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As a critical part of DevOps, testing drives seamless mobile Application (App) cycle from development to delivery.
However, traditional testing is hard to cover diverse mobile phones, network environments, and operating systems,
etc. Hence, many large companies crowdsource their App testing tasks to workers from open platforms. In
crowdsourced testing, test reports submitted by workers may be highly redundant and their quality may vary
sharply. Meanwhile, multi-bug test reports may be submitted and their root causes are hard to be diagnosed.
Hence, it is a time-consuming and tedious task for developers to manually inspect these test reports. To help
developers address the above challenges, we issue the new problem of FUzzy cLustering TEst Reports (FULTER).
Aiming to resolve FULTER, a series of barriers need to be overcome. In this study, we propose a new framework
named TEst Report Fuzzy clUstering fRamework (TERFUR) by aggregating redundant and multi-bug test
reports into clusters to reduce the number of inspected test reports. First, we construct a filter to remove invalid
test reports to break through the invalid barrier. Then, a preprocessor is built to enhance the descriptions
of short test reports to break through the uneven barrier. Last, a two-phase merging algorithm is proposed
to partition redundant and multi-bug test reports into clusters which can break through the multi-bug barrier.
Experimental results over 1,728 test reports from five industrial Apps show that TERFUR can cluster test reports
by up to 78.15% in terms of AverageP , 78.41% in terms of AverageR, and 75.82% in terms of AverageF1 and
outperform comparative methods by up to 31.69%, 33.06%, and 24.55%, respectively. In addition, the effectiveness
of TERFUR is validated in prioritizing test reports for manual inspection.
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1 INTRODUCTION

Along with the sharp growth of mobile phones, strong business motivation pushes mobile Applications
(Apps) to be delivered to market rapidly. One of the most important characteristics of mobile Apps is
continuous evolution, which requires efficient communication, collaboration, and integration between
development, quality assurance, and operations. Thoroughly holistically automatic DevOps is particularly
suitable to these expectations and mechanisms [52]. DevOps is a new approach to drive seamless App
cycle from development to delivery [1, 41]. As a critical part to promote the successful implementation of
DevOps, testing can help detect and repair bugs, thus significantly improving team productivity and
reliably delivering better user experience for Apps [18]. However, traditional testing, such as laboratory
testing or company testing, is hard to cover diverse mobile phones (e.g., iPhone6s Plus, Samsung Galaxy
S7, Huawei Mate 8), network environments (e.g., WiFi, 3G, GPRS, 4G), operating systems (e.g., Android,
iOS, Blackberry, Symbian) [15, 22], etc. Therefore, many large companies or organizations tend to
crowdsource their testing tasks for mobile Apps to an undefined, potentially large group of online
individuals (workers) [17, 31]. As a result, crowdsourced testing based on collaboration and openness has
become a new trend and attracted a lot of interests from both industry and academy [29, 38].

In crowdsourced testing, workers submit test reports for abnormal software behaviors to help developers
reveal software bugs. In contrast to traditional testers (such as laboratory testers), workers have their
own characteristics. On the one hand, they can provide a wide variety of testing environments, including
mobile phones, network environments, and operating systems. On the other hand, workers are usually
inexperienced and unfamiliar with testing activities. Those test reports submitted by workers in a short
time may be highly redundant and unstructured, i.e., many test reports may detail the same bug with
different free-form texts. Meanwhile, the quality (readability, reproducibility, etc.) may vary sharply
among test reports. Furthermore, compared against traditional testing, crowdsourced testing has a
peculiar and interesting feature, i.e., workers tend to submit multiple bugs in a single test report. Such
typical multi-bug test reports generally contain more natural language information than single-bug ones,
but relatively less information for each contained bug. Based on the above discussions, it is perfect if
those test reports can be automatically partitioned into clusters, in which the test reports in one cluster
detail the same bug. In such a way, developers only need to inspect one representative test report from
every cluster, rather than all the test reports.

In the literature, researchers have investigated some similar tasks for reducing the cost of manual
inspection for software artifacts. Some researchers propose many methods for crash report bucketing
[3, 34, 39]. These methods leverage stack traces to extract features and calculate the similarities
between crash reports, then assign them to corresponding buckets to form bug reports. In contrast to
crowdsourced test reports, crash reports are usually automatically produced in structured forms and
collected by software systems. Some researchers focus on automatically duplicate bug report detection
[36, 43, 51] in a repository of bug reports for open source software. Natural Language Processing
(NLP) [43] and Information Retrieval (IR) [46] techniques are the most common methods to resolve this
problem. They calculate the similarity by either constructing vector space model or extracting features,
then recommend a list of the most relevant historical bug reports for a new one. Compared against
crowdsourced test reports for Apps, bug reports are usually submitted by professional testers.

