug#3962615 can be easily triggered by
the optimization sequences that contain the subsequence “.
*-early-cse-memssa.*-early-cse-memssa.*”.

Fig. 6 is the boxplot of the total bugs found during the 10
runs of CTOS and its 14 variants. In this boxplot, CTOS sig-
nificantly outperforms the variants. The columns “Min. total
bugs” and “Max. total bugs” in Table 2 show the minimal
and maximal numbers of the total bugs in the 10 runs of
CTOS and each variant, respectively. From Table 2 and
Fig. 6, we can see that the minimal and maximal numbers of
the total bugs of CTOS are 11 and 15 respectively, which are
clearly larger than those of the variants. Although in some
cases the number of total bugs found by CTOS is lower than
the variants, themedian of CTOS illustrates that the bug-find-
ing capability of CTOS is better than the baselines in most
cases. In addition, we conduct theMann-Whitney U-test with
a level of significance 0.05 on the total bugs between CTOS
and the variants according to the suggestions by Arcuri and
Briand [56]. The P-value (p � :001) in Table 2 shows that
CTOS performs significantly better than the variants. Fur-
thermore, we also calculate the effect size of the differences
between CTOS and the baselines using the Vargha and
Delaney’s A12 statistics

16 [56]. If CTOS and the baselines are
equivalent, thenA12 ¼ 0:5; if the effect of CTOS is small com-
pared to the baselines, thenA12 < 0:5; otherwise,A12 > 0:5.
From Table 2, we can see that all the effect sizes are greater
than 0.9, which indicates that CTOS has a higher probability
to obtain better results than the baselines. Particularly, the
values of the effect size for CTOS(RPS+RS) and CTOS
(SPS+RS) are 1.000. This means that the total bugs found

Fig. 6. Comparison of 10 total bugs of CTOS and its 14 variants.

13. https://bugs.llvm.org/show_bug.cgi?id=41290.
14. https://bugs.llvm.org/show_bug.cgi?id=42452.

15. https://bugs.llvm.org/show_bug.cgi?id=39626.
16. We use the open source code shared by Tim Menzies to calculate

A12, https://github.com/txt/ase16/blob/master/doc/stats.md.
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during the 10 runs of CTOS are completely larger than those
of CTOS(RPS+RS) and CTOS(SPS+RS).

Answer to RQ1. The experimental results demonstrate that
CTOS significantly outperforms the baselines by detecting
24:76% � 50:57% more bugs on average, which reveals the
advantage of the proposed selection scheme for selecting rep-
resentative optimization sequences and testing programs.

4.4 Answer to RQ2

To evaluate the bug-finding capability of CTOS in practice,
we conduct an experiment over seven months from January
2019 to July 2019. In this experiment, we mainly test the lat-
est development version of LLVM, since the developers of
LLVM fix bugs primarily in the latest development version
rather than in stable versions [17], [57]. The time of one test-
ing process is about two weeks since CTOS can test 1,000
testing programs and 3,000 optimization sequences in this
period on our system. Notably, we gradually exclude some
optimization subsequences that easily cause duplicate bugs
for improving the test efficiency until the corresponding
bugs are fixed. These optimization subsequences are the
most frequent pairs of optimizations in the reduced optimi-
zation sequences that triggered a mass of duplicate bugs.
Table 3 shows 8 regular expressions of subsequences that
have been excluded. The first four subsequences trigger
many duplicate crash bugs, while the latter four are used to
avoid duplicate wrong code bugs. All the detected bugs
have been fed back to the LLVM bug repository. In the
seven months, we have reported in total 104 valid bugs
within 5 types, of which 21 have been confirmed or fixed.
Table 4 summarizes the testing results.17

From Table 4, we can observe that the most reported
bugs are crash bugs and wrong code bugs. We have
detected 57 crash bugs, which are mainly caused by

assertion failures and segmentation faults. For these crash
bugs, 16 of them have been confirmed or fixed. However, 8
of these crash bugs are duplicate, which are caused by the
constant hoisting optimization. Although the optimization
sequences that trigger these 8 bugs are different, the back-
trace information of these bugs is identical. Thus developers
treat them as duplicate bugs [46]. We also adopt this strat-
egy to filter out duplicate crash bugs. In addition, 24 valid
wrong code bugs have been reported, one of them is con-
firmed. Compared to crash bugs, the number of confirmed
or fixed wrong code bugs is very small. The reason is that
the root causes of wrong code bugs are hard to be isolated
[58]. For crash bugs, developers can leverage the backtrace
information to analyze the root causes of the bugs, while
only limited information (e.g., intermediate results of com-
pilers) could be used to help developers logically under-
stand the root cause of a wrong code bug.

Apart from crash bugs and wrong code bugs, we also
reported 13 invalid IR bugs, 9 performance bugs, and 1 code
generator bug. For these bugs, 2 invalid IR bugs, 1 perfor-
mance bugs, and 1 code generator bug have been confirmed
or fixed. Especially, the code generator bug that prevents the
code generator from emitting physreg copy instruction18 is fixed
only after one day since it is critical for LLVM to generate the
correct assembly code. The invalid IR bugs are also important
for LLVMas theymay reveal the design flaws of the optimiza-
tions. For example, LLVMbug#4172319 found byCTOS shows
that the “-scalarizer” optimizationmay produce the invalid IR
that cannot be processed by other optimizations, since it can-
not correctly process the unreachable blocks.

