
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

CTOS: Compiler Testing for Optimization
Sequences of LLVM

He Jiang, Member, IEEE, Zhide Zhou, Zhilei Ren, Jingxuan Zhang, Xiaochen Li

Abstract—Optimization sequences are often employed in compilers to improve the performance of programs, but may trigger critical
compiler bugs, e.g., compiler crashes. Although many methods have been developed to automatically test compilers, no systematic
work has been conducted to detect compiler bugs when applying arbitrary optimization sequences. To resolve this problem, two main
challenges need to be addressed, namely the acquisition of representative optimization sequences and the selection of representative
testing programs, due to the enormous number of optimization sequences and testing programs. In this study, we propose CTOS, a novel
compiler testing method based on differential testing, for detecting compiler bugs caused by optimization sequences of LLVM. CTOS
firstly leverages the technique Doc2Vec to transform optimization sequences into vectors to capture the information of optimizations and
their orders simultaneously. Secondly, a method based on the region graph and call relationships is developed in CTOS to construct
the vector representations of the testing program, such that the semantics and the structure information of programs can be captured
simultaneously. Then, with the vector representations of optimization sequences and testing programs, a ”centroid” based selection
scheme is proposed to address the above two challenges. Finally, CTOS takes in the representative optimization sequences and testing
programs as inputs, and tests each testing program with all the representative optimization sequences. If there is an output that is
different from the majority of others of a given testing program, then the corresponding optimization sequence is deemed to trigger a
compiler bug. Our evaluation demonstrates that CTOS significantly outperforms the baselines by up to 24.76% ∼ 50.57% in terms of the
bug-finding capability on average. Within seven month evaluations on LLVM, we have reported 104 valid bugs within 5 types, of which 21
have been confirmed or fixed. Most of those bugs are crash bugs (57) and wrong code bugs (24). 47 unique optimizations are identified
to be faulty and 15 of them are loop related optimizations.

Index Terms—Compiler testing, Optimization sequences, LLVM, Program representation, Software testing

F

1 INTRODUCTION

A S an important infrastructure for software develop-
ment, compilers (e.g., GCC, LLVM) usually provide

many optimizations to improve the performance of pro-
grams, e.g., running time, code size, and throughput. With
these optimizations, many studies [1], [2], [3], [4], [5],
[6] have been conducted on the compiler phase-ordering
problem [7], [8], namely how to select good optimization
sequences (i.e., a set of compiler optimizations in a certain
order) to achieve satisfactory performance for programs.
However, potential compiler bugs may be triggered when
optimizing programs with some optimization sequences,
which may lead to unintended application behavior and
disasters, especially for safety-critical domains [9]. In the
literature, Purini et al. [4] state that ”there are optimization
sequences which crash the compiler”. Fursin et al. [1] and
Ansel et al. [2] have also reported some bugs that lead
compilers to crash or produce incorrect program execution
when applying some optimization sequences. We present
two examples as well in Section 2.1 that illustrate both a

• H. Jiang, Z. Zhou, Z. Ren are with the School of Software, Dalian
University of Technology, Dalian, China, and Key Laboratory for
Ubiquitous Network and Service Software of Liaoning Province. H.
Jiang is also with DUT Artificial Intelligence Institute, Dalian, China.
E-mail: jianghe@dlut.edu.cn (corresponding email), cszide@gmail.com,
zren@dlut.edu.cn

• J. Zhang is with the College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing, China. E-mail:
jxzhang@nuaa.edu.cn

• X. Li is with the SnT Centre for Security, Reliability and Trust, University
of Luxembourg, Luxembourg. E-mail: xiaochen.li@uni.lu

crash bug and a wrong code bug of LLVM caused by certain
optimization sequences.

Although some methods [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] have been proposed to automatically test
compilers in recent years, no systematic investigation has
been conducted on compiler bugs caused by optimization
sequences. To date, these existing methods to test compilers
can be roughly divided into three types, namely, Random-
ized Differential Testing (RDT) [10], [11], [12], [13], [14],
Different Optimization Levels (DOL, a variant of RDT), and
Equivalence Modulo Inputs (EMI) [9], [15], [16], [17], [18],
[19], [20]. Given a program, RDT detects compiler bugs by
comparing the outputs of distinct compilers implemented
based on the same specification. In contrast, DOL and
EMI only require one compiler. DOL determines whether
a compiler contains bugs by comparing the outputs of a
program optimized by predefined compiler optimization
sequences (e.g., sequences represented by compiler flags
O1, O2 and O3), while EMI compares the outputs of some
equivalent variants of a seed program [19]. However, these
existing methods only focus on detecting bugs related to
predefined optimization sequences in certain orders, rather
than arbitrary optimization sequences.

In this paper, we investigate how to detect compiler bugs
caused by optimization sequences for LLVM [21]. LLVM is
a mature and widely used compiler infrastructure. Hun-
dreds of analysis and transformation optimizations have
been implemented in LLVM [22]. Moreover, many compilers
(e.g., Clang [23], Rust [24], Swift [25], and WebAssembly
[26]) of different programming languages and tools (e.g.,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Klee [27], Phasar [28]) have been implemented based on
LLVM. In contrast to DOL and EMI, two challenges need
to be addressed. On the one hand, the number of potential
optimization sequences is extremely huge, such that it is
intractable to test each optimization sequence. For example,
more than 150 optimizations exist in LLVM, and there
are 15030 optimization sequences1 to be tested, when the
sequence length is set to be 30. Additionally, similar opti-
mization sequences may trigger duplicate bugs for a given
testing program. Hence, we need to address the challenge of
the acquisition of representative optimization sequences,
namely, how to acquire a set of representative optimization
sequences to accelerate the testing of LLVM. On the other
hand, there is an almost infinite number of testing programs
which may incur compiler bugs, and it is impossible to test
them all. Moreover, distinct testing programs may incur
duplicate compiler bugs. Thus, we need to address the
second challenge, namely the selection of representative
testing programs.

In this paper, we propose a novel compiler testing
method based on differential testing, called Compiler Test-
ing for Optimization Sequences (CTOS), for detecting bugs
caused by optimization sequences for LLVM. CTOS first
leverages the representation technique Doc2Vec [29] in
natural language processing to transform optimization se-
quences into vectors on the basis of its optimizations and
their orders. Then, a method based on the region graph
and call relationships of programs is presented to construct
the vector representations of testing programs. Next, with
the vector representations of optimization sequences and
testing programs, we present a centroid based selection
scheme to select representative optimization sequences and
testing programs, thus addressing the above two challenges.
Finally, CTOS utilizes differential testing to validate all rep-
resentative optimization sequences and testing programs.
Specifically, CTOS takes in representative optimization se-
quences and testing programs as inputs and tests each
testing program with all the representative optimization
sequences. If there is an output that is different from the
majority of others of a given testing program, then the
corresponding optimization sequence is deemed to trigger a
compiler bug.

To evaluate the effectiveness of CTOS, we conduct a
comparative experiment that compares CTOS with 14 base-
lines. Our evaluation demonstrates that CTOS significantly
outperforms the baselines by detecting 24.76% ∼ 50.57%
more bugs on average. In addition, we conduct an experi-
ment for seven months to show the bug-finding capability
of CTOS in practice. After running CTOS on LLVM for seven
months, we have reported 104 valid bugs within 5 types (see
Section 4), of which 21 have been confirmed or fixed. Most
of those bugs are crash bugs (57) and wrong code bugs (24).
47 unique optimizations have been identified to be faulty
and 15 of them are loop related optimizations.

In summary, the main contributions of this paper are as
follows:

1) In this paper, we first investigate how to detect compiler
bugs caused by optimization sequences. As to the best

1. It is valid for an optimization to appear multiple times in an
optimization sequence.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

1 i n t c ;
2 s t r u c t m{
3 uns igned : 2 0 ;
4 s i gned a ;
5 s i gned b
6 } ;
7 s t r u c t m d () { }
8 e () {
9 f o r (; c ; c ++)
10 d () ;
11 }

Figure 1: Program in Bug#41294 of LLVM (trunk 355281)
that makes loop-vectorize optimization crashed with
"-functionattrs -loop-rotate -licm -sroa -loop-vectorize"
(https://bugs.llvm.org/show_bug.cgi?id=41294).

In summary, the main contributions of this paper are as follows:
1) In this paper, we first investigate how to detect compiler

bugs caused by optimization sequences. As to the best of our
knowledge, this is the first systematic work for this problem.

2) We present a novel method CTOS to find compiler bugs by
optimization sequences. In CTOS, efficient vector representa-
tion methods and a selection scheme are designed to address
two challenges, namely the acquisition of representative
optimization sequences and the selection of representative
testing programs.

3) Extensive testing efforts have been conducted on LLVM.
We have reported 5 types and 104 valid bugs with 57 crash
bugs and 24 wrong code bugs. These bugs covers 47 unique
optimizations and 15 of them are loop related optimizations.

The remainder of this paper is organized as follows. Section 2
shows two examples to illustrate compiler bugs caused by opti-
mization sequences and motivates our work. Section 3 presents the
testing process and the proposed methods. Next, we describe the
evaluation results in Section 4. The threats to validity and related
work are described in Sections 5-6. Section 7 concludes our study.

2 ILLUSTRATIVE EXAMPLES
In this section, we present two concrete examples to illustrate the
compiler bugs in LLVM caused by optimization sequences and
motivate our work.

Fig. 1 shows a program that triggers a crash bug of the loop-
vectorizer2 optimizationwhen the program is optimized by "-functionattrs
-loop-rotate -licm -sroa -loop-vectorize". An assertion fails when loop-
vectorizer works on the Intermediate Representation (IR) file opti-
mized by "-functionattrs -loop-rotate -licm -sroa". This bug occurs
because the loop invariant operands are scalarized, but they are
used outside the loop and should be ignored when computing the
scalarization overhead3. However, when we delete any optimiza-
tion from {functionattrs, loop-rotate, licm, sroa}, or change the order,
or only use loop-vectorizer to optimize the program, this bug disap-
pears. In addition, there does not exist any bug when the program
2https://llvm.org/doxygen/LoopVectorize_8cpp_source.html
3https://reviews.llvm.org/D59995

1 # in c l ude < s t d i o . h>
2 i n t a = 0 ;
3 i n t d () {
4 i n t e = 2 ;
5 f o r (a = 0 ; a <= 8 ; a ++) ;
6 r e t u r n e ;
7 }
8 vo id main () {
9 i n t f = 0 ;
10 d () ;
11 p r i n t f ("%d \ n " , a) ;
12 }

Figure 2: Program in Bug#41720 of LLVM (trunk
355281) that makes the output of target program
wrong with "-gvn -licm -loop-rotate -loop-vectorize"
(https://bugs.llvm.org/show_bug.cgi?id=41720).

is optimized by the default standard optimization levels, e.g., O1,
O2, and O3 provided by LLVM.

The second program in Fig. 2 incurs a wrong code bug of LLVM
when applying optimization sequence "-gvn -licm -loop-rotate -loop-
vectorize". Variable a is a global variable and is initialized to 0. If
the program executes correctly, the output should be 9. However,
after optimization, the output is 15, which is caused by incorrectly
optimizing the calculation of variable a on line 5 with loop-vectorizer.
Similar as the first example, this bug cannot be reproduced when we
remove any optimization in the optimization sequence, or change
the order of them, or use the default standard optimization levels.

From the above two examples, it is evident that optimization
sequences may heavily affect the behavior of LLVM and potential
bugs of LLVM may be exposed by employing certain optimization
sequences to optimize testing programs. This motivates us to detect
bugs of LLVM by testing it with arbitrary optimization sequences.
To achieve this goal, we need to address two challenges, namely
the acquisition of representative optimization sequences and the
selection of representative testing programs, due to the enormous
number of optimization sequences and testing programs.

In next section, we present CTOS, a method based on differ-
ential testing [28], to address the above challenges for catching
bugs caused by optimization sequences of LLVM. Efficient repre-
sentation methods and a selection scheme are proposed to select
representative optimization sequences and testing programs.

3 APPROACH
In this section, we first introduce the framework of CTOS. Then,
the representation methods for optimization sequences and testing
programs are presented in Section 3.2. Finally, the selection scheme
for selecting representative optimization sequences and testing
programs is shown in Section 3.3.

3.1 Overview
Fig. 3 shows the framework of CTOS. In our study, we mainly focus
on testing LLVM4, which is a mature and widely used compiler
4http://llvm.org/

2

(a) LLVM Bug#41294

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

1 i n t c ;
2 s t r u c t m{
3 uns igned : 2 0 ;
4 s i gned a ;
5 s i gned b
6 } ;
7 s t r u c t m d () { }
8 e () {
9 f o r (; c ; c ++)
10 d () ;
11 }

Figure 1: Program in Bug#41294 of LLVM (trunk 355281)
that makes loop-vectorize optimization crashed with
"-functionattrs -loop-rotate -licm -sroa -loop-vectorize"
(https://bugs.llvm.org/show_bug.cgi?id=41294).

In summary, the main contributions of this paper are as follows:
1) In this paper, we first investigate how to detect compiler

bugs caused by optimization sequences. As to the best of our
knowledge, this is the first systematic work for this problem.

2) We present a novel method CTOS to find compiler bugs by
optimization sequences. In CTOS, efficient vector representa-
tion methods and a selection scheme are designed to address
two challenges, namely the acquisition of representative
optimization sequences and the selection of representative
testing programs.

3) Extensive testing efforts have been conducted on LLVM.
We have reported 5 types and 104 valid bugs with 57 crash
bugs and 24 wrong code bugs. These bugs covers 47 unique
optimizations and 15 of them are loop related optimizations.

The remainder of this paper is organized as follows. Section 2
shows two examples to illustrate compiler bugs caused by opti-
mization sequences and motivates our work. Section 3 presents the
testing process and the proposed methods. Next, we describe the
evaluation results in Section 4. The threats to validity and related
work are described in Sections 5-6. Section 7 concludes our study.

2 ILLUSTRATIVE EXAMPLES
In this section, we present two concrete examples to illustrate the
compiler bugs in LLVM caused by optimization sequences and
motivate our work.

Fig. 1 shows a program that triggers a crash bug of the loop-
vectorizer2 optimizationwhen the program is optimized by "-functionattrs
-loop-rotate -licm -sroa -loop-vectorize". An assertion fails when loop-
vectorizer works on the Intermediate Representation (IR) file opti-
mized by "-functionattrs -loop-rotate -licm -sroa". This bug occurs
because the loop invariant operands are scalarized, but they are
used outside the loop and should be ignored when computing the
scalarization overhead3. However, when we delete any optimiza-
tion from {functionattrs, loop-rotate, licm, sroa}, or change the order,
or only use loop-vectorizer to optimize the program, this bug disap-
pears. In addition, there does not exist any bug when the program
2https://llvm.org/doxygen/LoopVectorize_8cpp_source.html
3https://reviews.llvm.org/D59995

1 # in c l ude < s t d i o . h>
2 i n t a = 0 ;
3 i n t d () {
4 i n t e = 2 ;
5 f o r (a = 0 ; a <= 8 ; a ++) ;
6 r e t u r n e ;
7 }
8 vo id main () {
9 i n t f = 0 ;
10 d () ;
11 p r i n t f ("%d \ n " , a) ;
12 }

Figure 2: Program in Bug#41720 of LLVM (trunk
355281) that makes the output of target program
wrong with "-gvn -licm -loop-rotate -loop-vectorize"
(https://bugs.llvm.org/show_bug.cgi?id=41720).

is optimized by the default standard optimization levels, e.g., O1,
O2, and O3 provided by LLVM.