In this study, we issue the new problem of FUzzy cLustering TEst Reports (FULTER) and present
our attempts towards resolving FULTER, such that the test reports in one cluster detail the same bug,
meanwhile multi-bug test reports can be partitioned into multiple clusters. To resolve FULTER, we need
to overcome a series of barriers as follows:

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39. Publication date: June 2017.



Fuzzy Clustering of Crowdsourced Test Reports for Apps • 39:3

• Invalid barrier: The crowdsourced datasets include many false positive test reports and null test
reports containing no information of bugs. For example, some test reports submitted by workers
describe correct system behaviors to demonstrate that test cases are successfully executed.
• Uneven barrier: Since test reports are written by workers in different descriptive terms, an

extreme gap exists in the length of the contents among test reports. For example, some test
reports only contain several terms, which do not provide enough information to analyze what
cause these bugs. In contrast, some contain many sentences, which detail the steps for reproducing
bugs.
• Multi-bug barrier: As to our observation on some industrial Apps, some workers may report

multiple bugs (2-3 bugs in general) in one test report. For example, a multi-bug test report
contains three functional defects, namely a downloading bug, a sharing bug, and a picture-viewing
bug. Thus, it should be simultaneously partitioned into several clusters.

FULTER can be viewed as a special form of the fuzzy document clustering, in which test reports (namely
documents) are assigned to clusters and a multi-bug test report can be deterministically partitioned
into multiple clusters. Although fuzzy document clustering has been investigated for several decades
[28], no method can be adopted to directly partition multi-bug test reports into clusters. To the best
of our knowledge, Fuzzy C-Means (FCM) is the most popular fuzzy document clustering method with
easy implementation and extensive adaptability [40]. However, similar as fuzzy hierarchical clustering
algorithms [42], FCM needs the prior knowledge about “the number of clusters”. Fuzzy k-means is
adopted to the problem with unknown number of clusters, but does not take contextual information into
consideration [6]. Fuzzy k-Medoids [24] highly depends on the initialization and has poor robustness.
In addition, some other methods are proposed for fuzzy document clustering. They either specialize
the granularity of clustering [45] or are strictly restricted in specific domains [48][9], which makes them
difficult to be generalized. Therefore, such aforementioned fuzzy clustering methods cannot work well to
cluster test reports.

In order to effectively resolve the new problem of FULTER, we construct a TEst Report Fuzzy
clUstering fRamework (TERFUR) consisting of three components. First, two heuristic rules, namely null
rule and regular rule, are well designed to automatically remove the invalid test reports to break through
the invalid barrier. The second component proceeds to preprocess test reports by NLP and selectively
enhance the description of a test report by its input to break through the uneven barrier. To break
through the multi-bug barrier, the third component uses a two-phase merging algorithm to automate
the fuzzy clustering so as to partition test reports into clusters, meanwhile multi-bug test reports are
partitioned into multiple clusters. In such a way, we hope to help developers reduce the cost of manual
inspection.

To show the effectiveness of TERFUR, we collect 1,728 test reports in total from five industrial Apps.
We invite three experienced graduate students from the School of Software at Dalian University of
Technology to independently complete the annotation of redundant, invalid, and multi-bug test reports
and the annotation results are validated by developers of Apps to determine the standard datasets. We
investigate five Research Questions (RQs) and select FCM as the baseline for comparisons. We employ
microAverage Precision (AverageP), microAverage Recall (AverageR), and microAverage F1-measure
(AverageF1 ) to evaluate the performance of TERFUR on the five Apps. Experimental results show that
TERFUR can cluster test reports in terms of AverageP , AverageR, and AverageF1 by up to 78.15%,
78.41%, and 75.82% and outperform comparative methods by up to 31.69%, 33.06%, and 24.55%. Finally,
we leverage DivRisk [13], a prioritization technique combining a diversity strategy and a risk strategy
for predicting the priority of test reports, to generate the recommendation sequence of clustering by
prioritizing test reports and experimentally verify whether TERFUR can reduce manual efforts. The
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experimental results show that TERFUR can greatly reduce the number of inspected test reports for
developers by up to 148 when all the bugs are detected.

The main contributions of this study are as follows:

(1) To the best of our knowledge, this is the first work aiming to investigate multi-bug test reports
and resolving the new problem of FULTER by leveraging fuzzy clustering.

(2) We propose a new framework, namely TERFUR, to automate the fuzzy clustering for crowdsourced
test reports. TERFUR introduces a filter, a preprocessor, and a two-phrase merging component
to break through the invalid barrier, the uneven barrier, and the multi-bug barrier, respectively.

(3) We evaluate TERFUR over five industrial Apps. The experimental results show that TERFUR
can cluster test reports with higher accuracy and recommend more representative test reports to
developers than baseline methods.