TABLE 4
Reported Bugs

Type num. duplicate confirmed/fixed

Crash 57 8 16
Invalid IR 13 0 2
Wrong Code 24 1 1
Performance 9 0 1
Code Generator Bug 1 0 1

Total 104 9 21

TABLE 5
Buggy Optimizations for Reported Bugs

Type Optimizations

Crash adce bdce consthoist correlated-propagation
early-cse-memssa flattencfg gvn gvn-hoist
gvn-sink indvars inline instcombine
ipconstprop ipsccp jump-threading licm
loop-deletion loop-distribute loop-extract-
single loop-instsimplify loop-reduce loop-
rotate loop-unswitch loop-versioning-licm
mem2reg memoryssa mergefunc newgvn
partial-inliner separate-const-offset-from-gep
simplifycfg slp-vectorizer sroa

Invalid IR hotcoldsplit indvars loop-extract-single
loop-instsimplify loop-interchange loop-
reroll loop-rotate loop-unroll-and-jam loop-
unswitch loop-versioning-licm sroa
scalarizer

Wrong Code called-value-propagation constprop
functionattrs globalopt gvn gvn-hoist
indvars inline instcombine ipsccp jump-
threading loop-reroll loop-simplify loop-
unroll loop-vectorize newgvn structurizecfg

Performance jump-threading licm loop-extract newgvn
slp-vectorizer

Bug of Code
Gen.

indvars

TABLE 3
Excluded Optimization Subsequences

ID Regular expressions of subsequences Type

1 ”.*-early-cse-memssa.*-early-cse-memssa.*” Crash
2 ”.*-gvn-hoist.*-early-cse-memssa.*” Crash
3 ”.*-loop-unroll.*-licm.*” Crash
4 ”.*-loop-reduce.*-loop-reduce.*” Crash
5 ”.*-loop-rotate.*-loop-vectorize.*” Wrong code
6 ”.*-loop-unroll.*-loop-reroll.*” Wrong code
7 ”.*-memcpyopt.*-gvn.*” Wrong code
8 ”.*-reg2mem.*-newgvn.*” Wrong code

17. The details of these bugs can be found on the website, https://
github.com/CTOS-results/LLVM-Bugs-by-Optimization-sequences.

18. https://bugs.llvm.org/show_bug.cgi?id=42452.
19. https://bugs.llvm.org/show_bug.cgi?id=41723.
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From Table 4, only 21 of the reported bugs are confirmed
or fixed. To investigate this phenomenon, we collect 1,323
unique bugs related to scalar optimizations (most optimiza-
tions in LLVM belong to this component) from the LLVM
bug repository20 from October 2003 to Jun 2019. In these
bugs, 828 bugs have been confirmed or fixed, and 495 bugs
are still kept as “NEW”. For the 828 confirmed or fixed
bugs, although 428 bugs are confirmed or fixed in one
month, the developers take more than 15 months to confirm
or fix the most residual bugs. The average number of
months for confirming or fixing these bugs is 5.6. In addi-
tion, 495 bugs with “NEW” status have already existed for a
long time, an average of 14.1 months. This indicates that the
overall speed to confirm or fix LLVM bugs is relatively
slow, not just for our reported bugs. One possible reason is
that it is hard and time-consuming to analyze and find the
root causes of compiler bugs [58]. Especially, for a bug
caused by an optimization sequence, the root causes of this
bug may lie in any optimization of this sequence. In addi-
tion, the study by Sun et al. [19] also finds that the bug-fixing
rate of LLVM is lower than GCC. The authors explain that
this is due to the limited human resources since some
LLVM developers in Apple are pulled into other projects
like Swift [19]. Furthermore, we also talk with three devel-
opers of an international company that has a team to
develop compilers using LLVM. We ask these three devel-
opers what are the difficulties to fix an LLVM bug during
their development. All these three developers say that it is
difficult to analyze and find the root causes of compiler
bugs, especially for the wrong code bugs.

Table 5 presents the buggy optimizations of the 104
reported bugs arranged in the alphabetical order. These
buggy optimizations are the last ones in the reduced optimi-
zation sequences, since the optimizations of LLVM are
mostly designed to operate independently and the develop-
ers always blame the last optimizations in the reduced
sequences [46]. 47 unique optimizations have been reported
to be faulty. Specifically, there are 15 buggy loop related
optimizations (in bold fonts), such as loop-rotate, loop-unroll
and loop-vectorize. From Table 5, we can see that the loop
related optimizations are more bug-prone than other opti-
mizations. This result indicates that the design of loop opti-
mizations may exist some flaws and should be further
enhanced by the developers.