The second program in Fig. 2 incurs a wrong code bug of LLVM
when applying optimization sequence "-gvn -licm -loop-rotate -loop-
vectorize". Variable a is a global variable and is initialized to 0. If
the program executes correctly, the output should be 9. However,
after optimization, the output is 15, which is caused by incorrectly
optimizing the calculation of variable a on line 5 with loop-vectorizer.
Similar as the first example, this bug cannot be reproduced when we
remove any optimization in the optimization sequence, or change
the order of them, or use the default standard optimization levels.

From the above two examples, it is evident that optimization
sequences may heavily affect the behavior of LLVM and potential
bugs of LLVM may be exposed by employing certain optimization
sequences to optimize testing programs. This motivates us to detect
bugs of LLVM by testing it with arbitrary optimization sequences.
To achieve this goal, we need to address two challenges, namely
the acquisition of representative optimization sequences and the
selection of representative testing programs, due to the enormous
number of optimization sequences and testing programs.

In next section, we present CTOS, a method based on differ-
ential testing [28], to address the above challenges for catching
bugs caused by optimization sequences of LLVM. Efficient repre-
sentation methods and a selection scheme are proposed to select
representative optimization sequences and testing programs.

3 APPROACH
In this section, we first introduce the framework of CTOS. Then,
the representation methods for optimization sequences and testing
programs are presented in Section 3.2. Finally, the selection scheme
for selecting representative optimization sequences and testing
programs is shown in Section 3.3.

3.1 Overview
Fig. 3 shows the framework of CTOS. In our study, we mainly focus
on testing LLVM4, which is a mature and widely used compiler
4http://llvm.org/

2

(b) LLVM Bug#41720

Fig. 1. Programs in crash bug 41294 and wrong code bug 41720
of LLVM (trunk 355281). (https://bugs.llvm.org/show bug.cgi?id=41294,
https://bugs.llvm.org/show bug.cgi?id=41720.)

of our knowledge, this is the first systematic work for
this problem.

2) We present a novel method CTOS to find compiler bugs
by optimization sequences. In CTOS, efficient vector
representation methods and a selection scheme are
designed to address two challenges, namely the acqui-
sition of representative optimization sequences and the
selection of representative testing programs.

3) Extensive testing efforts have been conducted on
LLVM. We have reported 104 valid bugs within 5 types,
of which 21 have been confirmed or fixed. These bugs
cover 47 unique optimizations, where 15 of them are
loop related optimizations.

The remainder of this paper is organized as follows.
Section 2 shows the background of our study. Section 3
presents the testing process and the proposed methods.
Next, we describe the evaluation results in Section 4. Section
5 presents some discussions about this paper. The threats
to validity and related work are described in Sections 6-7.
Section 8 concludes our study.

2 BACKGROUND

2.1 Illustrative Examples
In this subsection, we present two concrete examples to il-
lustrate the compiler bugs in LLVM caused by optimization
sequences. Note that these examples in this section only aim
to show the phenomenon of the compiler bugs introduced
by optimization sequences.

Fig. 1(a) shows a program that triggers a crash bug
by the loop-vectorizer2 optimization when the program is
optimized by the optimization sequence ”-functionattrs -loop-
rotate -licm -sroa -loop-vectorize.” An assertion fails when loop-
vectorizer works on the Intermediate Representation (IR) file
optimized by ”-functionattrs -loop-rotate -licm -sroa.” This bug
occurs because the loop invariant operands are scalarized,
but they are used outside the loop and should be ignored
when computing the scalarization overhead3. However,
when we delete any optimization from {functionattrs, loop-
rotate, licm, sroa}, or change the order, or only use loop-
vectorizer to optimize the program, this bug disappears. In

2. https://llvm.org/doxygen/LoopVectorize 8cpp source.html.
3. https://reviews.llvm.org/D59995.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

addition, there does not exist any bug when the program is
optimized by the default standard optimization levels, e.g.,
O1, O2, and O3 provided by LLVM.

The second program in Fig. 1(b) incurs a wrong code bug
of LLVM when applying the optimization sequence ”-gvn -
licm -loop-rotate -loop-vectorize”. Variable a is a global variable
and is initialized to 0. If the program executes correctly,
the output should be 9. However, after optimization, the
output is 15, which is caused by incorrectly optimizing the
calculation of variable a on line 5 with loop-vectorizer. Similar
to the first example, this bug cannot be reproduced when
we remove any optimization in the optimization sequence,
or change the order of them, or use the default standard
optimization levels.

From the above two examples, it is evident that op-
timization sequences may heavily affect the behavior of
LLVM and potential bugs of LLVM may be exposed by
employing certain optimization sequences to optimize pro-
grams. This is important for ensuring the correctness of the
behavior of a program when developers tune the compiler
optimizations for specific programs to achieve better per-
formance (e.g., size or speed), especially for safety-critical
programs.

Compiler testing, currently, is the dominant technique
for detecting compiler bugs due to its simplicity and easy
application. However, there does not exist any work that
focuses on finding compiler bugs caused by optimization
sequences. Therefore, this motivates us to detect bugs of
LLVM by testing it with arbitrary optimization sequences.
To achieve this goal, we need to address two challenges,
namely the acquisition of representative optimization se-
quences and the selection of representative testing pro-
grams, due to the enormous number of optimization se-
quences and testing programs.

2.2 Doc2Vec

Doc2Vec is a fundamental component to represent the op-
timization sequences and testing programs in our study. It
was originally designed to transform documents (sentences
or paragraphs) into low-dimensional vectors [29]. Doc2Vec
is an extension to Word2Vec [30] to extend the learning
of embeddings from words to word sequences. Similar to
Word2Vec that has two models, i.e., Continuous Bag-Of-
Words model (CBOW) and continuous Skip-gram model
(Skip-gram), there are also two approaches within Doc2Vec,
namely, Distributed Bag-Of-Words version of Paragraph
Vector (DBOW) and Distributed Memory model of Para-
graph Vectors (DMPV) [29]. DBOW and DMPV work in a
similar way as Skip-gram and CBOW, respectively. We take
the DMPV model as an example to explain Doc2Vec as it is
the default model in the tool that we use to implement our
methods.

Fig. 2 shows the framework of DMPV, which is similar
to the framework of CBOW. In Fig. 2, the top half of the
figure is the framework of CBOW. The only change for the
DMPV model is the additional document token [29]. DMPV
consists of an input layer, an output layer, and a hidden
layer. The hidden layer h is a 1×V vector to represent words
in a low dimensional space. Each column in the matrix
WV oc×V is a unique vector representation of a word; and the

𝑤𝑥−𝑘

𝑤𝑥−1

𝑤𝑥+1

𝑤𝑥+𝑘mat

the

cat

sat

on

the
SUM 𝑤𝑥

𝑑𝑖

Input Hidden layer Output

...

...

𝑊𝑉𝑜𝑐×𝑉

𝑊𝑉×𝑉𝑜𝑐
′

Documents 𝐷𝑇×𝑉

CBOW

Fig. 2. The framework of DMPV model for Doc2Vec.

matrix W ′V×V oc is the parameter matrix of h; each column
in the matrix DT×V is the unique vector representation of
a document. V is pre-defined by users. T is the documents
and V oc is the vocabulary of the training set.

Initially, the matrix WV oc×V , W ′V×V oc, and DT×V are
randomly initialized. Each word wx in V oc is represented
as a one-hot vector with the size of |V oc|, which is a zero
vector with the exception of a single 1 to uniquely identify
the word. The document di in T is represented in a similar
way to the word.

Given a document di and its word sequences, DMPV
tries to predict the center word with its surrounding context
in a fixed window size k by using the vector representation
of a document as the context information [29]. Specifi-
cally, DMPV takes in the vectors of the surrounding words
wk

x = {wx−k, · · · , wx−1, wx+1, · · · , wx+k} in a 2k sized
window and the vector of the corresponding document di as
inputs. Then the vector of the center word wx is the expected
output. For example, if we want to obtain the vector of
word ’sat’ and k = 2, the surrounding words are ’the’, ’cat’,
’on’, and ’the’. Based on WV oc×V and DT×V , the inputs are
propagated to the hidden layer

h =
1

2k + 1
(sum(wk

x) ·WV oc×V + di ·DT×V).

Then, the prediction of wx is typically done via softmax
function:

wx = Softmax(h ·W ′V×V oc).

Finally, the objective of the DMPV is to maximize the
average log probability

1

|V oc|

|V oc|∑
x=1

log p(wx|wk
x).

After training, the column vectors in WV oc×V and DT×V are
the final vector representation of the words and documents,
respectively.

Unlike Word2Vec that only learns the vector representa-
tions of words, Doc2Vec takes word order into consideration
and can learn the vector representations of word sequences.
Thus, we adopt Doc2Vec to represent the optimization se-
quences and the instruction sequences in our study.

In the next section, we present CTOS, a method based on
differential testing [31] for catching compiler bugs caused
by optimization sequences of LLVM. Based on Doc2Vec, we
present efficient methods to resolve the challenges of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Back-end

Front-end

…

…

…

…

1

2

3

4

5

…
opt

+
Seq. 2

opt

+
Seq. 1

Select Representative

Optimization Sequences Seq.1,

Seq.2, …, Seq.n

Program m

int main(...){

 …
}

Program ...

int main(...){

 …
}

Program 1

int main(...){

 …
}

Select Representative Testing

Programs Optimizer (Opt)

opt

+
Seq. n

1exe

1O

2exe nexe

2O nO

1 2Compare , , , nO O O

{ , , , }, 11 2O O O i nn  

optnIR1optIR

IRIR

Seq.i triggers a bug

 is different from the majority ofOi

Fig. 3. Framework of CTOS for catching compiler bugs caused by
optimization sequences of LLVM.

acquisition of representative optimization sequences and the
selection of representative testing programs.

3 APPROACH

In this section, we first introduce the framework of CTOS.
Then, we present algorithms to address two challenges,
namely the acquisition of representative optimization se-
quences and the selection of representative testing pro-
grams.

3.1 Overview of CTOS
Fig. 3 shows the framework of CTOS. Generally, CTOS is
based on differential testing [31]. However, unlike other
studies (e.g., [10], [11], [13], [14]) that compare the outputs
of testing programs compiled by different compilers or
optimized by the different default optimization levels, CTOS
determines whether there are compiler bugs by compar-
ing the outputs of testing programs optimized by distinct
optimization sequences. In Fig. 3, the front-end and the
back-end indicate the compiler front-end and the compiler
back-end that are used to transform the source code of a
testing program into its LLVM IR and generate executables,
respectively. We adopt Clang [23] as the front-end, a widely
used language front-end and compiler driver based on
LLVM for C language family (e.g., C and C++), since C
programs are used as the testing programs in our study. As
the front-end, Clang takes in the source code and outputs
the corresponding IR of a program. For the back-end, many
tools are utilized to generate the final executables from IRs,
such as assembler and linker. For simplicity, we also use
Clang as a driver to schedule and execute the tools (e.g.,
linker) of back-end, and it can take in LLVM IRs to generate
executables. The optimizer Opt of LLVM is in charge of
scheduling and executing optimizations.

CTOS is composed of 5 steps. (1) The first step is to
select representative optimization sequences and testing
programs. (2) Then, the front-end of a compiler is used to
emit the IR file of a given testing program without opti-
mizations. (3) The third step is to optimize the IR produced

in the previous step using the optimizer Opt of LLVM with
the selected optimization sequences. For the IR of a testing
program, if there are n selected optimization sequences,
n optimized IRs (i.e., IRopt1, IRopt2, · · · , IRoptn) will be
produced by the optimizer Opt. (4) In the fourth step, the n
optimized IRs are loaded by the back-end of a compiler to
generate n executables (i.e., exe1, exe2, · · · , exen). (5) The
final step is to obtain the outputs (i.e., O1, O2, · · · , On) of n
executables and compare them to determine whether there
are bugs. The outputs may be different, but the majority
of them should be identical. Thus, if there is an output Oi

that is different from the majority of {O1, O2, · · · , On},
1 ≤ i ≤ n, then the ith optimization sequence is deemed
to trigger a compiler bug for the given testing program.

From Fig. 3, the first step clearly is the foundation of
CTOS. Generally, we can randomly generate optimization
sequences and testing programs. However, this random
strategy may not be efficient due to the huge space of
optimization sequences and testing programs. Meanwhile,
many duplicate bugs may be triggered by similar opti-
mization sequences and testing programs. Thus, we need
to select representative optimization sequences and testing
programs.

In Section 3.2 and 3.3, we first introduce the vector
representations of optimization sequences and testing pro-
grams, respectively. Some optimizations in a certain order
constitute an optimization sequence. Thus, if optimization
sequences have similar optimizations in a similar order,
they may trigger duplicate compiler bugs. In addition, the
semantics and structure information of a testing program
is the key to distinguish different testing programs. Thus,
if testing programs have similar semantics and structure
information, they may also incur duplicate compiler bugs.
Therefore, a Doc2Vec based method is introduced to trans-
form an optimization sequence into a vector, which cap-
tures optimizations and their orders of the corresponding
optimization sequence simultaneously; a method based on
the region graph and call relationships of a program is
proposed to represent testing programs as vectors, such that
the semantics and structure information of a program can
be captured by vectors. With the vector representations of
optimization sequences and testing programs, we assume
that similar optimization sequences and testing programs
are close to each other in their corresponding vector spaces,
respectively. Hence, we present a centroid based selection
scheme to select representative optimization sequences and
testing programs in Section 3.4, such that the distances
among the selected representative optimization sequences
and testing programs are maximized, respectively.

3.2 Representation of Optimization Sequences

An optimization sequence is constituted of some optimiza-
tions in a certain order. Thus, the representation of an opti-
mization sequence should reflect the specific optimizations
and their orders contained in the sequence. Intuitively, an
optimization sequence is similar to a sentence in natural
language, which consists of some words in a certain order.
Hence, in this study, we treat optimization sequences as
sentences, such that efficient representation methods of sen-
tences can be adopted to transform optimization sequences

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

into vectors. However, many state-of-the-art representation
methods of sentences, such as the bag-of-words [32], cannot
reflect the word order. They fail to distinguish different
sentences with the same words. For capturing optimiza-
tions and their orders of an optimization sequence simul-
taneously, we employ Doc2Vec [29], a popular and widely
used sentence vector representation technique to represent
optimization sequences as vectors. Doc2Vec is an unsuper-
vised method for learning continuous distributed vector
representations of sentences or documents. Doc2Vec takes
word orders into consideration such that the sequences
with different orders of the same words have different
vector representations. In addition, Doc2Vec can be applied
to variable-length word sequences, so variable-length opti-
mization sequences can be easily transformed into vector
representations.

In this study, Doc2Vec is applied in a relatively straight-
forward way. That is, optimizations and optimization se-
quences are viewed as words and sentences, respectively.
We leverage the DMPV model (see Section 2.2) of Doc2Vec
as the representation method of optimization sequences.
Then we input optimizations and optimization sequences
into the DMPV model of Doc2Vec to obtain the vector
representations of optimization sequences.