The rest of this paper is structured as follows. Section 2 shows the background and motivation for
our study. In Section 3, we detail the structure and characteristics of the five datasets. Our proposed
framework TERFUR is presented in Section 4. In Section 5, we present the experimental design and
summarize the experimental results. Section 6 and Section 7 discuss the threats to validity and the
related work. Finally, we conclude this paper in Section 8.

2 BACKGROUND AND MOTIVATION

In this section, we detail the background of crowdsourced testing which motivates us to explore new
methods for FULTER.

Software testing is a time-consuming and labour-intensive activity in software engineering. Compared
against traditional software testing, crowdsourced testing recruits not only professional testers, but also
end users for testing [31]. Fig. 1 shows the whole procedure of crowdsourced testing. Our industrial
partners are responsible for preparing packages for crowdsourced testing: software under test and testing
tasks. Then we release testing tasks online, recruit workers, and evaluate them. Workers choose testing
tasks according to their own testing devices and environments, perform testing, and submit test reports
for abnormal system behaviors in a prescribed time [13]. These test reports are written in natural
language and delivered to a database via a tool installed on mobile phones, sometimes attached with
some screenshots which capture system status when the bugs occur. Each test report can be represented
with a quadri-tuple {E, I,O,D} as follows:

• E: test environment, including hardware and software configuration, etc.
• I: test input, including input data and operation steps.
• O: test output, including some screenshots for arisen bug.
• D: test result description, namely natural language information for understanding bugs.

In the crowdsourced market, it is hard to recruit a large number of experienced workers. Even if
workers pass the evaluation, their performance is still hard to guarantee [8], which may affect the quality
of submitted test reports, e.g., readability and reproducibility. Moreover, since workers prefer to revealing
simple bugs rather than complex bugs, a mass of highly redundant test reports revealing the same
bugs may be submitted by different workers in a short time. Workers are usually paid for per testing
task, they may quickly complete testing and submit test reports without adequate information, even
invalid test reports. Furthermore, some test reports revealing multiple bugs may be submitted. These
multi-bug test reports commonly carry more natural language information than single-bug ones, but
relatively less information for each contained bug. Due to the above characteristics in test reports, it is a
time-consuming and tedious task for developers to manually inspect these crowdsourced test reports, one
by one.
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Fig. 1. The whole procedure of the crowdsourced testing for Apps.

From October 2015, we perform five crowdsourced testing tasks for industrial Apps, including Justforfun,
SE-800, iShopping, MusicCloud, and UBook through our crowdsourced android testing platform, i.e., the
kikbug.net 1. In this stage of experiment, the workers are mostly students who have already acquired
some knowledge of software testing and have completed tasks recorded in our platform, i.e., they are
qualified for the testing task. For all these testing sessions, the testing time is two weeks. We collect 1,728
crowdsourced test reports from five industrial Apps. By gaining an insight into the results of manual
annotation, most of test reports reveal simple bugs and only dozens of bugs are revealed for each App.
781 out of 1,728 test reports are labeled as invalid ones, i.e., these test reports either describe correct
system behaviors or contain no description information of bugs. 184 out of 1,728 test reports are labeled
as multi-bug ones, in which more than one bug are revealed. By an investigation of test reports and
informal communication with our industrial partners, we discover the following findings:

(1) The quantity of crowdsourced test reports is usually a large number with high redundancy,
meanwhile invalid test reports containing no bug information may be frequently submitted. Thus
it will be a waste of time for developers to analyze and handle redundant and invalid test reports.

(2) In order to complete the test tasks quickly or pursue benefits, workers may report some simple
bugs or submit short test reports. These test reports are either insignificant to improve the
quality of Apps or hard to diagnose their root causes.

(3) Many multi-bug test reports are submitted by workers. Their contents are usually longer than
those of single-bug test reports, but the description for each contained bug may be insufficient
for understanding.

Based on the above mentioned findings, we issue the new problem of FULTER. In this study, a test
report can be regarded as a document and a bug can be regarded as a topic or scheme. Multi-bug
test reports naturally contains multiple topics or schemes. Hence, FULTER can be viewed as a special
form of the fuzzy document clustering. At first, let TR = {TR1, TR2, . . . , TRm} denote a set of test
reports. Based on [24, 45], the task of FULTER is to partition these test reports into a set of clusters
G = {G1, G2, . . . , Gc} according to their topics or schemes and multi-bug test reports can belong to more
than one cluster, where c is the number of clusters. We try to explore an automated method to help

1http://kikbug.net
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Table 1. Examples of crowdsourced test report

No. Environment Input (test steps) Description Output

TR1

Operating System: Android

4.4.2

Phone: Xiaomi Redmi note

System Language: Chinese

Screen Resolution: 4.6 inch

1. Setting is normal.
2. The recommendation feature is available.
3. The comment feature is available.
4. The feedback message can be viewed.