Fig. 7 shows the statistics of the top 5 most used optimi-
zations in the reduced optimization sequences for the 104
reported bugs. From Fig. 7f, the optimizations jump-thread-
ing, gvn, licm, loop-rotate, and instcombine are the 5 most used
optimizations in all reduced optimization sequences. In par-
ticular, jump-threading appears 44 times in all reduced opti-
mization sequences for the 104 reported bugs. This
optimization is used to turn conditional into unconditional
branches that can greatly improve performance for hard-
ware with branch prediction, speculative execution, and
prefetching. However, the code structure may be compli-
cated after performing jump-threading, since it will add
some new paths and duplicate code.21 This may cause other
optimizations to produce wrong results. In Figs. 7a, 7b, and
7c, we can see that the optimization jump-threading is the
top 2 most used optimization for the crash bugs, invalid IR

Fig. 7. Top 5 most used optimizations for reported bugs. jump-t: jump-threading, instc: instcombine, structcfg: structurizecfg, loop-e: loop-extract,
loop-r: loop-rotate, ls-vec: load-store-vectorizer.

20. https://bugs.llvm.org/. 21. http://beza1e1.tuxen.de/articles/jump_threading.html.
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bugs, and wrong code bugs. In addition, from Figs. 7a, 7b,
7c, 7d, and 7e, optimizations that change the structure of a
program (loop-rotate changes the structure of a loop and
structurizecfg transforms the control flow structure of a pro-
gram) are widely used in the buggy optimization sequences.
This indicates that the design flaws of optimizations may be
introduced by the edge cases of the structure of a program,
which may help developers to pay more attention to the
interactions among these optimizations when they design
and implement new optimizations.

Answer to RQ2. Our testing efforts over seven months
clearly demonstrates that CTOS is effective in detecting
LLVM bugs caused by optimization sequences. In the seven
months, we reported 104 valid bugs within 5 types, of
which 21 have been confirmed or fixed. 47 unique optimiza-
tions are identified to be faulty and 15 of them are loop
related optimizations.

5 DISCUSSION

Importance of Optimization Sequence. The optimization
sequences are mainly used to improve the performance
(e.g., size, speed, and energy) of a program. Especially, the
default optimization levels (e.g., -O1, -O2, and -O3) pro-
vided by a compiler are specific optimization sequences
designed by the compiler experts. Although the default
optimization levels can significantly improve the program
performance, many studies (e.g., [1], [2]) have shown that
the autotuning of optimization sequences helps to further
improve the performance of a program. In addition, a pro-
gram in different scenarios may have different performance
requirements. For example, the energy consumption may
be more important for a program in an embedded system,
while the speed of a scientific program may be sensitive on
a high-performance supercomputer. Nevertheless, these
techniques may be invalid due to the potential bugs in the
selected optimization sequences. On the other hand, com-
piler developers of a new program language (e.g., Rust,
Swift) based on LLVM need to design better optimization
sequences as the default optimization levels (e.g., O1, O2,
and O3 in LLVM) to meet the features in the new program
language. In this case, if there are bugs in the optimization
sequences, compiler developers could be frustrated, thus
badly slowing down the development. Hence, it is critical to
guarantee the correctness of optimization sequences.

Buggy Subsequences Exclusion. In the testing process, we
exclude some optimization subsequences listed in Table 3
that can easily trigger duplicate bugs. However, the excluded
subsequences do not always trigger duplicate bugs. For
example, LLVM bug#3962622 can be easily triggered by the
optimization sequences with first subsequence in Table 3.
Especially, the optimizerOptmust be crashed when any pro-
gram is optimized using “-early-cse-memssa -early-cse-mem-
ssa”, while the subsequence “-early-cse-memssa -gvn -early-cse-
memssa” cannot trigger this bug. Even so, we think this exclu-
sion strategy contributes to improving the testing efficiency.
First, the excluded subsequences are manually summarized
frommany duplicate bugs, which indicates that the optimiza-
tion sequences that contain these subsequences may trigger

duplicate bugs with high probability. This helps us to test
more optimization sequences and reduce the time to analyze
duplicate bugs. Second, when the corresponding bugs have
been fixed, we will remove the limitation of these subsequen-
ces, such that the deep bugs caused by these subsequences
could be detected. In the future, automation techniques may
be developed to make the summarization of subsequences
more precise and filter out duplicate bugs to improve the test-
ing efficiency.

Buggy Optimization Isolation Challenge. In our study, we
treat the last optimization in a reduced optimization
sequence as a buggy optimization. However, this strategy is
not absolutely true, since the real reason for a bug may lie in
any optimization of the reduced optimization sequence.
This indicates that the results in Table 5 may not be accu-
rate. For example, an assertion fails in LLVM bug#4226423

when the optimizer Opt optimizes a program using “-early-
cse-memssa -die -gvn-hoist”. We then treat “-gvn-hoist” as the
buggy optimization. Nevertheless, the developers show
that the root cause is introduced by “-die” since it does not
correctly preserve the information generated by “-Memo-
rySSA” (an analysis method in LLVM24). Hence, we may
underestimate the effectiveness of CTOS in the experiments
since some bugs may be wrongly labeled as duplicates.
However, we must make a tradeoff to avoid reporting too
many duplicate bugs to developers. In practice, it may not
be acceptable for developers to receive hundreds of
reported bugs in a few days, where the majority of the bugs
are duplicates. This situation is currently difficult to be alle-
viated. First, to the best of our knowledge, there does not
exist a perfect method to locate the real reasons for a com-
piler bug. In our work, we manually validate the reduced
optimization sequences to guarantee that the bugs cannot
be reproduced when omitting the last optimization of the
sequences. Second, the developers of LLVM also utilize the
same strategy to roughly determine whether the bugs
caused by optimization sequences are duplicate. The opti-
mizations in LLVM are mostly designed to operate indepen-
dently, the developers always blame the last optimization in
a reduced optimization sequence [46]. Thus, we believe that
the results of Table 5 are reasonable. In the future, we plan
to introduce advanced fault localization techniques [58],
[59], [60], [61] to address this challenge.