For example, if we only take five optimizations in LLVM
into consideration, i.e., {-functionattrs, -gvn, -loop-rotate, -
loop-vectorize, -sroa}, and set the max length of optimization
sequences to 5, we can obtain 51+52+53+54+55 = 3905 op-
timization sequences. Take the following three optimization
sequences as an example: (a) ”-functionattrs -loop-rotate -sroa
-gvn -loop-vectorize”; (b) ”-functionattrs -sroa -loop-vectorize -
loop-rotate -gvn”; (c) ”-loop-rotate -sroa -gvn -loop-vectorize”.
If we can only test two sequences among them due to
the limitation of resources (e.g., time), testing sequences (a)
and (b) may uncover more bugs, since sequence (c) is a
subsequence of sequence (a) only without the optimization
”-functionattrs”. However, in this case, the order of optimiza-
tions is hard to be captured by some bag-of-words meth-
ods. For instance, we can calculate the similarity between
optimization sequences utilizing the Jaccard similarity co-
efficient4, which is defined as the size of the intersection
divided by the size of the union of two sample sets A and B,
i.e., J(A,B) = |A ∩ B|/|A ∪ B|. For the sequences (a) and
(b), they have the same optimizations, i.e., J(a, b) = 1; while
J(a, c) = 4/5 for the sequences (a) and (c). It indicates that
sequences (a) and (b) are identical, and sequences (a) and (c)
should be tested. This contrasts with the observation, since
the order of optimizations in the sequence (a) is completely
different from that in the sequence (b). By using Doc2Vec,
we can resolve the difficulty, which captures optimizations
and their orders of optimization sequences simultaneously.

3.3 Representation of Testing Programs
Testing programs are another critical factor to trigger com-
piler bugs caused by optimization sequences. Different test-
ing programs may trigger different bugs. Thus, we need
to select representative testing programs to improve the
test efficiency for finding more distinct bugs. Our study
focuses on finding compiler bugs caused by optimization

4. https://en.wikipedia.org/wiki/Jaccard index.

sequences of LLVM, which makes us decide to construct
vector representations of testing programs using LLVM IR.
LLVM IR is a light-weight and low-level while expressive,
typed, and extensible representation of programs [21]. In
this subsection, we present a vector representation method
based on the region graph and call relationships generated
from the unoptimized IR to transform a testing program into
a vector. With this approach, we can capture the semantics
and structure information of programs, which are useful
for selecting representative testing programs. We divide
the vector representation of a testing program into two
parts, namely, the representation of a function and the
representation of the whole program. Firstly, we transform
the instruction sequences of each edge in the region graph
of a function into vectors using the Doc2Vec technique;
then a deep region-first algorithm is employed to aggregate
vectors of each edge under two constraints to construct the
vector representation of a function. Secondly, after obtaining
the vector representations of all functions, we aggregate
them according to their call relationships to form the vector
representation of the whole program.

3.3.1 Representation of a function
A function consists of basic blocks, branches, and loops.
Basic blocks contain the basic semantics of a function, while
branches and loops control the structure of a function [33].
Thus, we use the region graph [34], [35] of a function to
construct its vector representation, since the region graph
could simultaneously capture the semantics and structure
information of a function [34], [35]. Definition 1 shows the
general definition of a region graph.

Definition 1. A region graph is a special control flow graph,
in which each node (i.e., basic block) exactly belongs to a region.
Specifically, a region is a connected subgraph of the control flow
graph that has exactly two connections to the residual graph [34],
[35], [36].

In a region graph, each node (i.e., basic block) exactly
belongs to a region. Fig. 4 shows an example of the region
graph. This graph is derived from a simple bubble sort
algorithm using the tool Opt in LLVM. We remove the
contents (i.e., statement sequences) of some basic blocks
for simplicity. Clearly, there are 10 basic blocks, 12 edges,
and 4 regions colored by four colors in Fig. 4. The number
next to each edge is its index. In these basic blocks, blocks
”%11” and ”%15” are entry nodes of the outer loop and the
inner loop respectively, and block ”%19” is the entry node
of a branch. From Fig. 4, the structure information (e.g., the
outer loop, the inner loop, and the branch) of the program
are clearly captured by each region.

To obtain the semantics of a function, we use the in-
struction sequences of each basic block [21] to represent
the behavior of a function. This is because the proposed
representation method of a program is based on LLVM IR
and each instruction has precise and fine-grained semantics.
In addition, the order of instructions significantly impacts
the semantics of a function. For example, we can easily
know that the behavior of the basic block ”%11” is to load
a variable and compare it with 0 through the instructions
”load” and ”cmp”. However, we do not simply translate all
the instruction sequences of each basic block to vectors and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

%14

%58

%54

%19

%32

%15

%55

%59
3

4

5

6

7 8

9

10

1

2

11

12

%2:
%3 = alloca i32*, align 8
%4 = alloca i32, align 4
%5 = alloca i32, align 4
%6 = alloca i32, align 4
%7 = alloca i32, align 4
store i32* %0, i32** %3, align 8
store i32 %1, i32* %4, align 4
%8 = bitcast i32* %5 to i8*
%9 = bitcast i32* %6 to i8*
%10 = bitcast i32* %7 to i8*
store i32 1, i32* %7, align 4
br label %11

%11:
%12 = load i32, i32* %7, align 4
%13 = icmp ne i32 %12, 0
br i1 %13, label %14, label %59

Fig. 4. Example of a region graph.

aggregate them (e.g., sum or average), since this will lose
the structure information of a function. For instance, the
block ”%58” has no influence on the block ”%19”. Simply
aggregating these vectors diminishes the importance of the
blocks introduced by the structure of a function. Therefore,
in this study, we present a deep region-first algorithm to
aggregate the information on each edge of the region graph.

Specifically, the information of an edge is the concate-
nation of the instruction sequences from its start node (i.e.,
basic block) to the end node. The reason for this is that if
the program executes from the start node to the end node
through this edge, the code in these two nodes will be
executed. For instance, the information of the first edge in
Fig. 4 is ”alloca alloca alloca alloca alloca store store bitcast bitcast
bitcast store br load icmp br”. After obtaining the information
of each edge, we also leverage Doc2Vec to transform the
information into vectors. The reason for this is that the
instructions and instruction sequences can also be treated
as words and sentences in natural language, respectively. In
addition, the instruction sequences are also order sensitive
like the optimization sequences.

Then, the deep region-first algorithm is utilized to aggre-
gate the information of each edge to form the final vector
representation of a function. Algorithm 1 presents the de-
tails of the proposed aggregation algorithm. Given a region
graph of a function with vector representations of edges, we
first recognize the entry node (entry node), the exit node
(exit node), and the loop entry nodes (loop entry nodes)
of the region graph in lines 2 to 4. Then all outgoing edges
of entry node are marked as visited in line 7, since the
entry node does not have incoming edges. The work list
(work list) initialized by entry node in line 9 is used to
store the candidate nodes. Next, from line 10 to 35, the
vectors of incoming edges of a node are aggregated to its
outgoing edges until work list is empty.

In the aggregation process, two constraints need to be
satisfied in the proposed aggregation algorithm. The first

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

%14

%58

%54

%19

%32

%15

%55

%59
3

4

5

6

7 8

9

10

1

2

11

12

%2:
%3 = alloca i32*, align 8
%4 = alloca i32, align 4
%5 = alloca i32, align 4
%6 = alloca i32, align 4
%7 = alloca i32, align 4
store i32* %0, i32** %3, align 8
store i32 %1, i32* %4, align 4
%8 = bitcast i32* %5 to i8*
%9 = bitcast i32* %6 to i8*
%10 = bitcast i32* %7 to i8*
store i32 1, i32* %7, align 4
br label %11

%11:
%12 = load i32, i32* %7, align 4
%13 = icmp ne i32 %12, 0
br i1 %13, label %14, label %59

Figure 4: Example of a region graph.

Representation of function. In our study, the region graph [15, 40]
of a function is used to construct its vector representation, since
we hope to capture the semantics and structural information of a
program simultaneously. A region graph is a special control flow
graph of a function. Each basic block in the region graph exactly
belongs to a region. Specifically, a region is a connected subgraph
of the control flow graph that has exactly two connections to the
residual graph [12]. Fig. 4 shows an example of the region graph.
We remove the contents (i.e., statement sequences) of some basic
blocks for simplicity. There are four regions colored by four different
colors in Fig. 4. From the region graph, it is clear that the structural
information of the program can be captured by each region.

To obtain the semantic of a function, we first extract the instruc-
tion sequences of each basic block [9]. Then, we concatenate two
instruction sequences from the start node (i.e., basic block) to the
end node of an edge to represent the information of this edge. This
is because if the program executes from the start node to the end
node through this edge, the code in these nodes will be executed.
For instance, the information of the first edge in Fig. 4 is "alloca
alloca alloca alloca alloca store store bitcast bitcast bitcast store br
load icmp br". Next, we transform the information of each edge in
the region graph into vectors using Doc2Vec [20].

After transforming the information of each edge into vectors, we
aggregate them to form the vector representation of the function.
To this end, we develop a deep region-first method to aggregate the
information on each edge of the region graph. Algorithm 1 presents
the details of the proposed aggregation method. Two constraints
need to be satisfied in the proposed method. Firstly, for a node (i.e.,
a basic block) with predecessors and successors in the region graph,
such as node "%54" in Fig. 4, if the information on its incoming
edges can be propagated to the outgoing edges, the information
before its predecessors must have been propagated to the incoming

18 in_edдes = all incoming edges of node in Reд;
19 if in_edдes ⊆ visited_edдes then
20 temp_vec = sum of vectors of in_edдes ;
21 num = number of edges in in_edдes ;
22 for edдe ∈ out_edдes do
23 edдe .vector = edдe .vector + temp_vec ;
24 edдe .vector = edдe .vector/(num + 1);
25 add edдe into visited_edдs ;
26 if node < (visited_nodes ∪work_l ist) then
27 add node into work_l ist ;

28 else
29 in_edдe = edge from cur_node to node ;
30 for edдe ∈ out_edдes do
31 edдe .vector = edдe .vector + in_edдe .vector ;
32 edдe .vector = edдe .vector/2;
33 add edдe into visited_edдs ;
34 if node < (visited_nodes ∪work_l ist) then
35 add node into work_l ist ;

36 return vector representation of edge ended with exit_node ;

edges. For example, if we want to propagate the information on
the incoming edges 6 and 7 to the outgoing edge 8, the information
on edges 5 and 4 must have been propagated to edges 6 and 7,
respectively. In our study, to aggregate the information of incoming
edges and outgoing edges, we average their sum and assign it to
the outgoing edges. Lines 17 to 24 in Algorithm 1 show the details
of the first constraint.

However, for the loop entry node, this constraint must be relaxed
due to the back edge. For instance, edge 9 is a back edge and it is also
an incoming edge of loop entry node "%15", we cannot propagate
any information to the outgoing edges of node "%15", since the
information before node "%55" has not been propagated to edge
9 under the first constraint. Thus, we propagate the information
on incoming edges of loop entry node separately. That is, if the

4

17 if node < loop_entry_nodes then
16 out_edдes = all outgoing edges of node in Reд;
15 for each node ∈ succ_nodes do
14
13
12
11
10 while work_l ist , ϕ do
9 work_l ist = [entry_node];
8 /*work list initialized with entry_node*/
7 add all outgoing edges of entry_node into visited_edдs ;
6 visited_edдs = list to store visited edges;
5 visited_nodes = list to store visited nodes;
4 loop_entry_nodes = entry nodes of loops in Reд;

1 /*edдe .vector : vector representation of an edge*/
 each edge.

Input: Reд: region graph of a function with vector representation of
Algorithm 1: Vector representation of a function.

2 entry_node = entry node of function in Reд;
3 exit_node = exit node of function in Reд;

succ_nodes = successor nodes of cur _node in Reд;
delete cur _node from work_l ist ;
add cur _node into visited_nodes;
cur _node = node in work_l ist with the deepest region;

constraint (line 11) is called a deep region-first constraint. It
means the node in the innermost region will be first selected
to aggregate the vectors of incoming edges to the outgoing
edges. The reason is that the semantics of the outer region
is based on the inner region. In Fig. 4, after propagating
information to edges 2 and 12, nodes ”%14” and ”%59” are
two candidate nodes. However, the region of node ”%14” is
contained in the region of node ”%59”, i.e., the previous
region is ”deeper” than the later one, thus node ”%14”
is selected. When the current node (cur node) within the
deepest region in work list is selected, we delete it from
work list and add it into the list visited nodes that stores
the visited nodes (line 12 and 13).

Next, the second constraint is employed to aggregate
the vectors of incoming edges and outgoing edges of each
successor node of cur node in line 15 to 35. The second
constraint indicates that, for a node with predecessors and
successors in a region graph, such as node ”%54” in Fig. 4, if
the information on its incoming edges can be propagated to
the outgoing edges, the information before its predecessors

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

must have been propagated to the incoming edges. This
constraint is valid by line 19, i.e., all incoming edges of a
node must have been visited. For example, if we want to
propagate the information on the incoming edges 6 and 7
to the outgoing edge 8, the information on edges 5 and 4
must have been propagated to edges 6 and 7, respectively.
In our study, to aggregate the information of incoming edges
and outgoing edges, we average their sum and assign it to
the outgoing edges (line 22 to 25). Then the successor node
of cur node is added into work list if it does not exist in
work list and visited nodes (line 25 and 26).

However, for the loop entry node, the second constraint
must be relaxed due to the back edge of a loop. For instance,
edge 9 is a back edge and it is also an incoming edge
of the loop entry node ”%15”. We cannot propagate any
information to the outgoing edges of node ”%15”, since the
information before node ”%55” has not been propagated to
edge 9 under the second constraint. Thus, we propagate the
information on the incoming edges of the loop entry node
separately. That is, if the information has been propagated
to edge 3, we will propagate it to edges 4 and 10. Similarly,
the information on edge 9 will be propagated to edges 4
and 10. Thus, in line 17, we verify that whether a node
belongs to loop entry nodes. Lines 29 to 35 in Algorithm
1 are the corresponding pseudocode for processing the loop
entry node.

Therefore, starting from the entry node (e.g., ”%2”) of a
region graph, when all nodes have been processed, the vec-
tor representation of the edge related to the exit node (e.g.,
”%59”) is treated as the vector representation of a function.
In particular, if there is only one basic block in the region
graph, the vector representation of the instruction sequence
in this basic block is treated as the vector representation of
a function.

3.3.2 Representation of the whole program
Generally, a program may contain many functions with
calling relationships. In our study, we construct the vec-
tor representation of a program based on its call graph.
Algorithm 2 presents the procedure to generate the vector
representation of a program. Given a call graph with the
vector representation of each function of a program, the key
idea of Algorithm 2 is to propagate the vectors of callees to
their callers. This is because the callee should have different
weights due to the call relationships. For example, in Fig.
5, the function ”func6” is only called by functions ”func1”
and ”func2”. It has no any direct impact on other functions.
Thus, if we only simply aggregate (e.g., sum or average) all
the vectors of functions, we lose the impact of the weight of
each function. However, one constraint must be satisfied in
the propagation process. That is, all vectors of callees of a
caller must be the final results, i.e., there is not any vector
that needs to be propagated to these callees. Specifically, the
vectors of end nodes are their final results that have been
marked in line 9.

In the algorithm, we first remove edges of recursive calls
in line 2, such that the call graph is a directed acyclic graph.
On the one hand, the recursive calls make it impossible for
the algorithm to decide which nodes have the final result.
For example, there is an indirect recursive call between
”func1” and ”func4” in Fig. 5. According to the constraint,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

CTOS: Compiler Testing for Optimization Sequences

25 delete cur_node from work_l ist ;
26 return vector representation of node "start";

information has been propagated to edge 3, we will propagate it
to edges 4 and 10; similarly, the information on edge 9 will be
propagated to edges 4 and 10. Lines 27 to 31 in Algorithm 1 are the
corresponding pseudocode for processing the loop entry node.