TR2

Operating System: Android

4.4.2

Phone: Xiaomi Redmi

System Language: Chinese

Screen Resolution: 5.0 inch

1. Click on the button on the bottom.
2. Choose a picture and share it to friends.
3. Click on the feedback button.
4. Input advices for the app.
5. Click on the submit button.
6. Check the submitted advices.

No bug.

TR3

Operating System: Android

4.4.2

Phone: GiONEE GN9000

System Language: Chinese

Screen Resolution: 4.6 inch

It is failed to share pictures to friends or cir-
cle of friends by WeChat.

Sharing

TR4

Operating System: Android

5.1

Phone: Xiaomi M1 note

System Language: Chinese

Screen Resolution: 4.6 inch

Check the setting and sharing feature.

Share pictures to friends or circle of
friends by WeChat or micro-blogs, the
system shows “operation is running in
the background” or “sharing failed”.

TR5

Operating System: Android

4.2.2

Phone: Samsung GT-18558

System Language: Chinese

Screen Resolution: 3.9 inch

Complete testing and find a bug.

When the downloading is completed,
the system recommends no an applica-
tion for users to open the downloaded
pictures.

TR6

Operating System: Android

4.2.2

Phone: HUAWEI G6-U00

System Language: Chinese

Screen Resolution: 4.6 inch

1. Click on the recommendation button on
the bottom.
2. Select a theme to view pictures.
3. Vertically scroll the screen to check the
feature of “no more pictures”.
4. Horizontally scroll the screen to check the
feature of “no more pictures”.
5. Download pictures and share pictures.

1. Horizontally scroll the screen to the
end, the system does not remind “No
more picture”.
2. After the completion of the down-
loading, the system does not remind
users to choose which application to
open the downloaded pictures.
3. Sharing problem.

TR7

Operating System: Android

4.2.2

Phone: Xiaomi MI 4LTE

System Language: Chinese

Screen Resolution: 4.6 inch

1. Click on the category list.
2. Select a category and enter it to view pic-
tures.
3. Horizontally scroll the screen to check the
feature of “no more pictures”.
4. Download pictures and share pictures.

1. When the pictures are download-
ed, the system recommends no applica-
tions for opening the downloaded pic-
tures.
2. When sharing pictures to friends or
circle of friends by WeChat, the sys-
tem presents the message“failed”.

TR8

Operating System: Android

5.1

Phone: Meizu MX 5

System Language: Chinese

Screen Resolution: 4.6 inch

1. Search for a topic you are interested in.
2. Click on the recommendation list and se-
lect a category to view pictures.
3. Horizontally scroll the screen to check the
feature of “no more pictures”.
4. Download pictures and share pictures.

Horizontally scroll the screen to the
end to check pictures, the system does
not show “no more pictures”.

TR9

Operating System: Android

5.1

Phone: Meizu MX 5

System Language: Chinese

Screen Resolution: 4.6 inch

1. Search for a topic you are interested in.
2. Click on the recommendation list and se-
lect a category to view pictures.
3. Horizontally scroll the screen to check the
feature of “no more pictures”.
4. Download pictures and share pictures.

When completing the downloading,
the system does not remind users how
to open the pictures.

TR10

Operating System: Android

4.4.2

Phone: Xiaomi MI 4

System Language: Chinese

Screen Resolution: 5.0 inch

When scrolling horizontally the screen to the
end to view the pictures, the system does not
remind “no more pictures”.

No more pictures.

our industrial partners resolve FULTER, and recommend representative and informative test reports for
them.

3 TEST REPORT DATASETS

In this section, we describe test report datasets and data annotation in detail.
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3.1 Test Report Dataset

From October 2015 to January 2016, we perform five crowdsourced testing tasks for Justforfun, SE-1800,
iShopping, CloudMusic, and UBook with five companies. Five test report datasets are collected from
workers. The brief introductions for the five Apps are presented as follows:

• Justforfun: an interesting photo sharing App. Users can share and exchange photos with others
online using Justforfun.
• SE-1800: an electrical monitoring App developed by Intelligent & Technology Co. Ltd. It can

provide a complete and mature monitoring solution for all sizes of electricity substations.
• iShopping: an online shopping guideline App developed by Alibaba. Users can buy what they

want online.
• CloudMusic: a music playing and sharing App developed by Netease. Users can build their own

homepages and share their music with others.
• UBook: an online education App developed by New Orientation. It contains massive course

resources and allows users to download them.