Limitation of the Selection Scheme. The experimental results
show that CTOS is effective to detect LLVM bugs caused by
optimization sequences. However, the selection scheme in
CTOS may be limited. In our study, the selection scheme is
based on the hypothesis that the effects of two testing pro-
grams (or optimization sequences) for testing LLVM are
similar if they are closed to each other. Therefore, for a set
of testing programs (or optimization sequences), our goal is
to select representative testing programs (or optimization
sequences) such that the total distances among them are
maximized. Nevertheless, the selection scheme may miss
some corner test cases, as it is difficult to know which test-
ing program (or optimization sequence) can trigger a bug
before execution. Besides, we currently use Csmith with the
default configuration to generate the initial testing

22. https://bugs.llvm.org/show_bug.cgi?id=39626.
23. https://bugs.llvm.org/show_bug.cgi?id=42264.
24. https://www.llvm.org/docs/MemorySSA.html.
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programs, which may limit the diversities of the generated
testing programs and affect the effectiveness of the pro-
posed selection scheme. In future work, we will consider
more advanced techniques (e.g., combine the selection
scheme with coverage information) to select representative
testing programs and optimization sequences to include
more corner cases.

6 THREATS TO VALIDITY

Threats to Internal Validity. The threats to internal validity
mainly lie in the implementations of CTOS. As mentioned in
Section 3, the vector representations of the optimization
sequences and testing programs rely on the Doc2Vec tech-
nique. Hence, the testing efficiency may be impacted by the
implementation of Doc2Vec. To reduce this threat, we adopt
the widely used tool Gensim [38] that has an efficient imple-
mentation ofDoc2Vec. In addition, the parameters ofDoc2Vec
are currently set according to the documents of Gensim and
the suggestions by [39]. For the parameters of Algorithm 3, we
set the values of these two parameters according to the hard-
ware limitation of our system. We do not investigate the
impact of these parameters for CTOS in this paper, due to the
heavy time cost to fine-tune the parameters of CTOS. There
are in total 6 parameters, i.e., 4 parameters for Doc2Vec and
2 parameters for Algorithm 3. Assuming that each parameter
has 10 candidate values, we will get 106 parameter combina-
tions. The large number of parameter combinations can lead
to a long time to investigate the impact of the parameters for
CTOS, even the testing period is only 90 hours (as set in RQ1)
for evaluating one parameter combination. Despite this, the
experimental results illustrate that CTOS can achieve good
results under the parameter settings in our paper.

Besides, in our experiments for RQ1, the time to obtain
testing programs and optimization sequences is not inclu-
ded in the testing period, which may cause unfair compari-
sons between CTOS and the baselines. For example,
compared with a random strategy (i.e., RS and RP), COTS
spends 3-6 more hours in generating testing programs and
optimization sequences. However, we do not expect this can
dramatically affect the experiment results in Table 2, because
the time to obtain testing programs and optimization sequen-
ces (3-6 hours) is much smaller than the testing period (i.e.,
90 hours). To investigate its potential impact on the results of
CTOS, we analyze the number of bugs detected by CTOS in
the first 80 hours. That is, we exclude 10 hours from the test-
ing period which are assumed to be used for CTOS to obtain
testing programs and optimization sequences. As presented
in the supplemental material,25 CTOS can find themajority of
bugs (11.7 on average) in the first 80 hours; it outperforms all
the baselines which run in 90 hours. For example, CTOS(RP
+RS) detects 9.8 bugs on average in 90 hours, which is
19.39 percent fewer than the number of bugs detected by
CTOS in the first 80 hours. Thus, we believe that CTOS out-
performs the baselines even when the time to obtain testing
programs and optimization sequences is considered.

Threats to External Validity. The threats to external valid-
ity mainly lie in duplicate bugs and testing programs. First,

many duplicate bugs are triggered in the testing process
though we have leveraged the selection scheme to obtain
the representative optimization sequences and testing pro-
grams. To alleviate this threat, we summarize the subse-
quences (listed in Table 3) that could easily trigger
duplicate bugs and remove the optimization sequences that
contain these subsequences in the next testing process until
the corresponding bugs are fixed. In addition, we utilize the
duplicate bug identification strategy described in Section 4.2
to identify duplicate bugs. However, this strategy may be
not precise, which may influence the effectiveness of CTOS.
This is because the root causes for a bug can be introduced
by any optimization in the reduced optimization sequence.
Since our strategy is also adopted by LLVM developers to
identify duplicate bugs caused by optimizations in practice,
this strategy can still significantly reduce the negative influ-
ence of duplicate bugs on the experiments. In the future, we
will consider to apply advanced software fault localization
techniques to improve the strategy for identifying duplicate
bugs in our study.