The second constraint is deep region-first, which means the
node in the innermost region will be first selected to aggregate the
information of its incoming edges and outgoing edges. In Fig. 4,
after propagating information to edge 2 and 12, nodes "%14" and
"%59" are two candidate nodes. However, the region of node "%14"
is contained in the region of node "%59", i.e., previous region is
more "deep" than later, thus node "%14" is selected.

Thus, starting from the entry node (e.g., "%2") of the region graph,
when all nodes have been processed, the vector representation of
edge related to the exit node (e.g., "%59") is treated as the vector
representation of the function. In particular, if there is only one
basic block in the region graph, the vector representation of the
instruction sequences in the basic block is treated as the vector
representation of the function.

Representation of whole program. Generally, a programmay contain
many functions with calling relationship. In our study, we construct
the vector representation of a program based on its call graph.
The vector representation of a function is propagated back to its
caller. Algorithm 2 presents the proposed method to generate vector
representation of a program. Firstly, we add a node "start" (i.e.,

main

func1

func5

func2 func3

start

func4 func7func6

xx

Figure 5: Example of call graph.

a fake function with name "start") to the call graph with a zero
vector as its representation. This is because there may exist some
functions (besides the main function) that are not called by any
other functions. Then, we add edges from the node "start" to the
nodes without predecessors.

Generally, we aggregate the vector representation of callee to
caller. For a node with successors in the call graph, we average
the sum of its vector representation and that of its successors, and
then this average value is assigned to the node as its final vector
representation. However, one constraint must be satisfied in this
process. That is, all vector representations of the successors of a
node must be the final results. Specifically, the vector represen-
tation of nodes without successors are their final results. In the
call graph, we remove edges of recursive calls such that the call
graph is a directed acyclic graph. This is because, on the one hand,
the recursive calls make it impossible for the algorithm to decide
which node has the final result. For example, there is an indirectly
recursive call between func1 and func4 in Fig. 5. According to the
constraint, if we want to aggregate the vector of func4 to func1, the
vector representation of func4 should be the final results, but at this
moment the func1 as the successor of func4 does not have the final
vector representation. On the other hand, the recursive calls have
almost no effect on improving the representation of functions. For
instance, func7 recursively calls itself, its vector representation is
not varied after the aggregation.

In Fig. 5, when the recursive calls are deleted, func4, func5, func6,
and func7 are the nodes with final vector representation. Thus
we can propagate these vectors back to func1, func2, and func3
according to their calling relationships. After obtaining the final
vector representations of func1, func2, and func3, the vector repre-
sentations of func2 and func3 can be propagated back to the main
function, but we cannot propagate the vector representations of
func1 and main back to start since the vector representation of
main is not the final result. Lastly, the vector representation of start
is treated as the representation of the whole program.

3.3 Selection of Optimization Sequences and
Testing Programs

The previous subsection introduces the vector representations of
optimization sequences and testing programs. In this subsection,
we present a selection scheme to select representative optimization
sequences and testing programs for quickly detecting unique bugs.

5

24 add node into work_l ist ;
23 add node into visited_nodes ;
22 node .vector = node .vector /(num + 1);
21 num = number of nodes in succ_nodes ;
20 node .vector = node .vector + temp_vec ;
19 temp_vec = sum of vectors of succ_nodes ;
18 if suc_nodes ⊆ visited_nodes then
17 suc_nodes = successor nodes of node in CG ;
16 if node < visited_nodes then
15 for node ∈ pre_nodes do
14 pre_nodes = predecessor nodes of cur _node in CG ;
13 cur _node = pick up a node in work_l ist ;
12 while work_l ist , ϕ do
11 work_l ist = [end_nodes];
10 /*work list initialized with end_nodes*/
9 add node ∈ end_nodes into visited_nodes ;
8 visited_nodes = list to store visited nodes;
7 add edges from "start" to node ∈ star t_nodes ;
6 add a node with name "start" into CG ;
5 /*vector representation of node "start" is 0*/
4 end_nodes = functions without successors in CG ;
3 star t_nodes = functions without predecessors in CG ;
2 delete edges of recursive calls in CG ;
1 /*node .vector : vector representation of a function*/

 each function.
Input: CG : call graph of a program with vector representation of

Algorithm 2: Vector representation of the whole program.

if we want to aggregate the vector of ”func4” to ”func1”,
the vector representation of ”func4” should be the final
results. However, at this moment ”func1” is the successor
of ”func4”, it does not have the final vector representation.
On the other hand, the recursive calls have almost no effect
on improving the representation of functions. For instance,
”func7” recursively calls itself. Its vector representation does
not change after the aggregation.

Then, the start nodes (start nodes) and the end nodes
(end nodes) in the call graph are recognized in lines 3 and
4. start nodes are the nodes without predecessors, while
end nodes are the nodes without successors in the call
graph. We add a node ”start” (i.e., a fake function with
the name ”start”) to the call graph with a zero vector as its
representation. Next, we add edges from the node ”start”
to start nodes. The reason is that there may exist some
functions (besides the ”main” function) which are not called
by any other functions. Notably, the function without any
caller can also be split into an independent program, but in
our study, we treat the functions in a program generated by
Csmith in a uniform way for simplifying the processing of
the program. The work list (work list) is initialized with
end nodes. Thus, from line 12 to 25, we propagate the
vectors of callees to callers until work list is empty. In line
13, the current node (cur node) is randomly picked up from
work list. In line 14, the predecessor nodes (pre nodes) of
(cur node) are selected. Thus, for each node in pre nodes,
we propagate the vectors of its successors to it from line 15
to 24. The constraint is verified in line 18. If all nodes in
suc nodes of a node have been visited, we average the sum

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

main

func1

func5

func2 func3

start

func4 func7func6

xx

Fig. 5. Example of call graph.

of its vector and those of its successors (line 19 and 20). Then
this average value is assigned to the node as its final vector
representation in line 22.

In Fig. 5, when the recursive calls are deleted, ”func4”,
”func5”, ”func6”, and ”func7” are the nodes with final vector
representations. Thus, we can propagate these vectors back
to ”func1”, ”func2”, and ”func3” according to their calling re-
lationships. After obtaining the final vector representations
of ”func1”, ”func2”, and ”func3”, the vector representations
of ”func2” and ”func3” can be propagated back to function
”main”. However, we cannot propagate the vector repre-
sentations of ”func1” and ”main” back to ”start”, since the
vector representation of ”main” is not the final result. Lastly,
the vector representation of ”start” is treated as the vector
representation of the whole program.

3.4 Selection Scheme

With the vector representations of optimization sequences
and testing programs, we present a selection scheme in this
subsection to select representative optimization sequences
and testing programs.

Given a set of instances (i.e., optimization sequences and
testing programs), we aim to select a small set of instances
with better diversity, since the space of instances is huge and
duplicate bugs may be triggered by the instances with high
similarities. Algorithm 3 presents the proposed selection
scheme. The central idea is to select instances one by one
such that the total distances among the selected instances
are maximized. First, M instances will be generated by a
random generator (for the generation of initial optimization
sequences and testing programs, see Section 4.2). We then
cluster these M instances into groups. After that, the central
instances of each group are selected as the initialization of
the set of selected instances selected insts, which leads
at least one instance in each group to be selected. This is
because the distribution of instances may be unbalanced,
which causes that some instances with special features that
can trigger bugs may be lost. In this paper, we use the X-
means algorithm [37] to cluster the target instances, since
it can automatically determine the best number of groups.
Next, from line 7 to 18, we select the best candidate instance
in each iteration until k required instances are selected.

Specifically, the selection procedure is a ”centroid” based
scheme. Suppose the solar system is a set of instances, the
task is to select some instances around the center ”Sun”.
For a candidate instance, we first calculate the distance

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

For a large number of instances (i.e., optimization sequences
and testing programs), we aim to select a small part of instances
with better diversity, since the instances with higher similarities
are possible to trigger duplicate bugs. To this end, two distances
of a candidate instance are considered, namely, the distance to
the center of all instances (dist2center) and the minimum distance
to the selected instances (min_dist2sel). With dist2center , we can
know the location of a candidate instance in all instances, while the
min_dist2sel indicates how closely the candidate instance is to the
selected instances. Then the product of these two distances is used
as the score of the candidate instance to balance the effect of these
two distances. Equation 1 shows the basic idea for selecting repre-
sentative instances, where C represents the set of total instances,
center is the centroid of C , k is the number of selected instances
selected_insts , dist() is the Euclidean distance function, which is
used to calculate the distance between two instances. Suppose
®u = (u1,u2, · · · ,un) and ®v = (v1,v2, · · · ,vn) are two candidate in-
stances represented by n dimensional vectors, dist(u,v) is defined
by Equation 2. Thus, the instances that lead Equation 1 to obtain
maximum value will be selected as the final results.

selected_insts = Arдmaxkc ∈C [dist(c, center)∗
min(dist(c, selected_insts))] (1)

dist(®u, ®v) =
√
(u1 −v1)2 + (u2 −v2)2 + ... + (un −vn)2 (2)

Algorithm 3 presents a heuristic method to solve Equation 1. In
each iteration, the instance with maximum score is selected. First,
M instances will be generated by a random generator (see details in
Section 4.1). However, in some cases, we find that the instances may
not be selected by the above basic idea due to the unbalanced dis-
tribution of instances. This may cause some instances with special
features that can trigger bugs to be lost. Thus, for theseM instances,
we next cluster them into many groups, and the central instances
of each group are selected as the initialization of selected_insts ,
such that at least one instance in each group can be selected. In
this paper, we use the X-means algorithm [32] to cluster the target
instances, since it can automatically determine the best number of
groups. In Algorithm 3, for a candidate instance that has not been
selected, line 11 firstly calculates the distance to the centroid of
all candidate instances; then the minimum distance to the selected
instances is calculated in line 12, the score of the current instance
is calculated via the product of these two distances in line 13. In
lines 10 to 16, the best instance with the maximum score is selected.
This process repeats until k instances are selected.

4 EVALUATION
In this study, we evaluate CTOS on LLVM. Our evaluation is aimed
at answering the following two Research Questions (RQ).
• RQ1: How is the bug-finding capability of CTOS?

In this RQ, we investigate the capability of CTOS for detecting
LLVM bugs caused by optimization sequences. Specifically, we
evaluate CTOS from three aspects, namely, the number of reported
bugs, the type of bugs, and the number of buggy optimizations.
• RQ2: Does the proposed selection scheme help to detect bugs?

Algorithm 3: Selection of representative instances
Input: M : total number of instances.
Input: k : number of instances should be selected.

1 total_insts = random_instance_generator(M);
2 insts_clusters = Clustering(total_insts);
3 total_center = center of total_insts;
4 center_of _clusters = centers of each cluster in insts_clusters ;
5 selected_insts = center_of _clusters ;
6 count = number of instances in selected_insts ;
7 while count < k do
8 best_inst = null ;
9 best_score = 0;

10 for each inst ∈ total_insts and inst < selected_insts do
11 dist2center = dist (inst, total_center);
12 min_dist2sel = min (dist (inst, selected_insts));
13 score = dist2center * min_dist2sel;
14 if score > best_score then
15 best_score = score ;
16 best_inst = inst ;

17

18

19 return selected_insts ;

This RQ investigates whether the proposed selection scheme
for selecting representative optimization sequences and testing
programs is helpful for detecting bugs. We conduct 9 comparative
experiments. Besides the proposed selection scheme, we also con-
sider two alternative methods for acquiring optimization sequences
and two alternative methods for selecting testing programs.

4.1 Testing Setup
Hardware and Compiler. Our testing is conducted on a x86_64
computer with an Intel® CoreTM i7-7700 CPU @ 3.60GHZ x 8 pro-
cessor and 16GB of memory, and the operating system is Ubuntu
18.04 Linux.Wemainly test the latest development version of LLVM,
since the developers of LLVM fix bugs primarily in the latest de-
velopment version rather than in stable versions [38, 39]. The max-
imum size of memory for a process is set to 4GB since an opti-
mization may consume too much memory, and the timeout is 120
seconds to avoid a long time for optimizing a testing program.

Optimizations. In our study, C programs are used as the inputs
for LLVM in our experiments, thus we mainly focus on testing the
machine independent optimizations of LLVM that are useful for C
programming language. We currently do not consider the optimiza-
tions for object-oriented programming languages (e.g., C++ and
Objective-C), profile guided optimizations and results visualization
of optimizations. Finally, 114 optimizations are selected5. In addi-
tion, we use a uniform random generator to generate optimization
sequences. The length of an optimization sequence is randomly se-
lected in the range from 50 to 200. The parameters of optimizations
are set to the default values.

5The full list of 114 optimizations can be found on website , https://github.com/CTOS-
results/LLVM-Bugs-by-Optimization-sequences.

6

count = count + 1;
selected_insts = selected_insts ∪ best_inst ;

dist2center from this instance to the center, such that the
instances with different orbits can be distinguished like the
”Earth” and ”Mars”. In addition, the minimum distance
min dist2sel from the candidate instance to the selected
instances is calculated for avoiding similar instances in the
same or similar orbits. For example, if the instances ”Earth”
and ”Mars” are selected, the instance ”Moon” cannot be se-
lected since it is very close to ”Earth”. Therefore, to balance
the effect of these two distances, we leverage the product of
these two distances as the score of a candidate instance. The
larger the score a candidate instance has, the better it will
be. In this study, we utilize the Euclidean distance function
dist(u, v) to calculate the distance between two instances.
Suppose ~u = (u1, u2, · · · , un) and ~v = (v1, v2, · · · , vn) are
two candidate instances represented by n dimensional vec-
tors, dist(~u,~v) =

√
(u1 − v1)2 + ...+ (un − vn)2. In Algo-

rithm 3, for a candidate instance that has not been selected,
we firstly calculate the distance from it to the centroid in
line 11; then the minimum distance from it to the selected
instances is calculated in line 12, the score of the current
instance is calculated via the product of these two distances
in line 13. In lines 10 to 16, the current best instance with
the maximum score is selected. This process repeats until k
instances are selected.

4 EVALUATION

In this study, we conduct experiments on LLVM to evaluate
the effectiveness of CTOS. Specifically, our evaluation aims
at answering the following two Research Questions (RQs).
• RQ1: Can the proposed selection scheme help to detect
bugs?

This RQ investigates whether the proposed selection
scheme for selecting representative optimization sequences
and testing programs is helpful for detecting compiler bugs
of LLVM. Besides the proposed selection scheme, we also
consider two alternative methods for acquiring optimization

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

sequences and four alternative methods for selecting testing
programs (see details in Section 4.3). Thus, we conduct an
experiment for comparing the results of CTOS under three
kinds of optimization sequences and five kinds of testing
programs.
• RQ2: How is the bug-finding capability of CTOS in
practice?

In this RQ, we investigate the capability of CTOS for
detecting LLVM bugs caused by optimization sequences in
practice. Specifically, we evaluate CTOS from three aspects,
namely, the number of reported bugs, the type of bugs, and
the number of buggy optimizations.

4.1 Implementations
We implemented CTOS with approximately 2,000 lines of
Python code5. In our study, the used Doc2Vec [29] model
is implemented in Gensim [38], which is a widely used
Python library for the representation of natural language.
For the vector representation of optimization sequences, we
set vector size = 100, window = 3, alpha = 0.05, and
epochs = 20 to train the Doc2Vec model. All the parameters
of Doc2Vec are set according to the documents of Gensim
and the suggestions by [39]. Algorithms 1 and Algorithm
2 for the vector representation of a given program are
implemented based on NetworkX [40]. First, a C program
is transformed into its IR using Clang without any opti-
mization. Then the optimizer Opt of LLVM takes in this
IR to generate the corresponding region graph and the call
graph. Similarly, we employ Doc2Vec to obtain the vector
representation of instruction sequences on each edge of a
region graph, and the parameters of Doc2Vec are the same as
those in the representation of optimization sequences except
that window = 5.