Workers from the kikbug platform are recruited to perform testing and submit test reports for five
Apps. Those test reports are collected and transferred to the database. Table 1 presents some examples of
crowdsourced test reports. Please note that all test reports are written in Chinese. For easy understanding,
we translate them into English. The first column is testing environment. The following one shows the
input, namely test steps, and workers perform testing according to these steps. The description is detailed
in the third column. The final column presents some screenshots when bugs occur, for example, the
screenshot of TR9 implies that the prompting function does not work. In general, a test report contains
two texts of natural language, namely the input and the description. However, some workers do not
exactly write test reports in accordance with the guideline. They may detail their work (e.g., TR4 and
TR5 in Table 1 ) or report software bugs (e.g., TR3 and TR10 in Table 1 ) in the inputs, thus resulting in
some special test reports in datasets:
Null test reports: The descriptions of test reports contain no information, only some reproduction

steps are listed in the input. For example, Table 1 enumerates a null test report TR1, of which both the
description and the output are null. Hence, it is hard to identify bugs from either the environment or the
input.
False positive test reports: The descriptions of test reports may declare that test cases (namely test

steps in crowdsourced testing) are executed successfully. These test reports are submitted to demonstrate
that workers have completed the testing tasks and the App works well. A false positive test report TR2

is illustrated in Table 1, “No bug” hints that the test case is executed successfully.
Utmost short test reports: Some test reports only contain one or several terms which cannot

provide enough information, thus resulting in poor readability for inspection. In Table 1, the description
of TR3 only contains one term “sharing”. Compared against another test report TR4 with enough natural
language information, it is hard to distinguish the root causes for TR3. However, further explanation of
this bug is given in the input.
Multi-bug test reports: Workers may report multiple bugs in one test report. These test reports

generally contain much natural language information, but the information for each contained bug may
be insufficient. Two multi-bug test reports TR6 and TR7 are given in Table 1. As to TR7, lines 1 to 3
elaborate that the prompting function does not work when scrolling horizontally the screen to the end,
lines 4 to 7 detail that the App does not remind how to open the downloaded pictures, line 8 briefs a
sharing problem.
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Table 2. The annotation results of five test report datasets

Justforfun SE-1800 iShopping CloudMusic UBook

#Report 291 348 408 238 443

#Validated bug 25 32 65 21 30

#Invalid Report 61(20.96%) 146(41.95%) 193(47.30%) 149(62.61%) 238(53.72%)

#Multi-bug Report 55(18.90%) 36(10.34%) 28(6.86%) 8(3.36%) 57(12.87%)

#Report: The number of test reports collected by the database.
#Validated bug: The number of bugs validated by developers.
#Invalid Report: The number of test reports validated by developers as invalid ones.
#Multi-bug Report: The number of test reports revealing multiple bugs validated by developers.

Table 3. The number of multi-bug test reports revealing different numbers of bugs

#Bug Justforfun SE-1800 iShopping CloudMusic UBook

2 38(69.09%) 34(94.44%) 19(67.86%) 6(75%) 52(91.23%)

3 12(21.82%) 2(5.56%) 7(25%) 2(25%) 2(3.51%)

>3 5(9.09%) 0(0%) 2(7.14%) 0(0%) 3(5.26%)

In summary, invalid test reports including null and false positive test reports may impose negative
impacts to fuzzy clustering, thus resulting in the invalid barrier. Utmost short test reports have low
similarities with relatively long ones, thus resulting in the uneven barrier. Bugs in multi-bug test reports
are hard to be distinguished and partitioned into correspondingly potential clusters, thus resulting in the
multi-bug barrier.

3.2 Data Annotation

Since no dataset with annotated test reports for experiments is available and developers have no enough
time to annotate the large number of test reports, three graduate students from the School of Software at
Dalian University of Technology are invited to annotate the redundant, invalid, and multi-bug test reports.
On average, the students have six years of programming experience and some experience of working
with test reports. We distribute five datasets to three students, everyone independently completes the
annotation of datasets. When inspecting a test report, students first determine whether it is a valid
or invalid, single-bug or multi-bug test report. When detecting a new bug, they need to record it in
summary information and create a new cluster. If a test report revealing the same bug is inspected, it is
put into this cluster. When more than two students consider that two test reports describe the same bug,
we put them into the same cluster. For the ambiguous test reports without consistent agreement, we
report them to developers of Apps to make the final judgment. In this study, students take more than a
week to annotate these test reports and developers take several hours to make the final judgments.

We totally collect more than 1,700 test reports, including 291 test reports on Justforfun, 348 test
reports on SE-1800, 408 test reports on iShopping, 238 test reports on CloudMusic, and 443 test reports
on UBook. Tables 2 and 3 show the results of data annotation. In the test report datasets, invalid test
reports including null and false positive test reports account for 20.96%-62.61%, multi-bug test reports
account for 3.36%-18.90%. Most of multi-bug test reports reveal two or three bugs, only 9.09%, 0%,
7.14%, 0%, and 5.26% of multi-bug test reports reveal more than three bugs in five Apps, respectively.