Second, we utilize Csmith to generate the testing pro-
grams in this study. However, Csmith has been widely used
to test LLVM for a long time, which makes LLVM, to a cer-
tain extent, resistant to it. In the future, the advanced techni-
ques (e.g., the test-program generation approach via history-
guided configuration diversification [62]) may be employed
to further improve the diversity of testing programs.

7 RELATED WORK

7.1 Compiler Testing

Compiler testing is currently the most important technique
to guarantee the quality of compilers. In the literature, the
techniques of compiler testing fall into three categories,
namely, Randomized Differential Testing (RDT), Different
Optimization Levels (DOL), and Equivalence Modulo
Inputs (EMI) [9], [15], [16], [17], [18]. For a given testing pro-
gram, RDT detects compiler bugs by comparing the outputs
of some compilers with the same specification. DOL is a var-
iant of RDT, and compares the outputs produced by the
same compiler with different optimization levels to deter-
mine whether a compiler has bugs. Most of the techniques
[12], [13], [14] belonging to RDT and DOL use randomly
generated testing programs to test a compiler. Zhao et al.
[12] develop a tool, called JTT, that automatically generates
testing programs to validate the EC++ embedded compiler.
In particular, Csmith [13] as the most successful random C
program generator has been widely used to test C com-
pilers. Lidbury et al. [14] develop CLsmith based on Csmith
to generate programs for testing the OpenCL compilers.

Different from RDT and DOL, EMI compares the outputs
produced by equivalent variants of a seed program to detect
compiler bugs. If an output is different from others, the com-
piler then contains a bug [9]. There are three instantiations of
EMI, namely, Orion [9], Athena [15], and Hermes [17]. Orion
tries to randomly prune unexecuted statements to generate
variant programs [9], while Athena can delete code from or
insert code into code regions that are not executed under the
inputs [15]. In contrast to Orion andAthena, Hermes [17] can
generate variant programs via mutation performed on both
live and dead code regions. An empirical study conducted

25. https://github.com/CTOS-results/LLVM-Bugs-by-
Optimization-sequences/blob/master/Appendix.pdf.
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by Chen et al. [19] compares the strength of RDT, DOL, and
EMI, and reveals that DOL is more effective in detecting
compiler bugs related to optimizations.

To accelerate compiler testing, a method [63] based on
machine learning is proposed to predict the bug-revealing
probabilities of testing programs, such that the testing pro-
grams with large bug-revealing probabilities can be exe-
cuted as early as possible. Recently, Chen [20] et al. present
a more efficient technique to predict test coverage statically
for compilers, and then leverage the predicted coverage
information to prioritize testing programs.

Our work is similar to DOL. However, unlike the tradi-
tional DOL which only considers the default optimization
levels with fixed orders of optimizations, CTOS tests LLVM
with arbitrary optimization sequences.

7.2 Compiler Phase-Ordering Problem

The compiler phase-ordering problem aims to improve
the performance of target programs by selecting good
optimization sequences [7], [8], [64]. Currently, two meth-
odologies have been proposed to resolve the compiler
phase-ordering problem. The approaches in the first cate-
gory treat the compiler phase-ordering problem as an
optimization problem and then evolutionary algorithms
are used to resolve it. For example, Kulkarni et al. [65],
[66] develop a method based on genetic algorithms for
quickly searching effective optimization sequences. Purini
et al. [4] propose a downsampling technique to reduce the
infinitely large optimization sequence space. OpenTuner
[2] uses the ensembles of search techniques to find opti-
mal optimizations for a program.

The approaches in the second category tackle the com-
piler phase-ordering problem based on machine learning
[1], [3], [6]. Most recent methods based on machine learning
for compiler auto-tuning have been introduced by the sur-
vey [64]. Milepost [1] is a machine-learning based compiler
that automatically adapts the internal optimization heuristic
to improve the performance. Kulkarni and Cavazos [3] pro-
pose a method based on the Markov process to mitigate the
compiler phase-ordering problem. Ashouri et al. [6] leverage
the optimization subsequences and machine learning to
build a predictive model. Huang et al. [67] present Auto-
Phase, a deep reinforcement learning method to tackle the
compiler phase-ordering problem for multiple high-level
synthesis programs.

However, there is no guarantee that the programs opti-
mized by different optimization sequences are correct. No
systematic work has been conducted to detect compiler
bugs caused by optimization sequences. We present CTOS
to mitigate this problem to further improve the reliability of
optimization sequences.

8 CONCLUSION

In this study, we presented CTOS, a method based on differ-
ential testing, for catching compiler bugs caused by optimi-
zation sequences of LLVM. Rather than only testing
compilers with predefined optimization sequences like the
state-of-the-art methods, our technique validates compilers
with arbitrary optimization sequences, which significantly
increases the test efficiency for detecting bugs. Our

evaluation demonstrates that CTOS significantly outper-
forms the baselines by detecting 24:76% � 50:57%more bugs
on average.Within only sevenmonths, we have reported 104
valid bugs within 5 types, of which 21 have been confirmed
or fixed. 47 unique optimizations are identified to be faulty
and 15 of them are loop related optimizations.