Note that in this study, we train two Doc2Vec models
in each iteration to obtain the vector representations of
optimization sequences and testing programs, respectively.
A typical Doc2Vec model usually requires a large number of
training data to solve the out-of-vocabulary problem which
may be time-consuming. Since the space of optimization
sequences is extremely huge, the out-of-vocabulary problem
may also negatively affect the representation of optimization
sequences (or testing programs). To alleviate this problem,
in each iteration of testing, we train local Doc2Vec models
specialized to learn the knowledge of current optimization
sequences and testing programs. That is, we train two new
Doc2Vec models using the new randomly generated opti-
mization sequences and testing programs. After training,
we obtain the vector representations of the optimization
sequences and testing programs (For vector representations
of testing programs, we still need the aggregations shown
in Algorithms 1 and Algorithm 2). These vectors are then
taken as the inputs of the selection algorithm to select repre-
sentative optimization sequences and testing programs. By
this setting, CTOS can efficiently learn the representation of
optimization sequences and testing programs and be less
influenced by the out-of-vocabulary problem.

For the selection scheme presented in Section 3.4, the
used clustering algorithm X-means is implemented in Py-

5. All the source code of CTOS will be publicly available after the
publication.

Clustering [41], which is a data mining library that provides
a wide range of clustering algorithms. The parameters of
X-means are set to the default values. In Algorithm 3, the
total numbers of initial optimization sequences and testing
programs (i.e., M) are 300,000 and 100,000, respectively, they
reach the limitation of memory of our system on processing
optimization sequences and testing programs. The numbers
of optimization sequences and testing programs (i.e., k) that
should be selected by Algorithm 3 are 3,000 and 1,000,
respectively. This is because given the testing period (i.e.,
two weeks for one testing process on LLVM in practice),
we can test about 3,000 optimization sequences and 1,000
testing programs. Besides, we set a single testing period to
two weeks, because we hope to timely update and test the
latest development version of LLVM.

4.2 Testing Setup
Hardware. Our evaluation is conducted on an x86 64 com-
puter running Ubuntu 18.04 Linux with an Intelr CoreTM

i7-7700 CPU @ 3.60GHZ x 8 processor and 16GB of memory.
Compilers. In our study, we only conduct our experiments
on LLVM. The reason is that, as to our knowledge, only
LLVM currently can allow developers to adjust the orders
of optimizations. For GCC, another mature and widely used
compiler in both industry and academia, the orders of opti-
mizations are fixed6. Although any order of optimizations
can be passed as command-line arguments to GCC, the
orders of these optimizations cannot affect the behavior of
GCC. The same case also occurs for CompCert that is a
verified and high-assurance compiler for the C language 7.
The fixed order of optimizations is beneficial for the rapid
implementation and safety of compilers. However, there is
no doubt that the fixed order of optimizations limits the
capabilities of compilers to optimize programs for different
requirements. In contrast, as a compiler providing sup-
port for arbitrary orders of optimizations, LLVM has been
widely used to implement many compilers and tools. Our
study aims to improve the reliability of optimizations with
arbitrary orders for LLVM, which helps to guarantee the
correctness of different LLVM-based compilers and tools.
Optimizations. In our study, C programs are used as the in-
puts of LLVM. Thus we mainly focus on testing the machine
independent optimizations of LLVM that are useful for the
C programming language. We currently do not consider the
optimizations for object-oriented programming languages
(e.g., C++ and Objective-C), profile guided optimizations,
and results visualization of optimizations. Finally, 114 op-
timizations are selected8. In LLVM, each optimization may
depend on certain other optimizations as the preconditions.
LLVM provides a mechanism to manage the dependencies,
i.e., PassManager9. Thus, we do not need to manually man-
age the dependencies of optimizations.

For generating the initial optimization sequences, we
assign an index to each optimization. The length of an op-

6. https://stackoverflow.com/questions/33117294/order-of-gcc-
optimization-flags.

7. https://github.com/AbsInt/CompCert/issues/287.
8. The full list of 114 optimizations can be found on the web-

site, https://github.com/CTOS-results/LLVM-Bugs-by-Optimization-
sequences.

9. https://llvm.org/docs/WritingAnLLVMPass.html.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

timization sequence is randomly selected in the range from
50 to 200. This is because there are 84 unique transformation
optimizations in the -O3 optimization level of the current
released LLVM 7.0.1 (the optimizations in -O3 optimization
level may be different in different versions of LLVM). The
range from 50 to 200 could guarantee that the generated
optimization sequences have different lengths. Then we
leverage a uniform random number generator to randomly
generate the indexes of optimizations until the length of the
current optimization sequence is reached. Next, the index
sequence is translated into the corresponding optimization
sequence. In addition, the parameters of optimizations are
set to the default values.
Testing Programs. We use Csmith [13], a widely used
program generator that supports most features of the C
programming language to generate initial testing programs.
To detect compiler bugs caused by optimization sequences,
the testing program needs to be valid, free to undefined
behaviors, diverse, and executable. However, other program
generators (e.g., CCG [42], Yarpgen [43], Orion [9]) can not
meet our requirements. For example, CCG can not generate
runnable testing programs, and the maintenance of CCG has
stopped for a long time. Yarpgen is a generator to produce
correct runnable C/C++ programs, but it only supports
a few C/C++ features. Orion is a mutation-based tool to
generate new programs for seed programs by deleting the
dead code in the seed programs. For the mutation-based
tools (e.g., Orion), the diversity of the programs generated
by these tools is limited by the seed programs. In addition,
some grammar-based program generators (e.g., Grammari-
nator [44]) can also be utilized to generate testing programs,
but the generated programs always are invalid and contain
undefined behaviors. Thus, we employ Csmith to generate
testing programs in this paper. The minimum size of the
generated programs is set to 80KB as suggested in [13].
Other parameters of Csmith are set to the default values.
In addition, we leverage LLVM warnings and Frama-C10 to
detect undefined behaviors of the generated programs, since
the undefined behavior may cause invalid compiler bugs.
Test Case Reduction. Similar to other related studies (e.g.,
[9], [13], [17]), all test cases that trigger compiler bugs should
be reduced before we report them to the developers, such
that the developers can quickly locate the real reasons of the
bugs and fix them. Test case reduction includes two parts
in our study, namely, optimization sequence reduction and
testing program reduction. For the reduction of optimization
sequences, we remove each optimization in the optimization
sequence one by one. If the bug still occurs, which indicates
that this optimization has no impact on the bug, we delete
it from the optimization sequence; otherwise, the removed
optimization will be put back into the original position.
This process continues until no optimization can be deleted.
Additionally, similar to the related work [9], [13], [17], we
also use Creduce [45], a widely used tool for reducing C,
C++, or OpenCL programs, to reduce the testing programs
that have triggered bugs. LLVM warnings and Frama-C are
used to detect undefined behaviors during the reduction
process to ensure that the resultant program is valid.

Note that, we first reduce the optimization sequences.

10. http://frama-c.com/.

This is because the reduction of testing programs always
takes more time than the reduction of optimization se-
quences. The developers of LLVM think that ”the passes
are mostly designed to operate independently, so if we see an
assert/crash, then we can always blame the last pass in the
sequence. And if the test ends with the same assertion and
backtrace in the last pass in the sequence, then we can assume that
it is a duplicate.” (see LLVM Bug#40927 [46]) Thus, if the last
optimizations of the reduced sequences are identical (for the
crash bug, the failed assertion or backtrace also should be
identical), the corresponding bugs are treated as a duplicate.
Therefore, reducing optimization sequences firstly can save
the total time to reduce test cases.
Duplicate Bug Identification. In our study, we also adopt
the above strategy to filter out duplicate bugs. We treat the
last optimization in a reduced optimization sequence as a
buggy optimization. Thus, if the last optimizations in the
two reduced optimization sequences of two bugs are the
same, these two bugs are treated as a duplicate. Besides,
for crash bugs, to improve the accuracy of duplicate bugs
identification, we further use the failed assertion or back-
trace to determine duplicate crash bugs. That is, when two
crash bugs have the same failed assertion or backtrace, we
treat them as duplicate crash bugs. The reason for adopting
this strategy rather than just distinct optimization sequences
to identify duplicate bugs is because many duplicate bugs
can be triggered even though the reduced optimization
sequences are distinct. This is also the strategy applied by
the LLVM developers, as can be seen in LLVM Bug#40926
[47], #40927 [46], #40928 [48], #40929 [49], and #40933 [50],
which are marked as duplicates of LLVM Bug#40925 [51].
Although the optimization sequences of these bugs are dis-
tinct, they are marked as duplicates because the root causes
of these bugs are introduced in the same last optimization
in the sequences. Through this strategy, we may avoid
reporting too many duplicate bugs to developers.
Bug Types. In our study, we mainly find the following five
types of compiler bugs caused by optimization sequences of
LLVM.

1) Crash. The optimizer Opt of LLVM crashes when opti-
mizing the IR of a program.

2) Invalid IR. In LLVM, each optimization takes in the
valid IR of a program as input, and its outputs also
should be a valid IR. However, invalid IR may be
generated by some optimizations due to the interaction
among optimizations. In our evaluation, we tune on
the option ”-verify-each11” of the optimizer Opt to verify
whether the output IR is valid after every optimization.
If the IR is invalid after an optimization, the optimizer
Opt will be stopped and will output some error mes-
sages.

3) Wrong code. The optimized IR produced by the op-
timizer Opt may contain different semantics to the
original program, which makes the corresponding exe-
cutable produce wrong outputs, or occur segmentation
faults or floating point exceptions.

4) Performance. When the out-of-memory of the opti-
mizer Opt occurs, we treat it as performance bugs. It
could slow the compilation of programs. In the worst

11. http://llvm.org/docs/CommandGuide/opt.html.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

case, the computer system may be jammed due to the
performance bug. Generally, we set the maximum size
of the memory of an optimizer process to 4GB, since it
is sufficient to optimize a testing program using 4GB
memory in most cases. Thus if the maximum memory
of the optimizer Opt is greater than 4GB, the optimizer
will be stopped like a crash bug. We also try not to limit
the size of the memory, but it has the same results as
the 4GB limitation.

5) Code generator bug. The code generator in the back-
end is used to generate the assembly code of a pro-
gram from the corresponding IR. However, the IR of a
program optimized by some optimizations may trigger
some bugs in the code generator. Currently, we only
find one bug for this type, it makes the code generator
not emit a machine instruction and stops the code
generator.

4.3 Answer to RQ1

To evaluate the effectiveness of the proposed selection
scheme, we design an experiment for comparing the results
of CTOS with three kinds of optimization sequences and five
kinds of testing programs. The experiment is conducted on
the recently released version of LLVM 7.0.1, such that we
can verify the detected bugs using the latest development
version of LLVM. For a detected bug, if it does not exist in
the latest development version of LLVM, we then think it
has been fixed; otherwise, we report it to the developers of
LLVM to further identify whether it is a valid bug.

Specifically, there are three kinds of optimization se-
quences. Besides the optimization sequences selected by
the proposed selection scheme (SS) in CTOS, we adopt a
random strategy and a combinatorial testing technique [52]
to generate optimization sequences. For randomly gener-
ating optimization sequences (RS), an index is assigned to
each optimization, and then a uniform random number
generator is utilized to randomly generate the indexes of
optimizations until the length (that is randomly selected
in the range from 50 to 200) of the current optimization
sequence is reached. Next, we translate the index sequence
into the corresponding optimization sequence. This random
strategy is identical to the strategy described in Section 4.2.
The minimum and maximum lengths of RS are the same as
those of SS, and the number of SS and RS is identical (i.e.,
3,000). In addition, we utilize the combinatorial testing tech-
niques implemented in ACTS [53] to generate optimization
sequences. ACTS is a widely used test generation tool for
constructing t-way combinatorial test sets to detect failures
triggered by interactions of parameters in the software [52].
However, we can only generate 2-way combinatorial opti-
mization sequences 2W since there are too many optimiza-
tions. In our study, we set the length of the optimization
sequences generated by ACTS to 200 for simplicity, and then
ACTS generates 34,473 2-way combinatorial optimization
sequences.

In addition, besides the testing programs selected by the
proposed selection scheme (SP) in CTOS, four alternative
methods are used to select testing programs. Similar to other
studies (e.g., [13]), we also use Csmith with the default
configuration to randomly generate testing programs (RP).

TABLE 1
Optimization sequences and testing programs for RQ1.

RS
Optimization sequences generated by the random
strategy

SS
Optimization sequences selected by the proposed
selection scheme

2W
Optimization sequences generated by the
combinatorial testing technique

RP Testing programs randomly generated by Csmith

RPS
Testing programs randomly generated by the
swarm testing

RPSv
Testing programs randomly generated by the
variant of swarm testing

SP
Testing programs selected by the proposed selection
scheme

SPS
Testing programs selected by the proposed selection
scheme with the static features of programs

Additionally, the swarm testing technique [54] is utilized
to guide Csmith to generate diverse testing programs by
randomizing test configurations. As in the study [55], we
also consider two versions of swarm testing: an original
version of swarm testing [54] that randomly sets the value
of each configuration option to be 0 or 100, and a variant of
swarm testing that randomly sets the value of each configu-
ration option to be a floating-point number ranging from 0
to 100 [55]. Thus, we obtain two kinds of testing programs
by swarm testing, namely the testing programs generated
by the original swarm testing (RPS) and the testing pro-
grams generated by the variant of swarm testing (RPSv).
Moreover, apart from the proposed vector representation of
testing programs, the static features of programs presented
in [20] are used to select testing programs with the proposed
selection scheme (SPS). The static features of programs
include language features, operation features, and structure
features (see [20] for details). The optimization sequences
and testing programs used in RQ1 are summarized in Table
1. Therefore, besides CTOS that takes in SP and SS as
inputs in this study, we obtain 14 variants of CTOS, namely,
(1) CTOS(RP+RS), (2) CTOS(RP+SS), (3) CTOS(RP+2W), (4)
CTOS(RPS+RS), (5) CTOS(RPS+SS), (6) CTOS(RPS+2W), (7)
CTOS(RPSv+RS), (8) CTOS(RPSv+SS), (9) CTOS(RPSv+2W),
(10) CTOS(SP+RS), (11) CTOS(SP+2W), (12) CTOS(SPS+RS),
(13) CTOS(SPS+SS), (14) CTOS(SPS+2W).

For CTOS and its 14 variants, we run each 10 times
and the timeout is 90 hours in each time as the setting in
[19]. Therefore, it takes nearly 50 days to run these exper-
iments. Notably, the 10 runs of CTOS and its 14 variants
are independent, i.e., the optimization sequences and testing
programs are different in each time except the 2-way combi-
natorial optimization sequences, which are identical in each
variant of CTOS since the optimization sequences generated
by ACTS are constant. In addition, the testing programs and
optimization sequences for CTOS and its 14 variants are
prepared before we carry out the experiments. The initial
number of testing programs for each experiment is 1,000,
because we cannot know how many testing programs can
be tested before the experiments. It is rapid to generate RS

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 2
Results of CTOS and its 14 variants.