4 FUZZY CLUSTERING FRAMEWORK

In this section, we detail TERFUR consisting of three components, as shown in Fig. 2. The first component
constructs a filter in which the null rule and the regular rule are proposed to filter out invalid test reports.
The second one is a preprocessor which uses NLP to process the crowdsourced test reports and selectively
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Fig. 2. TERFUR framework.

enhance the descriptions with the inputs. The third component uses a two-phase merging algorithm to
implement fuzzy clustering for test reports.
Running Example. In order to facilitate understanding, ten test reports are chosen to illustrate how

TERFUR works, as shown in Table 1. TR1 and TR2 are invalid test reports. TR3 and TR10 are utmost
short test reports and TR4 reveals the same bug of TR3. The inputs of TR3 and TR5 list no test steps.
TR6 and TR7 are multi-bug test reports. TR8 and TR9 revealing different bugs are submitted by the
same worker.

4.1 Data Filtering

In practice, invalid test reports contain no information of bugs in the descriptions and should not receive
further attention from developers. Hence, invalid test reports including null and false positive test reports
should be removed before the preprocessing to break through the invalid barrier.

On one hand, null test repots can be discarded straightforwardly since the descriptions are null. On
the other hand, the descriptions of false positive test reports are written basically in declarative sentences
with very simple structure, thus these test reports can be easily identified and filtered out using heuristic
rules. We randomly sample 15% of false positive test reports from each dataset. By an investigation
and analysis to the sample, their descriptions usually contain some special strings which are used to
describe the normal system behaviors, e.g., “test pass”, “test success”, “implementation success”, “no
bug”, “not detect a bug”, and “not detect any bug”. Obviously, these strings can be divided into two
categories, namely affirmative strings and negative strings. All relevant words are gathered in despite of
their frequencies. Based on the Chinese grammatical style and our experience, we classify these words
into six types and define them as behavior (B), positive(P), negative (N), defect (D), quantifier (Q), and
object (O), respectively. Detailed information about the two categories of strings and six types of words
are shown in Table 4. Obviously, we can design a regular rule to remove false positive test reports.

To process this problem, a test report (the description) is mapped into a string which is a sequence of
words. We define two rules as follows:

• Null rule: Null. If the string is null, we filter out the test report.
• Regular rule: ([B][P])|([N][D]?[Q]?[O]). If the string contains a substring matching this regular

rule, we filter out this test report.

Where B, P, N, D, Q, and O are sets with a certain number of words. Table 4 lists some words
contained in each set. The regular rule is composed of two parts, ([B][P]) and ([N][D]?[Q]?[O]), which
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Table 4. The detailed description for features

Feature Category Explanation Examples

String category

Affirmative string
An illustration for test cases being executed
successfully

Test pass. Test success.

Negative string
An illustration for no bug existing in the Ap-
p

NO bug. Not detect a bug. Not detect any
bug.

Word type

Behavior Behavior description Test, implementation, execution

Positive Positive description Pass, success, normal

Negative Negative description No, not, none, never

Detect Action description Detect, find, discover

Quantifier Number description Any, some, a, an, one

Object Object description Bug, defect, fault, error, problem

symbolize an affirmative pattern and a negative pattern, respectively. In the substring generated by the
regular rule, each type of words occurs at most once. For example, “No problem” has no D and Q types
of words
Examples. TR1 is a null test report and TR2 is a false positive test report. They match the null rule

and the regular rule, respectively. The two test reports are discarded and TR3, TR4, TR5, TR6, TR7,
TR8, TR9, and TR10 are remained.

4.2 Preprocessing

In our datasets, test reports are mostly composed of Chinese characters and extremely few English words.
The preprocessing component consists of five steps: word segmentation, stop words removal, description
enhancement, vector space model, and similarity computation.
Word segmentation: In contrast to English words with natural spaces, we need a tool for Chinese
segmentation. Many efficient tools have been developed for word segmentation of Chinese documents, e.g.
ICTCLAS 2 and IKAnalyzer 3, which have been widely adopted by existing studies [13, 58]. In our study,
we adopt IKAnalyzer, since it is an open-source Chinese NLP tool and can be used for English word
segmentation as well.
Stop words removal: This step removes stop words which are considered to be unhelpful for similarity
computation. The used stop word list contains 1208 common words 4 as well as some serial numbers
consisting of numbers and symbols.
Example. We implement word segmentation and stop words removal for both the inputs and the

descriptions, together with stemming 5 in view of English processing. The results are shown in Table 5.
After the two steps, the descriptions of TR3 and TR10 only contain a word.
Description enhancement: A typical test report contains two parts of nature language information,
namely the input and the description, which can provide potential information to help developers
discriminate bugs and diagnose their root causes. Due to the poor performance of workers, the inputs of
some test reports may contain mixed information, e.g., test steps, testing details, and bug information.
In addition, sometimes the descriptions containing only several words have a great effect on the similarity
computation. Hence, we try to selectively enhance the descriptions with the inputs in the preprocessing
and leverage the enhanced descriptions to calculate similarities. To do so, we adopt the number of words