For future work, we will keep actively testing LLVM
with CTOS, and report the detected bugs. Furthermore, we
plan to design more efficient compiler fuzzing techniques
with coverage information of LLVM to further improve the
reliability of compiler optimizations.

ACKNOWLEDGMENT

We would like to thank the LLVM developers for analyz-
ing and fixing our reported bugs. This work was sup-
ported in part by the National Natural Science Foundation
of China under Grants 61772107, 61722202, 61902181, and
62032004.

REFERENCES

[1] G. Fursin et al., “Milepost GCC: Machine learning enabled self-
tuning compiler,” Int. J. Parallel Program., vol. 39, no. 3, pp. 296–
327, 2011.

[2] J. Ansel et al., “OpenTuner: An extensible framework for program
autotuning,” in Proc. 23rd Int. Conf. Parallel Archit. Compilation,
2014, pp. 303–316.

[3] S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization
phase-ordering problem using machine learning,” in Proc.
ACM Int. Conf. Object Oriented Program. Syst. Lang. Appl., 2012,
pp. 147–162.

[4] S. Purini and L. Jain, “Finding good optimization sequences cov-
ering program space,” ACM Trans. Archit. Code Optim., vol. 9,
no. 4, pp. 56:1–56:23, 2013.

[5] L. G. Martins, R. Nobre, J. M. Cardoso, A. C. Delbem, and
E. Marques, “Clustering-based selection for the exploration of
compiler optimization sequences,” ACM Trans. Archit. Code
Optim., vol. 13, no. 1, 2016, Art. no. 8.

[6] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni,
and J. Cavazos, “MiCOMP: Mitigating the compiler phase-
ordering problem using optimization sub-sequences and mac-
hine learning,” ACM Trans. Archit. Code Optim., vol. 14, no. 3,
pp. 29:1–29:28, Sep. 2017.

[7] D. B. Loveman, “Program improvement by source-to-source
transformation,” J. ACM, vol. 24, no. 1, pp. 121–145, 1977.

[8] S. R. Vegdahl, “Phase coupling and constant generation in an opti-
mizing microcode compiler,” ACM SIGMICRO Newslett., vol. 13,
no. 4, pp. 125–133, 1982.

[9] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proc. 35th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2014, pp. 216–226.

[10] C. Lindig, “Random testing of C calling conventions,” in Proc. Int.
Symp. Automated Anal.-Driven Debugging, 2005, pp. 3–12.

[11] F. Sheridan, “Practical testing of a C99 compiler using output
comparison,” Softw.: Practice Experience, vol. 37, no. 14, pp. 1475–1488,
2007.

[12] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang, “Automated test
program generation for an industrial optimizing compiler,” in
Proc. ICSE Workshop Autom. Softw. Test, 2009, pp. 36–43.

[13] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and under-
standing bugs in C compilers,” ACM SIGPLAN Notices, vol. 46,
no. 6, pp. 283–294, 2011.

[14] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proc. 36th ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2015, pp. 65–76.

[15] L. Vu, S. Chengnian, and S. Zhendong, “Finding deep compiler
bugs via guided stochastic program mutation,” in Proc. ACM SIG-
PLAN Int. Conf. Object-Oriented Program. Syst. Lang. Appl., 2015,
pp. 386–399.

[16] L. Vu, S. Chengnian, and S. Zhendong, “Randomized stress-test-
ing of link-time optimizers,” in Proc. Int. Symp. Softw. Testing
Anal., 2015, pp. 327–337.

2356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:31:57 UTC from IEEE Xplore.  Restrictions apply. 



[17] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proc. ACM SIGPLAN Int. Conf. Object-Oriented Pro-
gram. Syst. Lang. Appl., 2016, pp. 849–863.

[18] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for
rigorous compiler testing,” in Proc. 38th ACM SIGPLAN Conf. Pro-
gram. Lang. Des. Implementation, 2017, pp. 347–361.

[19] J. Chen et al., “An empirical comparison of compiler testing
techniques,” in Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 180–190.

[20] J. Chen et al., “Coverage prediction for accelerating compiler testing,”
IEEE Trans. Softw. Eng., vol. 47, no. 2, pp. 261–278, Feb. 2021.

[21] LLVM Compiler Community, “LLVM language reference manual,”
2021. [Online]. Available: https://llvm.org/docs/LangRef.html

[22] LLVM Compiler Community, “LLVM’s analysis and transform
passes,” 2021. [Online]. Available: https://www.llvm.org/docs/
Passes.html

[23] Clang, “Clang: A C language family frontend for LLVM,” 2021.
[Online]. Available: http://clang.llvm.org/

[24] Rust, “Rust program language,” 2021. [Online]. Available:
https://www.rust-lang.org/

[25] Swift, “Swift program language,” 2021. [Online]. Available:
https://developer.apple.com/swift/

[26] A. Haas et al., “Bringing the web up to speed with webassembly,”
in Proc. 38th ACM SIGPLAN Conf. Program. Lang. Des. Implementa-
tion, 2017, pp. 185–200.