Average Min. total Max. total P-value Effect
TP. Crash WC. Inv. IR Perf. CGB Total bugs imp. bugs bugs size (A12)

CTOS(RP+RS) 113.2 6.4 1.0 1.4 1.0 0.0 9.8 33.67% 7 12 < .001 0.955
CTOS(RP+SS) 100.7 6.7 1.7 1.0 0.9 0.0 10.3 27.18% 8 12 .001 0.905
CTOS(RP+2W) 9.2 7.2 1.3 0.4 1.0 0.0 9.9 32.32% 8 11 < .001 0.960
CTOS(RPS+RS) 28.8 5.2 1.0 1.4 1.0 0.1 8.7 50.57% 7 10 < .001 1.000
CTOS(RPS+SS) 27.5 5.4 1.4 1.2 0.9 0.0 8.9 47.19% 7 11 < .001 0.980
CTOS(RPS+2W) 3.9 5.6 1.3 0.9 1.0 0.0 8.8 48.86% 6 11 < .001 0.990
CTOS(RPSv+RS) 61.4 5.7 0.9 1.3 1.0 0.1 9.0 45.56% 7 12 < .001 0.965
CTOS(RPSv+SS) 53.0 5.7 1.7 1.4 1.0 0.1 9.9 32.32% 9 11 < .001 0.980
CTOS(RPSv+2W) 5.5 6.6 1.3 1.2 1.0 0.1 10.2 28.43% 8 13 < .001 0.915
CTOS(SP+RS) 122.4 6.6 1.4 1.2 1.0 0 10.1 29.70% 9 11 < .001 0.960
CTOS(SP+2W) 8.6 6.8 1.8 0.6 1.0 0 10.2 28.43% 8 12 < .001 0.935
CTOS(SPS+RS) 117.8 5.8 1.1 1.1 1.0 0 9.0 45.56% 7 10 < .001 1.000
CTOS(SPS+SS) 102.4 6.9 2.0 0.6 1.0 0 10.5 24.76% 9 12 .001 .0930
CTOS(SPS+2W) 8.2 7.0 1.5 0.5 1.0 0 10.0 31.00% 8 12 < .001 0.955
CTOS 109.9 7.4 3.5 1.2 1.0 0 13.1 – 11 15 – –

TP.: Testing Programs, Inv. IR: Invalid IR, WC.: Wrong Code, CGB.: Code Generator Bug.

and RP. While the time for generating RPS and RPSv needs
about 3 hours, since some random values of configuration
options may cause Csmith takes more time to generate
a testing program12. Generating SS, SP, and SPS takes 3
to 6 hours in our system, respectively. Hence, compared
to the testing period, the time for preparing optimization
sequences and testing programs is relatively short. The most
time-consuming part is to generate 2W, which takes about
10 hours in our system. But we only need to generate 2W
once, all the experiments use the same 2W.

In RQ1, we do not include the time spent on generating
testing programs and optimization sequences into the test-
ing period for two reasons. On the one hand, we adopt this
evaluation strategy due to the limitation of computational
resources. Our experiments are conducted on a computer
with 16GB of memory. Although we have tried our best
to optimize our programs to select representative testing
programs from the initial set of 100,000 testing programs in
our experiments, the selection process can consume 4-8GB
of memory. Besides, we need to run 150 experiments (CTOS
and its 14 variants, 10 runs for each experiment) in RQ1,
which makes us run many experiments simultaneously so
that we can finish all experiments in nearly 50 days. For
each experiment, the testing process will consume about
100M-4GB of memory. Thus, if we integrate the selection
of testing programs into the testing process, the testing
efficiency may be dramatically decreased due to the possible
memory swapping. However, under our current experiment
setting, we may only use a small fraction of the initial 1,000
testing programs to test different optimization sequences.
This may be a threat of validity for our experiments, which
will be discussed in Section 6. On the other hand, regarding
the baselines using the combinatorial testing technique, it
generates the same set of optimization sequences (i.e., 2W)
each time (taking about 10 hours). The experiment reuses
2W for each run of different baselines. Thus, it may bring
unfair comparisons between the baselines with 2W and
without 2W, when the optimization sequence generation
time is included.

12. https://github.com/csmith-project/csmith/blob/master/doc/p-
robabilities.txt

Table 2 presents the experiment results of CTOS and
its 14 variants. The second column is the average total
number of testing programs, and the following 5 columns
are the average number of unique bugs for each type.
Actually, many duplicate bugs can be found by CTOS and
its 14 variants. We filter out these duplicate bugs using the
strategy described in Section 4.2. Next, the eighth column is
the average total number of unique bugs for CTOS and its
14 variants. From Table 2, the numbers of testing programs
for CTOS(RP + 2W), CTOS(SP + 2W), and CTOS(SPS +
2W) are smaller than those of CTOS and other variants,
since the number of 2-way combinatorial optimization se-
quences is about 11 times larger than those of other type
optimization sequences. In addition, the six variants with
RPS and RPSv test a small number of testing programs
compared to CTOS and other variants. For example, for
the variants with RS, CTOS(RPS + RS) and CTOS(RPSv +
RS) only test 28.8 and 61.4 testing programs on average,
respectively. However, the numbers of testing programs of
CTOS(RP + RS), CTOS(SP + RS), and CTOS(SPS + RS)
are 113.3, 122.4, and 117.8, respectively. The reason is that
testing programs generated by swarm testing may contain
some complicated structures, which cause a long time to
optimize them and execute the corresponding executables.
Generally, the majority of time for the whole testing process
is utilized to optimize testing programs and execute the
corresponding executables. This time is decided by both
of the corresponding program and optimization sequence.
Given a testing program, if it is complicated (e.g., including
many nest loops), the time for optimizing and executing
it could be longer than a simple testing program. Besides,
different optimization sequences can also affect the time
for optimizing and executing the same testing program. In
Table 2, the number of testing programs of CTOS is larger
than CTOS(RP+SS) since there are two experiments that
CTOS tests more than 120 testing programs. Nevertheless,
this result cannot suggest that CTOS can always test more
testing programs than its variants, because the numbers
of testing programs of the variants (e.g., CTOS(RP+SS)) in
some experiments are larger than CTOS.

It is obvious from Table 2 that CTOS significantly outper-
forms its 14 variants in terms of the bug-finding capability.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

CTOS(RP+RS)

CTOS(RP+SS)

CTOS(RP+2W)

CTOS(RPS+RS)

CTOS(RPS+SS)

CTOS(RPS+2W)

CTOS(RPSv+RS)

CTOS(RPSv+SS)

CTOS(RPSv+2W)

CTOS(SP+RS)

CTOS(SP+2W)

CTOS(SPS+RS)

CTOS(SPS+SS)

CTOS(SPS+2W)

6

8

10

12

14

CTOS

Fig. 6. Comparison of 10 total bugs of CTOS and its 14 variants.

CTOS can find 13.1 unique bugs on average, while the
average total number of unique bugs for the best variant
CTOS(SPS+SS) is only 10.5. The ninth column shows the im-
provement of CTOS over the baselines (i.e., the 14 variants
of CTOS) in terms of the average total number of unique
bugs, i.e., imp = (CTOS − baseline)/baseline ∗ 100%.
From the ninth column of Table 2, we can see that CTOS
can find more unique bugs than the baselines by up to
24.76% to 50.57%. Specifically, CTOS can detect more crash
bugs and wrong code bugs. It finds 7.4 crash bugs and
3.5 wrong code bugs on average. In addition, we could
observe from Table 2 that CTOS and its variants with the
selected optimization sequences (SS) and testing programs
(SP) can find more bugs. On the one hand, CTOS and
the variants with SS outperform others when the testing
programs are RP, RPS, SP, and SPS, respectively. For ex-
ample, CTOS(RP+SS) finds 10.3 bugs on average which
outperforms CTOS(RP+RS) and CTOS(RP+2W). The only
exception is RPSv, which makes CTOS(RPSv+2W) detect
more bugs than CTOS(RPSv+SS). On the other hand, SP
also leads CTOS, CTOS(SP+RS), and CTOS(SP+2W) to de-
tect more bugs than others except CTOS(RPSv+2W). For
instance, CTOS(SP+RS) finds 10.1 bugs, while there are only
9.8 and 9.0 bugs for CTOS(RP+RS) and CTOS(SPS+RS),
respectively. The reason is that the optimization sequences
and testing programs selected by the proposed selection
scheme may have better diversity.

From Table 2, almost all experiments can find the only
one unique performance bug13. This performance bug is
caused by the optimization ”-newgvn”. However, CTOS and
the 14 variants with RP, SP, and SPS fail to detect the code
generator bug in this experiment. Only some variants with
RPS and RPSv detect one code generator bug14 that has
been fixed. This is because testing programs generated by
the swarm testing may cover a larger portion of input space
than the other approaches due to the random mechanism
of swarm testing for constructing test configurations. Al-

13. https://bugs.llvm.org/show bug.cgi?id=41290.
14. https://bugs.llvm.org/show bug.cgi?id=42452.

though the proposed selection scheme aims to select divers
testing programs, in fact it may be limited by Csmith with
the default configuration within the given testing period.
Hence, the proposed selection scheme may miss some cor-
ner cases, which means that there is still room to further
improving the selection scheme.

Additionally, most bugs found by CTOS and its variants
are the crash bugs. However, the difference between the
number of crash bugs for CTOS and each variant is not
very large. The reason is that there are some bugs which
are relatively easy to be triggered by some optimization
sequences. For example, LLVM Bug#3962615 can be easily
triggered by the optimization sequences that contain the
subsequence ”.*-early-cse-memssa.*-early-cse-memssa.*”.

Figure 6 is the boxplot of the total bugs found during the
10 runs of CTOS and its 14 variants. In this boxplot, CTOS
significantly outperforms the variants. The columns ”Min.
total bugs” and ”Max. total bugs” in Table 2 show the min-
imal and maximal numbers of the total bugs in the 10 runs
of CTOS and each variant, respectively. From Table 2 and
Fig. 6, we can see that the minimal and maximal numbers of
the total bugs of CTOS are 11 and 15 respectively, which are
clearly larger than those of the variants. Although in some
cases the number of total bugs found by CTOS is lower
than the variants, the median of CTOS illustrates that the
bug-finding capability of CTOS is better than the baselines
in most cases. In addition, we conduct the Mann-Whitney
U-test with a level of significance 0.05 on the total bugs
between CTOS and the variants according to the suggestions
by Arcuri and Briand [56]. The P-value (p ≤ .001) in Table
2 shows that CTOS performs significantly better than the
variants. Furthermore, we also calculate the effect size of
the differences between CTOS and the baselines using the
Vargha and Delaneys A12 statistics16 [56]. If CTOS and the
baselines are equivalent, then A12 = 0.5; if the effect of
CTOS is small compared to the baselines, then A12 < 0.5;
otherwise, A12 > 0.5. From Table 2, we can see that all
the effect sizes are greater than 0.9, which indicates that
CTOS has a higher probability to obtain better results than
the baselines. Particularly, the values of the effect size for
CTOS(RPS+RS) and CTOS(SPS+RS) are 1.000. This means
that the total bugs found during the 10 runs of CTOS
are completely larger than those of CTOS(RPS+RS) and
CTOS(SPS+RS).

Answer to RQ1: The experimental results demonstrate
that CTOS significantly outperforms the baselines by de-
tecting 24.76% ∼ 50.57% more bugs on average, which
reveals the advantage of the proposed selection scheme for
selecting representative optimization sequences and testing
programs.

4.4 Answer to RQ2
To evaluate the bug-finding capability of CTOS in practice,
we conduct an experiment over seven months from January
2019 to July 2019. In this experiment, we mainly test the
latest development version of LLVM, since the developers of
LLVM fix bugs primarily in the latest development version

15. https://bugs.llvm.org/show bug.cgi?id=39626.
16. We use the open source code shared by Tim Menzies to calculate

A12, https://github.com/txt/ase16/blob/master/doc/stats.md.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 3
Excluded optimization subsequences.

ID Regular expressions of subsequences Type
1 ”.*-early-cse-memssa.*-early-cse-memssa.*” Crash
2 ”.*-gvn-hoist.*-early-cse-memssa.*” Crash
3 ”.*-loop-unroll.*-licm.*” Crash
4 ”.*-loop-reduce.*-loop-reduce.*” Crash
5 ”.*-loop-rotate.*-loop-vectorize.*” Wrong code
6 ”.*-loop-unroll.*-loop-reroll.*” Wrong code
7 ”.*-memcpyopt.*-gvn.*” Wrong code
8 ”.*-reg2mem.*-newgvn.*” Wrong code

rather than in stable versions [17], [57]. The time of one
testing process is about two weeks since CTOS can test
1,000 testing programs and 3,000 optimization sequences in
this period on our system. Notably, we gradually exclude
some optimization subsequences that easily cause duplicate
bugs for improving the test efficiency until the correspond-
ing bugs are fixed. These optimization subsequences are
the most frequent pairs of optimizations in the reduced
optimization sequences that triggered a mass of duplicate
bugs. Table 3 shows 8 regular expressions of subsequences
that have been excluded. The first four subsequences trigger
many duplicate crash bugs, while the latter four are used
to avoid duplicate wrong code bugs. All the detected bugs
have been fed back to the LLVM bug repository. In the seven
months, we have reported in total 104 valid bugs within 5
types, of which 21 have been confirmed or fixed. Table 4
summarizes the testing results17.

From Table 4, we can observe that the most reported
bugs are crash bugs and wrong code bugs. We have detected
57 crash bugs, which are mainly caused by assertion failures
and segmentation faults. For these crash bugs, 16 of them
have been confirmed or fixed. However, 8 of these crash
bugs are duplicate, which are caused by the constant hoist-
ing optimization. Although the optimization sequences that
trigger these 8 bugs are different, the backtrace information
of these bugs is identical. Thus developers treat them as
duplicate bugs [46]. We also adopt this strategy to filter out
duplicate crash bugs. In addition, 24 valid wrong code bugs
have been reported, one of them is confirmed. Compared to
crash bugs, the number of confirmed or fixed wrong code
bugs is very small. The reason is that the root causes of
wrong code bugs are hard to be isolated [58]. For crash
bugs, developers can leverage the backtrace information
to analyze the root causes of the bugs, while only limited
information (e.g., intermediate results of compilers) could
be used to help developers logically understand the root
cause of a wrong code bug.

Apart from crash bugs and wrong code bugs, we also
reported 13 invalid IR bugs, 9 performance bugs, and 1
code generator bug. For these bugs, 2 invalid IR bugs, 1
performance bugs, and 1 code generator bug have been
confirmed or fixed. Especially, the code generator bug that
prevents the code generator from emitting physreg copy

17. The details of these bugs can be found on the web-
site, https://github.com/CTOS-results/LLVM-Bugs-by-Optimization-
sequences.

TABLE 4
Reported bugs.

Type num. duplicate confirmed/fixed
Crash 57 8 16

Invalid IR 13 0 2
Wrong Code 24 1 1
Performance 9 0 1

Code Generator Bug 1 0 1
Total 104 9 21

instruction18 is fixed only after one day since it is critical for
LLVM to generate the correct assembly code. The invalid
IR bugs are also important for LLVM as they may reveal
the design flaws of the optimizations. For example, LLVM
bug#4172319 found by CTOS shows that the ”-scalarizer”
optimization may produce the invalid IR that cannot be
processed by other optimizations, since it cannot correctly
process the unreachable blocks.