2http://ictclas.nlpir.org/
3http://www.oschina.net/p/ikanalyzer
4http://www.oscar-lab.org/chn/resource.htm
5https://github.com/kristopolous/Porter-Stemmer
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Table 5. The results after word segmentation and stop words removal

No. Input Description

TR3 fail, share, pictur, friend, circl, friend, wechat share

TR4 check, set, share, featur
share, pictur, friend, circl, friend, wechat, micro, blog,
system, show, oper, run, background, share, fail

TR5 complet, test, find, bug
download, complet, system, recommend, applic, user,
open, download, pictur

TR6

click, recommend, button, bottom, select, theme, view, pic-
tur, vertic, scroll, screen, check, featur, pictur, horizont, scroll,
screen, check, featur, pictur, download, pictur, share, pictur

horizont, scroll, screen, end, system, remind, pictur,
complet, download, system, remind, user, choos, applic,
open, download, pictur, share, problem

TR7

click, categori, list, select, categori, enter, view, pictur, horizon-
t, scroll, screen, check, featur, pictur, download, pictur, share,
pictur

pictur, download, system, recommend, applic, open,
download, pictur, share, pictur, friend, circl, friend,
wechat, system, present, messag, fail

TR8

search, topic, interest, click, recommend, list, select, categori,
view, pictur, horizont, scroll, screen, check, featur, pictur, down-
load, pictur, share, pictur

horizont, scroll, screen, end, check, pictur, system, show,
pictur

TR9

search, topic, interest, click, recommend, list, select, categori,
view, pictur, horizont, scroll, screen, check, featur, pictur, down-
load, pictur, share, pictur

complet, download, system, remind, user, open, pictur

TR10 scroll, horizont, screen, end, view, pictur, system, remind, pictur pictur

Table 6. The results after implementing the description enhancement strategy

No. Enhanced description

TR3 fail, share, pictur, friend, circl, friend, wechat

TR4 share, pictur, friend, circl, friend, wechat, micro, blog, system, show, oper, run, background, share, fail

TR5 download, complet, system, recommend, applic, user, open, download, pictur

TR6
horizont, scroll, screen, end, system, remind, pictur, complet, download, system, remind, user, choos, applic, open,
download, pictur, share, problem

TR7
pictur, download, system, recommend, applic, open, download, pictur, share, pictur, friend, circl, friend, wechat,
system, present, messag, fail

TR8 horizont, scroll, screen, end, check, pictur, system, show, pictur

TR9 complet, download, system, remind, user, open, pictur

TR10 scroll, horizont, screen, end, view, pictur, system, remind, pictur

as the metric. Empirically, when the number of words within the description is less than both that of the
input and four words, the description can be replaced by the input.
Example. In our examples, TR3 and TR10 are utmost short test reports in which the descriptions

just contain one word after word segmentation and stop words removal, but their inputs contain seven
and nine words, respectively. As a result, the descriptions are replaced with the inputs by implementing
the description enhancement strategy, as shown in Table 6. For the other test reports, the descriptions
keep unchanged.
Vector space model: Vector space model is universally used to process the unstructured text information

[43, 51]. In vector space model, we represent each test report as a vector
−−→
TRi = (ei,1, ei,2, . . . , ei,n) based

on an established dictionary, where n is the size of the dictionary. Each dimension in the vector corresponds
to a term in the dictionary. The number of occurrences of a term in the description can be used to denote
the weight of the corresponding dimension.
Example. We establish a dictionary including 30 terms for the enhanced descriptions of eight test

reports, as shown in Table 7. With the established dictionary, we construct a vector space model, as
shown in Table 8.
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Table 7. Dictionary

No. Word No. Word No. Word No. Word No. Word No. Word

D1 applic D6 circl D11 friend D16 oper D21 remind D26 show

D2 background D7 complet D12 horizont D17 pictur D22 run D27 system

D3 blog D8 download D13 messag D18 present D23 screen D28 user

D4 check D9 end D14 micro D19 problem D24 scroll D29 view

D5 choos D10 fail D15 open D20 recommend D25 share D30 wechat

Table 8. Vector space model for eight test reports

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30

TR3 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

TR4 0 1 1 0 0 1 0 0 0 1 2 0 0 1 0 1 1 0 0 0 0 1 0 0 2 1 1 0 0 1

TR5 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0

TR6 1 0 0 0 1 0 1 2 1 0 0 1 0 0 1 0 2 0 1 0 2 0 1 1 1 0 2 1 0 0

TR7 1 0 0 0 0 1 0 2 0 1 2 0 1 0 1 0 3 1 0 1 0 0 0 0 1 0 2 0 0 1

TR8 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 1 1 0 1 1 0 0 0

TR9 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

TR10 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 1 0 1 1 0 0 1 0 1 0

Similarity computation: After transforming test reports into vectors, we measure the similarities by
the cosine similarity for each pair of test reports. The cosine similarity is calculated by the following
formula [30, 43]:

Sim(
−−→
TR1,

−−→
TR2) =

−−→
TR1 ·

−−→
TR2

|
−−→
TR1||

−−→
TR2|

(1)

Example. Table 9 shows the similarity results of pairs of test reports.