[27] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. 8th USENIX Conf. Operating Syst. Des.
Implementation, 2008, pp. 209–224.

[28] P. D. Schubert, B. Hermann, and E. Bodden, “PhASAR: An inter-
procedural static analysis framework for C/C++,” in Proc. Int.
Conf. Tools Algorithms Construction Anal. Syst., 2019, pp. 393–410.

[29] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proc. 31st Int. Conf. Int. Conf. Mach. Learn.,
2014, pp. II-1188–II-1196.

[30] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[31] W. M. McKeeman, “Differential testing for software,” Digit. Tech.
J., vol. 10, no. 1, pp. 100–107, 1998.

[32] Z.Harris, “Distributional structure,”Word, vol. 10, no. 23, pp. 146–162,
1954.

[33] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition),” Addison-Wesley
Longman Publishing Co., Inc., 2006.

[34] R. Johnson, D. Pearson, and K. Pingali, “The program structure
tree: Computing control regions in linear time,” ACM SIGPLAN
Notices, vol. 29, no. 6, pp. 171–185, 1994.

[35] J. Vanhatalo, H. V€olzer, and J. Koehler, “The refined process struc-
ture tree,” Data Knowl. Eng., vol. 68, no. 9, pp. 793–818, 2009.

[36] Region graph, 2019. [Online]. Available: https://www.llvm.org/
doxygen/regioninfo_8h_-source.html

[37] D. Pelleg and A. Moore, “X-means: Extending K-means with effi-
cient estimation of the number of clusters,” in Proc. 17th Int. Conf.
Mach. Learn., 2000, pp. 727–734.

[38] R. �Rehu
	
�rek and P. Sojka, “Software framework for topic model-

ling with large corpora,” in Proc. LREC Workshop New Challenges
NLP Frameworks, 2010, pp. 45–50.

[39] J. H. Lau and T. Baldwin, “An empirical evaluation of doc2vec
with practical insights into document embedding generation,” in
Proc. 1st Workshop Representation Learn. NLP, 2016, pp. 78–86.

[40] D. A. Schult, “Exploring network structure, dynamics, and function
usingNetworkX,” in Proc. 7th Python Sci. Conf., 2008, pp. 11–15.

[41] A. Novikov, “PyClustering: Data mining library,” J. Open Source
Softw., vol. 4, no. 36, Apr. 2019, Art. no. 1230. [Online]. Available:
https://doi.org/10.21105/joss.01230

[42] A. Balestrat, “CCG: A random C code generator,” 2021. [Online].
Available: https://github.com/Merkil/ccg/

[43] V. L. Dmitry Babokin and J. Regehr, “Yarpgen,” 2021. [Online].
Available: https://github.com/intel/yarpgen

[44] R. Hodov�an, A. Kiss, and T. Gyim�othy, “Grammarinator: A gram-
mar-based open source fuzzer,” in Proc. 9th ACMSIGSOFT Int.Work-
shop Automating TESTCase Des. Selection Eval., 2018, pp. 45–48.

[45] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for C compiler bugs,” in Proc. 33rd ACM SIGPLAN
Conf. Program. Lang. Des. Implementation, 2012, pp. 335–346.

[46] LLVM bug 40927, 2021. [Online]. Available: https://bugs.llvm.
org/show_bug.cgi?id=409–27

[47] LLVM bug 40926, 2021. [Online]. Available: https://bugs.llvm.
org/show_bug.cgi?id=409–26

[48] LLVM bug 40928, 2021. [Online]. Available: https://bugs.llvm.
org/show_bug.cgi?id=409–28

[49] LLVM bug 40929, 2021. [Online]. Available: https://bugs.llvm.
org/show_bug.cgi?id=409–29

[50] LLVM bug 40933, 2021. [Online]. Available: https://bugs.llvm.
org/show_bug.cgi?id=409–33

[51] LLVM bug 40925, 2021. [Online]. Available: https://bugs.llvm.
org/show_bug.cgi?id=409–25

[52] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[53] D. R. Kuhn, R. N. Kacker, and Y. Lei, “SP 800-142. practical combi-
natorial testing,” Nat. Inst. Standards Technol., 2010.

[54] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm
testing,” in Proc. Int. Symp. Softw. Testing Anal., 2012, pp. 78–88.

[55] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang,
“History-guided configuration diversification for compiler test-
program generation,” in Proc. 34th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2019, pp. 305–316.

[56] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 1–10.

[57] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warn-
ing defects,” in Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 203–213.

[58] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang,
“Compiler bug isolation via effective witness test program gener-
ation,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2019, pp. 223–234.

[59] S. Pearson et al., “Evaluating and improving fault localization,” in
Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 609–620.

[60] Y. Chen et al., “Taming compiler fuzzers,” in Proc. 34th ACM SIG-
PLAN Conf. Program. Lang. Des. Implementation, 2013, pp. 197–208.

[61] J. Holmes and A. Groce, “Using mutants to help developers dis-
tinguish and debug (compiler) faults,” Softw. Test. Verification Rel.,
vol. 30, no. 2, 2020, Art. no. e1727.

[62] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang,
“History-guided configuration diversification for compiler test-
program generation,” in Proc. 34th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2019, pp. 305–316.