From Table 4, only 21 of the reported bugs are confirmed
or fixed. To investigate this phenomenon, we collect 1,323
unique bugs related to scalar optimizations (most optimiza-
tions in LLVM belong to this component) from the LLVM
bug repository20 from October 2003 to Jun 2019. In these
bugs, 828 bugs have been confirmed or fixed, and 495 bugs
are still kept as ”NEW”. For the 828 confirmed or fixed bugs,
although 428 bugs are confirmed or fixed in one month,
the developers take more than 15 months to confirm or fix
the most residual bugs. The average number of months for
confirming or fixing these bugs is 5.6. In addition, 495 bugs
with ”NEW” status have already existed for a long time,
an average of 14.1 months. This indicates that the overall
speed to confirm or fix LLVM bugs is relatively slow, not
just for our reported bugs. One possible reason is that it
is hard and time-consuming to analyze and find the root
causes of compiler bugs [58]. Especially, for a bug caused
by an optimization sequence, the root causes of this bug
may lie in any optimization of this sequence. In addition,
the study by Sun et al [19] also finds that the bug-fixing rate
of LLVM is lower than GCC. The authors explain that this
is due to the limited human resources since some LLVM
developers in Apple are pulled into other projects like Swift
[19]. Furthermore, we also talk with three developers of an
international company that has a team to develop compilers
using LLVM. We ask these three developers what are the
difficulties to fix an LLVM bug during their development.
All these three developers say that it is difficult to analyze
and find the root causes of compiler bugs, especially for the
wrong code bugs.

Table 5 presents the buggy optimizations of the 104 re-
ported bugs arranged in the alphabetical order. These buggy
optimizations are the last ones in the reduced optimization
sequences, since the optimizations of LLVM are mostly de-
signed to operate independently and the developers always
blame the last optimizations in the reduced sequences [46].
47 unique optimizations have been reported to be faulty.
Specifically, there are 15 buggy loop related optimizations

18. https://bugs.llvm.org/show bug.cgi?id=42452.
19. https://bugs.llvm.org/show bug.cgi?id=41723.
20. https://bugs.llvm.org/.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 5
Buggy optimizations for reported bugs.

Type Optimizations

Crash

adce bdce consthoist correlated-propagation
early-cse-memssa flattencfg gvn gvn-hoist
gvn-sink indvars inline instcombine
ipconstprop ipsccp jump-threading licm
loop-deletion loop-distribute loop-extract-
single loop-instsimplify loop-reduce loop-
rotate loop-unswitch loop-versioning-licm
mem2reg memoryssa mergefunc newgvn
partial-inliner separate-const-offset-from-
gep simplifycfg slp-vectorizer sroa

Invalid IR

hotcoldsplit indvars loop-extract-single
loop-instsimplify loop-interchange loop-
reroll loop-rotate loop-unroll-and-jam
loop-unswitch loop-versioning-licm sroa
scalarizer

Wrong Code

called-value-propagation constprop func-
tionattrs globalopt gvn gvn-hoist indvars
inline instcombine ipsccp jump-threading
loop-reroll loop-simplify loop-unroll loop-
vectorize newgvn structurizecfg

Performance jump-threading licm loop-extract newgvn
slp-vectorizer

Bug of Code Gen. indvars

(in bold fonts), such as loop-rotate, loop-unroll and loop-
vectorize. From Table 5, we can see that the loop related
optimizations are more bug-prone than other optimizations.
This result indicates that the design of loop optimizations
may exist some flaws and should be further enhanced by
the developers.

Figure 7 shows the statistics of the top 5 most used
optimizations in the reduced optimization sequences for
the 104 reported bugs. From Fig. 7(f), the optimizations
jump-threading, gvn, licm, loop-rotate, and instcombine are the
5 most used optimizations in all reduced optimization se-
quences. In particular, jump-threading appears 44 times in
all reduced optimization sequences for the 104 reported
bugs. This optimization is used to turn conditional into un-
conditional branches that can greatly improve performance
for hardware with branch prediction, speculative execution,
and prefetching. However, the code structure may be com-
plicated after performing jump-threading, since it will add
some new paths and duplicate code21. This may cause other
optimizations to produce wrong results. In Fig. 7 (a), Fig. 7
(b), and Fig. 7 (c), we can see that the optimization jump-
threading is the top 2 most used optimization for the crash
bugs, invalid IR bugs, and wrong code bugs. In addition,
from Fig. 7 (a)-(e), optimizations that change the structure
of a program (loop-rotate changes the structure of a loop and
structurizecfg transforms the control flow structure of a pro-
gram) are widely used in the buggy optimization sequences.
This indicates that the design flaws of optimizations may be
introduced by the edge cases of the structure of a program,
which may help developers to pay more attention to the
interactions among these optimizations when they design
and implement new optimizations.

Answer to RQ2: Our testing efforts over seven months
clearly demonstrates that CTOS is effective in detecting
LLVM bugs caused by optimization sequences. In the seven

21. http://beza1e1.tuxen.de/articles/jump threading.html.

months, we reported 104 valid bugs within 5 types, of which
21 have been confirmed or fixed. 47 unique optimizations
are identified to be faulty and 15 of them are loop related
optimizations.

5 DISCUSSION

Importance of optimization sequence. The optimization
sequences are mainly used to improve the performance
(e.g., size, speed, and energy) of a program. Especially,
the default optimization levels (e.g., -O1, -O2, and -O3)
provided by a compiler are specific optimization sequences
designed by the compiler experts. Although the default
optimization levels can significantly improve the program
performance, many studies (e.g., [1], [2]) have shown that
the autotuning of optimization sequences helps to further
improve the performance of a program. In addition, a pro-
gram in different scenarios may have different performance
requirements. For example, the energy consumption may
be more important for a program in an embedded system,
while the speed of a scientific program may be sensitive
on a high-performance supercomputer. Nevertheless, these
techniques may be invalid due to the potential bugs in
the selected optimization sequences. On the other hand,
compiler developers of a new program language (e.g., Rust,
Swift) based on LLVM need to design better optimization
sequences as the default optimization levels (e.g., O1, O2,
and O3 in LLVM) to meet the features in the new program
language. In this case, if there are bugs in the optimization
sequences, compiler developers could be frustrated, thus
badly slowing down the development. Hence, it is critical
to guarantee the correctness of optimization sequences.
Buggy subsequences exclusion. In the testing process, we
exclude some optimization subsequences listed in Table 3
that can easily trigger duplicate bugs. However, the ex-
cluded subsequences do not always trigger duplicate bugs.
For example, LLVM bug#3962622 can be easily triggered
by the optimization sequences with first subsequence in
Table 3. Especially, the optimizer Opt must be crashed when
any program is optimized using ”-early-cse-memssa -early-
cse-memssa”, while the subsequence ”-early-cse-memssa -gvn
-early-cse-memssa” cannot trigger this bug. Even so, we think
this exclusion strategy contributes to improving the testing
efficiency. Firstly, the excluded subsequences are manually
summarized from many duplicate bugs, which indicates
that the optimization sequences that contain these subse-
quences may trigger duplicate bugs with high probability.
This helps us to test more optimization sequences and
reduce the time to analyze duplicate bugs. Secondly, when
the corresponding bugs have been fixed, we will remove
the limitation of these subsequences, such that the deep
bugs caused by these subsequences could be detected. In the
future, automation techniques may be developed to make
the summarization of subsequences more precise and filter
out duplicate bugs to improve the testing efficiency.
Buggy optimization isolation challenge. In our study, we
treat the last optimization in a reduced optimization se-
quence as a buggy optimization. However, this strategy is
not absolutely true, since the real reason for a bug may lie

22. https://bugs.llvm.org/show bug.cgi?id=39626.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

gv
n

jum
p-t licm inli

ne sro
a

5

10

15

20

Nu
m

be
r

19

14 14 14 13

jum
p-t

loo
p-r lcs

sa licm sro
a

2

4

6

8

10

Nu
m

be
r

9
7

6
5 5

jum
p-t

str
uct

cfg gv
n

ins
tc

inli
ne

5

10

15

Nu
m

be
r

16
14 13 13

9

loo
p-e

str
uct

cfg

reg
2m

em
loo

p-r licm

2

4

Nu
m

be
r

5 5
4

3 3

ind
v

gv
n

loo
p-r ins

tc
ls-v

ec
0

1

2

3

Nu
m

be
r

2

1 1 1 1

jum
p-t gv

n
licm loo

p-r ins
tc

10

20

30

40

50

Nu
m

be
r

44
35

30 30 28

(d) Performance (e) Bug of Code Gen. (f) All

(c) Wrong Code(b) Invalid IR(a) Crash

Fig. 7. Top 5 most used optimizations for reported bugs. jump-t: jump-threading, instc: instcombine, structcfg: structurizecfg, loop-e: loop-extract,
loop-r: loop-rotate, ls-vec: load-store-vectorizer.

in any optimization of the reduced optimization sequence.
This indicates that the results in Table 5 may not be accu-
rate. For example, an assertion fails in LLVM bug#4226423

when the optimizer Opt optimizes a program using ”-
early-cse-memssa -die -gvn-hoist”. We then treat ”-gvn-hoist”
as the buggy optimization. Nevertheless, the developers
show that the root cause is introduced by ”-die” since it
does not correctly preserve the information generated by
”-MemorySSA” (an analysis method in LLVM24). Hence,
we may underestimate the effectiveness of CTOS in the
experiments since some bugs may be wrongly labeled as
duplicates. However, we must make a tradeoff to avoid re-
porting too many duplicate bugs to developers. In practice,
it may not be acceptable for developers to receive hundreds
of reported bugs in a few days, where the majority of the
bugs are duplicates. This situation is currently difficult to
be alleviated. Firstly, to the best of our knowledge, there
does not exist a perfect method to locate the real reasons
for a compiler bug. In our work, we manually validate the
reduced optimization sequences to guarantee that the bugs
cannot be reproduced when omitting the last optimization
of the sequences. Secondly, the developers of LLVM also
utilize the same strategy to roughly determine whether
the bugs caused by optimization sequences are duplicate.
The optimizations in LLVM are mostly designed to operate
independently, the developers always blame the last opti-
mization in a reduced optimization sequence [46]. Thus,
we believe that the results of Table 5 are reasonable. In

23. https://bugs.llvm.org/show bug.cgi?id=42264.
24. https://www.llvm.org/docs/MemorySSA.html.

the future, we plan to introduce advanced fault localization
techniques [58], [59], [60], [61] to address this challenge.
Limitation of the selection scheme. The experimental re-
sults show that CTOS is effective to detect LLVM bugs
caused by optimization sequences. However, the selection
scheme in CTOS may be limited. In our study, the selection
scheme is based on the hypothesis that the effects of two
testing programs (or optimization sequences) for testing
LLVM are similar if they are closed to each other. Therefore,
for a set of testing programs (or optimization sequences),
our goal is to select representative testing programs (or
optimization sequences) such that the total distances among
them are maximized. Nevertheless, the selection scheme
may miss some corner test cases, as it is difficult to know
which testing program (or optimization sequence) can trig-
ger a bug before execution. Besides, we currently use Csmith
with the default configuration to generate the initial testing
programs, which may limit the diversities of the generated
testing programs and affect the effectiveness of the proposed
selection scheme. In future work, we will consider more
advanced techniques (e.g., combine the selection scheme
with coverage information) to select representative testing
programs and optimization sequences to include more cor-
ner cases.

6 THREATS TO VALIDITY

Threats to Internal Validity. The threats to internal validity
mainly lie in the implementations of CTOS. As mentioned
in Section 3, the vector representations of the optimization
sequences and testing programs rely on the Doc2Vec tech-
nique. Hence, the testing efficiency may be impacted by

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

the implementation of Doc2Vec. To reduce this threat, we
adopt the widely used tool Gensim [38] that has an efficient
implementation of Doc2Vec. In addition, the parameters of
Doc2Vec are currently set according to the documents of
Gensim and the suggestions by [39]. For the parameters
of Algorithm 3, we set the values of these two parameters
according to the hardware limitation of our system. We do
not investigate the impact of these parameters for CTOS
in this paper, due to the heavy time cost to fine-tune the
parameters of CTOS. There are in total 6 parameters, i.e.,
4 parameters for Doc2Vec and 2 parameters for Algorithm
3. Assuming that each parameter has 10 candidate values,
we will get 106 parameter combinations. The large number
of parameter combinations can lead to a long time to in-
vestigate the impact of the parameters for CTOS, even the
testing period is only 90 hours (as set in RQ1) for evaluating
one parameter combination. Despite this, the experimental
results illustrate that CTOS can achieve good results under
the parameter settings in our paper.

Besides, in our experiments for RQ1, the time to ob-
tain testing programs and optimization sequences is not
included in the testing period, which may cause unfair
comparisons between CTOS and the baselines. For example,
compared with a random strategy (i.e., RS and RP), COTS
spends 3-6 more hours in generating testing programs and
optimization sequences. However, we do not expect this can
dramatically affect the experiment results in Table 2, because
the time to obtain testing programs and optimization se-
quences (3-6 hours) is much smaller than the testing period
(i.e., 90 hours). To investigate its potential impact on the
results of CTOS, we analyze the number of bugs detected by
CTOS in the first 80 hours. That is, we exclude 10 hours from
the testing period which are assumed to be used for CTOS
to obtain testing programs and optimization sequences. As
presented in the supplemental material25, CTOS can find
the majority of bugs (11.7 on average) in the first 80 hours;
it outperforms all the baselines which run in 90 hours. For
example, CTOS(RP+RS) detects 9.8 bugs on average in 90
hours, which is 19.39% fewer than the number of bugs
detected by CTOS in the first 80 hours. Thus, we believe
that CTOS outperforms the baselines even when the time
to obtain testing programs and optimization sequences is
considered.
Threats to External Validity. The threats to external va-
lidity mainly lie in duplicate bugs and testing programs.
Firstly, many duplicate bugs are triggered in the testing
process though we have leveraged the selection scheme
to obtain the representative optimization sequences and
testing programs. To alleviate this threat, we summarize
the subsequences (listed in Table 3) that could easily trigger
duplicate bugs and remove the optimization sequences that
contain these subsequences in the next testing process until
the corresponding bugs are fixed. In addition, we utilize the
duplicate bug identification strategy described in Section 4.2
to identify duplicate bugs. However, this strategy may be
not precise, which may influence the effectiveness of CTOS.
This is because the root causes for a bug can be introduced
by any optimization in the reduced optimization sequence.

25. https://github.com/CTOS-results/LLVM-Bugs-by-
Optimization-sequences/blob/master/Appendix.pdf.

Since our strategy is also adopted by LLVM developers to
identify duplicate bugs caused by optimizations in practice,
this strategy can still significantly reduce the negative influ-
ence of duplicate bugs on the experiments. In the future, we
will consider to apply advanced software fault localization
techniques to improve the strategy for identifying duplicate
bugs in our study.

Secondly, we utilize Csmith to generate the testing pro-
grams in this study. However, Csmith has been widely used
to test LLVM for a long time, which makes LLVM, to a
certain extent, resistant to it. In the future, the advanced
techniques (e.g., the test-program generation approach via
history-guided configuration diversification [62]) may be
employed to further improve the diversity of testing pro-
grams.

7 RELATED WORK

7.1 Compiler Testing
Compiler testing is currently the most important technique
to guarantee the quality of compilers. In the literature, the
techniques of compiler testing fall into three categories,
namely, Randomized Differential Testing (RDT), Different
Optimization Levels (DOL), and Equivalence Modulo In-
puts (EMI) [9], [15], [16], [17], [18]. For a given testing
program, RDT detects compiler bugs by comparing the
outputs of some compilers with the same specification. DOL
is a variant of RDT, and compares the outputs produced
by the same compiler with different optimization levels
to determine whether a compiler has bugs. Most of the
techniques [12], [13], [14] belonging to RDT and DOL use
randomly generated testing programs to test a compiler.
Zhao et al. [12] develop a tool, called JTT, that automatically
generates testing programs to validate the EC++ embedded
compiler. In particular, Csmith [13] as the most successful
random C program generator has been widely used to test
C compilers. Lidbury et al. [14] develop CLsmith based
on Csmith to generate programs for testing the OpenCL
compilers.

Different from RDT and DOL, EMI compares the outputs
produced by equivalent variants of a seed program to detect
compiler bugs. If an output is different from others, the com-
piler then contains a bug [9]. There are three instantiations of
EMI, namely, Orion [9], Athena [15], and Hermes [17]. Orion
tries to randomly prune unexecuted statements to generate
variant programs [9], while Athena can delete code from or
insert code into code regions that are not executed under
the inputs [15]. In contrast to Orion and Athena, Hermes
[17] can generate variant programs via mutation performed
on both live and dead code regions. An empirical study
conducted by Chen et al. [19] compares the strength of RDT,
DOL, and EMI, and reveals that DOL is more effective in
detecting compiler bugs related to optimizations.

To accelerate compiler testing, a method [63] based on
machine learning is proposed to predict the bug-revealing
probabilities of testing programs, such that the testing pro-
grams with large bug-revealing probabilities can be exe-
cuted as early as possible. Recently, Chen [20] et al. present
a more efficient technique to predict test coverage statically
for compilers, and then leverage the predicted coverage
information to prioritize testing programs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Our work is similar to DOL. However, unlike the tradi-
tional DOL which only considers the default optimization
levels with fixed orders of optimizations, CTOS tests LLVM
with arbitrary optimization sequences.

7.2 Compiler Phase-Ordering Problem

The compiler phase-ordering problem aims to improve the
performance of target programs by selecting good optimiza-
tion sequences [7], [8], [64]. Currently, two methodologies
have been proposed to resolve the compiler phase-ordering
problem. The approaches in the first category treat the com-
piler phase-ordering problem as an optimization problem
and then evolutionary algorithms are used to resolve it.
For example, Kulkarni et al. [65], [66] develop a method
based on genetic algorithms for quickly searching effective
optimization sequences. Purini et al. [4] propose a downsam-
pling technique to reduce the infinitely large optimization
sequence space. OpenTuner [2] uses the ensembles of search
techniques to find optimal optimizations for a program.

The approaches in the second category tackle the com-
piler phase-ordering problem based on machine learning
[1], [3], [6]. Most recent methods based on machine learning
for compiler auto-tuning have been introduced by the sur-
vey [64]. Milepost [1] is a machine-learning based compiler
that automatically adapts the internal optimization heuristic
to improve the performance. Kulkarni and Cavazos [3]
propose a method based on the Markov process to miti-
gate the compiler phase-ordering problem. Ashouri et al.
[6] leverage the optimization subsequences and machine
learning to build a predictive model. Huang et al. [67]
present AutoPhase, a deep reinforcement learning method
to tackle the compiler phase-ordering problem for multiple
high-level synthesis programs.

However, there is no guarantee that the programs opti-
mized by different optimization sequences are correct. No
systematic work has been conducted to detect compiler
bugs caused by optimization sequences. We present CTOS
to mitigate this problem to further improve the reliability of
optimization sequences.

8 CONCLUSION

In this study, we presented CTOS, a method based on
differential testing, for catching compiler bugs caused by
optimization sequences of LLVM. Rather than only testing
compilers with predefined optimization sequences like the
state-of-the-art methods, our technique validates compilers
with arbitrary optimization sequences, which significantly
increases the test efficiency for detecting bugs. Our eval-
uation demonstrates that CTOS significantly outperforms
the baselines by detecting 24.76% ∼ 50.57% more bugs on
average. Within only seven months, we have reported 104
valid bugs within 5 types, of which 21 have been confirmed
or fixed. 47 unique optimizations are identified to be faulty
and 15 of them are loop related optimizations.

For future work, we will keep actively testing LLVM
with CTOS, and report the detected bugs. Furthermore, we
plan to design more efficient compiler fuzzing techniques
with coverage information of LLVM to further improve the
reliability of compiler optimizations.

ACKNOWLEDGMENTS

We would like to thank the LLVM developers for analyzing
and fixing our reported bugs. This work is supported in part
by the National Natural Science Foundation of China under
grant no. 61772107, 61722202, 61902181, and 62032004.

REFERENCES

[1] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois
et al., “Milepost gcc: Machine learning enabled self-tuning com-
piler,” International journal of parallel programming, vol. 39, no. 3,
pp. 296–327, 2011.

[2] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Proceedings of the 23rd in-
ternational conference on Parallel architectures and compilation. ACM,
2014, pp. 303–316.

[3] S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization
phase-ordering problem using machine learning,” in Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12. New York,
NY, USA: ACM, 2012, pp. 147–162.

[4] S. Purini and L. Jain, “Finding good optimization sequences cov-
ering program space,” TACO, vol. 9, no. 4, pp. 56:1–56:23, 2013.

[5] L. G. Martins, R. Nobre, J. M. Cardoso, A. C. Delbem, and E. Mar-
ques, “Clustering-based selection for the exploration of compiler
optimization sequences,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 13, no. 1, p. 8, 2016.

[6] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni,
and J. Cavazos, “Micomp: Mitigating the compiler phase-ordering
problem using optimization sub-sequences and machine learn-
ing,” ACM Trans. Archit. Code Optim., vol. 14, no. 3, pp. 29:1–29:28,
Sep. 2017.

[7] D. B. Loveman, “Program improvement by source-to-source trans-
formation,” Journal of the ACM (JACM), vol. 24, no. 1, pp. 121–145,
1977.

[8] S. R. Vegdahl, “Phase coupling and constant generation in an
optimizing microcode compiler,” in ACM SIGMICRO Newsletter,
vol. 13, no. 4. IEEE Press, 1982, pp. 125–133.

[9] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI
’14. New York, NY, USA: ACM, 2014, pp. 216–226.

[10] C. Lindig, “Random testing of c calling conventions,” in Interna-
tional Symposium on Automated Analysis-driven Debugging, 2005.

[11] F. Sheridan, “Practical testing of a c99 compiler using output
comparison,” Software: Practice and Experience, vol. 37, no. 14, pp.
1475–1488, 2007.

[12] Z. Chen, Y. Xue, Q. Tao, G. Liang, and Z. Wang, “Automated
test program generation for an industrial optimizing compiler,”
in Workshop on Automation of Software Test, 2009.

[13] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understand-
ing bugs in c compilers,” in ACM SIGPLAN Notices, vol. 46, no. 6.
ACM, 2011, pp. 283–294.

[14] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-
core compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’15. New York, NY, USA: ACM, 2015, pp. 65–76.

[15] L. Vu, S. Chengnian, and S. Zhendong, “Finding deep compiler
bugs via guided stochastic program mutation,” in Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA
2015. New York, NY, USA: ACM, 2015, pp. 386–399.

[16] L. Vu, S. Chengnian, and S. Zhendong, “Randomized stress-testing
of link-time optimizers,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 327–337.

[17] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2016. New York, NY, USA: ACM, 2016,
pp. 849–863.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

[18] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration
for rigorous compiler testing,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI 2017. New York, NY, USA: ACM, 2017, pp.
347–361.

[19] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“An empirical comparison of compiler testing techniques,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp. 180–190.

[20] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
X. Bing, “Coverage prediction for accelerating compiler testing,”
IEEE Transactions on Software Engineering, 2018.

[21] LLVM Compiler Community, “LLVM language reference man-
ual.” [Online]. Available: https://llvm.org/docs/LangRef.html.

[22] LLVM Compiler Community, “LLVM’s analy-
sis and transform passes.” [Online]. Available:
https://www.llvm.org/docs/Passes.html.

[23] Clang, “Clang: a c language family frontend for llvm.” [Online].
Available: http://clang.llvm.org/.

[24] Rust, “Rust program language.” [Online]. Available:
https://www.rust-lang.org/.

[25] Swift, “Swift program language.” [Online]. Available:
https://developer.apple.com/swift/.

[26] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with webassembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 185–200.

[27] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224.

[28] P. D. Schubert, B. Hermann, and E. Bodden, “Phasar: An inter-
procedural static analysis framework for c/c++,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2019, pp. 393–410.

[29] Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, ser.
ICML’14. JMLR.org, 2014, pp. II–1188–II–1196.

[30] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” Advances in Neural Information Processing Systems,
vol. 26, pp. 3111–3119, 2013.

[31] W. M. McKeeman, “Differential testing for software,” Digital Tech-
nical Journal, vol. 10, no. 1, pp. 100–107, 1998.

[32] Z. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146–
162, 1954.

[33] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[34] R. Johnson, D. Pearson, and K. Pingali, “The program structure
tree: Computing control regions in linear time,” in Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, ser. PLDI ’94. New York, NY, USA:
Association for Computing Machinery, 1994, pp. 171–185.

[35] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process
structure tree,” Data & Knowledge Engineering, vol. 68, no. 9, pp.
793–818, 2009.

[36] Region graph, “https://www.llvm.org/doxygen/regioninfo 8h -
source.html,” 2019.

[37] D. Pelleg and A. Moore, “X-means: Extending k-means with effi-
cient estimation of the number of clusters,” in In Proceedings of the
17th International Conf. on Machine Learning. Morgan Kaufmann,
2000, pp. 727–734.

[38] R. Řehůřek and P. Sojka, “Software Framework for Topic Mod-
elling with Large Corpora,” in Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks. Valletta, Malta: ELRA,
May 2010, pp. 45–50.

[39] J. H. Lau and T. Baldwin, “An empirical evaluation of doc2vec
with practical insights into document embedding generation,” in
Proceedings of the 1st Workshop on Representation Learning for NLP.
Berlin, Germany: Association for Computational Linguistics, Aug.
2016, pp. 78–86.

[40] D. A. Schult, “Exploring network structure, dynamics, and func-
tion using networkx,” in In Proceedings of the 7th Python in Science
Conference (SciPy, 2008, pp. 11–15.

[41] A. Novikov, “PyClustering: Data mining library,” Journal of Open
Source Software, vol. 4, no. 36, p. 1230, apr 2019. [Online].
Available: https://doi.org/10.21105/joss.01230

[42] A. Balestrat, “CCG: A random c code generator.” [Online].
Available: https://github.com/Merkil/ccg/.

[43] V. L. Dmitry Babokin, John Regehr, “Yarpgen.” [Online].
Available: https://github.com/intel/yarpgen.

[44] R. Hodován, A. Kiss, and T. Gyimóthy, “Grammarinator: A
grammar-based open source fuzzer,” in Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, ser. A-TEST 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 4548.

[45] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for c compiler bugs,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: ACM, 2012,
pp. 335–346.

[46] LLVM bug 40927, “https://bugs.llvm.org/show bug.cgi?id=409-
27,” 2021.

[47] LLVM bug 40926, “https://bugs.llvm.org/show bug.cgi?id=409-
26,” 2021.

[48] LLVM bug 40928, “https://bugs.llvm.org/show bug.cgi?id=409-
28,” 2021.

[49] LLVM bug 40929, “https://bugs.llvm.org/show bug.cgi?id=409-
29,” 2021.

[50] LLVM bug 40933, “https://bugs.llvm.org/show bug.cgi?id=409-
33,” 2021.

[51] LLVM bug 40925, “https://bugs.llvm.org/show bug.cgi?id=409-
25,” 2021.

[52] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[53] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Sp 800-142. practical
combinatorial testing,” Gaithersburg, MD, USA, Tech. Rep., 2010.

[54] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr, “Swarm
testing,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ser. ISSTA 2012. New York, NY,
USA: Association for Computing Machinery, 2012, p. 7888.

[55] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang,
“History-guided configuration diversification for compiler test-
program generation,” in Proceedings of the 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ser. ASE ’19.
IEEE Press, 2019, p. 305316.

[56] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,” in
Proceedings of the 33rd International Conference on Software Engineer-
ing, ser. ICSE 11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 110.

[57] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warn-
ing defects,” in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE ’16. New York, NY, USA: ACM,
2016, pp. 203–213.

[58] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler
bug isolation via effective witness test program generation,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Associa-
tion for Computing Machinery, 2019, pp. 223–234.

[59] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localiza-
tion,” in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE 17. IEEE Press, 2017, pp. 609–620.

[60] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 197208.

[61] J. Holmes and A. Groce, “Using mutants to help developers
distinguish and debug (compiler) faults,” Softw. Test. Verification
Reliab., vol. 30, no. 2, 2020.

[62] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang,
“History-guided configuration diversification for compiler test-
program generation,” in 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), Nov 2019, pp. 305–
316.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[63] J. Chen, Y. Bai, H. Dan, Y. Xiong, H. Zhang, and X. Bing, “Learning
to prioritize test programs for compiler testing,” in IEEE/ACM
International Conference on Software Engineering, 2017.

[64] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, p. 96, 2018.

[65] P. A. Kulkarni, S. Hines, J. Hiser, D. B. Whalley, J. W. Davidson,
and D. L. Jones, “Fast searches for effective optimization phase
sequences,” in Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation 2004, Washington,
DC, USA, June 9-11, 2004, W. Pugh and C. Chambers, Eds. ACM,
2004, pp. 171–182.

[66] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W.
Davidson, and D. L. Jones, “Fast and efficient searches for effective
optimization-phase sequences,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 2, no. 2, pp. 165–198, 2005.

[67] Q. Huang, A. Haj-Ali, W. Moses, J. Xiang, I. Stoica, K. Asanovic,
and J. Wawrzynek, “Autophase: Compiler phase-ordering for hls
with deep reinforcement learning,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019, pp. 308–308.

He Jiang received the PhD degree in com-
puter science from the University of Science
and Technology of China, China. He is currently
a Professor in Dalian University of Technology,
China. He is also a member of the ACM and
the CCF (China Computer Federation). He is
one of the ten supervisors for the Outstanding
Doctoral Dissertation of the CCF in 2014. His
current research interests include Search-Based
Software Engineering (SBSE) and Mining Soft-
ware Repositories (MSR). His work has been

published at premier venues like ICSE, SANER, and GECCO, as well as
in major IEEE transactions like TSE, TKDE, TSMCB, TCYB, and TSC.

Zhide Zhou received his B.S. degree in com-
puter science and technology from Guilin Univer-
sity of Electronic Technology, China, in 2013. He
is currently a Ph.D. candidate in Dalian Univer-
sity of Technology, China. He is a student mem-
ber of the China Computer Federation (CCF).
His current research interests are intelligent soft-
ware engineering, software testing, and program
analysis techniques.

Zhilei Ren received his B.S. degree in software
engineering and his Ph.D. degree in compu-
tational mathematics from Dalian University of
Technology, Dalian, in 2007 and 2013, respec-
tively. He is currently an associate professor
with Dalian University of Technology, Dalian. His
current research interests include evolutionary
computation, automatic algorithm configuration,
and mining software repositories.

Jingxuan Zhang is a lecturer of College of
Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics, China.
Zhang received the Ph.D. degree in software
engineering from the Dalian University of Tech-
nology, China. His current research interests in-
clude mining software repositories and software
data analytics.

Xiaochen Li received the doctoral degree in
software engineering from the Dalian University
of Technology, China in 2019 under supervi-
sion with Prof. He Jiang. He is currently a re-
search associate at Software Verification and
Validation research group in University of Lux-
embourg, headed by Prof. Lionel Briand. His cur-
rent research interests are intelligent software
engineering and software semantic analysis. His
work has been published at premier venues like
TSE, TOSEM, EMSE, and ICSE. More informa-

tion about him is available online at https://xiaochen-li.github.io.