[63] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning
to prioritize test programs for compiler testing,” in Proc. IEEE/
ACM Int. Conf. Softw. Eng., 2017, pp. 700–711.

[64] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Comput. Surv., vol. 51, no. 5, 2018, Art. no. 96.

[65] P. A. Kulkarni, S. Hines, J. Hiser, D. B. Whalley, J. W. Davidson,
and D. L. Jones, “Fast searches for effective optimization phase
sequences,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2004, pp. 171–182.

[66] P.A.Kulkarni, S. R.Hines, D. B.Whalley, J. D.Hiser, J.W. Davidson,
and D. L. Jones, “Fast and efficient searches for effective optimiza-
tion-phase sequences,” ACM Trans. Archit. Code Optim., vol. 2, no. 2,
pp. 165–198, 2005.

[67] A. Haj-Ali et al., “AutoPhase: Compiler phase-ordering for
high level synthesis with deep reinforcement learning,” IEEE
27th Annu. Int. Symp. Field-Programmable Custom Comput. Mach.,
early access, pp. 308–308, doi: 10.1109/FCCM.2019.00049.

He Jiang (Member, IEEE) received the PhD
degree in computer science from the University
of Science and Technology of China, Hefei,
China. He is currently a professor with the Dalian
University of Technology, China. He is also a
member of the ACM and the CCF (China Com-
puter Federation). He is one of the ten supervi-
sors for the Outstanding Doctoral Dissertation of
the CCF in 2014. His current research interests
include search-based software engineering
(SBSE) and mining software repositories (MSR).

His work has been published at premier venues like ICSE, SANER, and
GECCO, as well as in major IEEE transactions like IEEE Transactions
on Software Engineering, IEEE Transactions on Knowledge and Data
Engineering, IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), IEEE Transactions on Cybernetics, and IEEE
Transactions on Services Computing.

JIANG ETAL.: CTOS: COMPILER TESTING FOR OPTIMIZATION SEQUENCES OF LLVM 2357

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:31:57 UTC from IEEE Xplore.  Restrictions apply. 

https://llvm.org/docs/LangRef.html
https://www.llvm.org/docs/Passes.html
https://www.llvm.org/docs/Passes.html
http://clang.llvm.org/
https://www.rust-lang.org/
https://developer.apple.com/swift/
https://www.llvm.org/doxygen/regioninfo_8h_-source.html
https://www.llvm.org/doxygen/regioninfo_8h_-source.html
https://doi.org/10.21105/joss.01230
https://github.com/Merkil/ccg/
https://github.com/intel/yarpgen
https://bugs.llvm.org/show_bug.cgi?id=409--27
https://bugs.llvm.org/show_bug.cgi?id=409--27
https://bugs.llvm.org/show_bug.cgi?id=409--26
https://bugs.llvm.org/show_bug.cgi?id=409--26
https://bugs.llvm.org/show_bug.cgi?id=409--28
https://bugs.llvm.org/show_bug.cgi?id=409--28
https://bugs.llvm.org/show_bug.cgi?id=409--29
https://bugs.llvm.org/show_bug.cgi?id=409--29
https://bugs.llvm.org/show_bug.cgi?id=409--33
https://bugs.llvm.org/show_bug.cgi?id=409--33
https://bugs.llvm.org/show_bug.cgi?id=409--25
https://bugs.llvm.org/show_bug.cgi?id=409--25
http://dx.doi.org/10.1109/FCCM.2019.00049


Zhide Zhou received the BS degree in computer
science and technology from the Guilin University
of Electronic Technology, Guilin, China, in 2013.
He is currently working toward the PhD degree at
the Dalian University of Technology, Dalian,
China. He is a student member of the China
Computer Federation (CCF). His current
research interests include intelligent software
engineering, software testing, and program anal-
ysis techniques.

Zhilei Ren received the BS degree in software
engineering and the PhD degree in computa-
tional mathematics from the Dalian University of
Technology, Dalian, China, in 2007 and 2013,
respectively. He is currently an associate profes-
sor with the Dalian University of Technology,
Dalian. His current research interests include
evolutionary computation, automatic algorithm
configuration, and mining software repositories.

Jingxuan Zhang received the PhD degree in
software engineering from the Dalian University
of Technology, Dalian, China. He is a lecturer with
the College of Computer Science and Technol-
ogy, Nanjing University of Aeronautics and Astro-
nautics, China. His current research interests
include mining software repositories and software
data analytics.

Xiaochen Li received the doctoral degree in soft-
ware engineering from the Dalian University of
Technology, Dalian, China, in 2019 under super-
vision with Prof. He Jiang. He is currently a
research associate with Software Verification and
Validation Research Group, University of Luxem-
bourg, headed by Prof. Lionel Briand. His current
research interests include intelligent software
engineering and software semantic analysis. His
work has been published at premier venues like
IEEE Transactions on Software Engineering,

ACM Transactions on Software Engineering and Methodology, Empirical
Software Engineering, and ICSE. For more information, please visit
https://xiaochen-li.github.io.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:31:57 UTC from IEEE Xplore.  Restrictions apply. 

https://xiaochen-li.github.io


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