4.3 Fuzzy Clustering

Various methods related to clustering analysis have been proposed, including hierarchical methods,
partitioning relocation methods, density-based partitioning methods, and grid-based methods [4]. Many
two-phase clustering algorithms [16, 26] derived from hierarchical methods have been widely proposed in
document clustering, e.g., Maximum Capturing (MC) [59], Frequent Word Sequences (CFWS) [26], and
Frequent Word Meaning Sequences (CFWMS) [26]. These methods either extract features or build a
vector space model to calculate similarities for generating initial clusters in the first phase, and then merge
these clusters further according to their similarities or overlap degrees in the second phase. Unfortunately,
they are not fuzzy document clustering methods and cannot partition multi-bug test reports into multiple
clusters. Nevertheless, inspired by these algorithms, we propose a new fuzzy version of two-phase merging
algorithm. In our algorithm, we build a vector space model to calculate similarities for initial cluster
generation and prescribe that a test report is partitioned prohibitively into different clusters in the first
phase. In the second phase, we implement the merger of clusters so as to assign multi-bug test reports
into different clusters using a new similarity measurement.

4.3.1 Initial cluster generation. As to document clustering, it is important to determine the cluster
centroids named seed test reports. If a multi-bug test report is chosen as a seed, test reports revealing
different bugs may be incorrectly partitioned into the same cluster. In contrast, if an utmost short test
report is chosen as a seed, test reports revealing the same bug may be incorrectly assigned to other
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Fig. 3. The clustering procedure of two-phase merging algorithm.

Table 9. The similarities of pairs of test reports

No. TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10

TR3 1 0.7647 0.1005 0.1925 0.6694 0.2010 0.1260 0.2010

TR4 0.7647 1 0.1383 0.2649 0.5864 0.2767 0.1734 0.2075

TR5 0.1005 0.1383 1 0.6963 0.6606 0.2727 0.7977 0.2727

TR6 0.1925 0.2649 0.6963 1 0.5973 0.5803 0.8001 0.6963

TR7 0.6694 0.5864 0.6606 0.5973 1 0.4404 0.5521 0.4404

TR8 0.2010 0.2767 0.2727 0.5803 0.4404 1 0.3419 0.8182

TR9 0.1260 0.1734 0.7977 0.8001 0.5521 0.3419 1 0.4558

TR10 0.2010 0.2075 0.2727 0.6963 0.4404 0.8182 0.4558 1

clusters. Based on the above considerations, we adopt the text length as the metric to determine seed test
reports. Algorithm 1 shows the procedure of initial cluster generation. Given a set TR of test reports
TR1, TR2, . . . , TRm, we calculate the text length TL(TRi) of each test report by counting the number of
words as well as the average text length TLavg of all test reports. First, the test report TRk whose text
length being closest to TLavg is chosen as a seed and removed from TR. Then a new cluster is created
and other test reports whose similarities with TRk exceeding a threshold value δ1 can be put into this
cluster. These test reports are removed from TR. The above steps repeat until the set TR becomes
empty, then the algorithm terminates and the initial clusters are returned.

The threshold value δ1 is an important parameter which controls the number of clusters. A large value
of δ1 leads to more clusters and a small value leads to fewer clusters.

Example. As shown Fig. 3.a, the average text length is TLavg=11.625, so TR5 is selected as the first
seed test report and a new cluster G1 is created. Assuming that the similarity threshold value δ1=0.7,
TR9 will be put into G1. Similarly, two new clusters G2 and G3 are created and include two test reports,
respectively. Finally, TR7 and TR6 are selected as seed test reports and two new clusters G4 and G5 are
created, respectively.

4.3.2 Cluster merging. Algorithm 1 is run to form the initial clusters G = {G1, G2, . . . , Gc}. The
number of initial clusters is usually larger than the ground-truth and these clusters can be further merged.
Existing studies [10, 16, 26] have adopted different strategies to merge clusters. However, these strategies
cannot be directly adapted to our datasets without taking multi-bug test reports into consideration.
Consequently, we propose a new strategy to merge clusters in our study. In the newly obtained clusters,
each one contains a certain number of test reports. We treat all test reports in one cluster as a new
document and re-calculate the similarities for pairs of clusters. Similarly, it is also important to determine

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39. Publication date: June 2017.



39:14 • H. Jiang et al.

Algorithm 1: Initial cluster generation

Input: m test reports TR={TR1, TR2, . . . , TRm} and similarity matrix Sim TR
Output: c clusters
G=∅; c=0;

For each test report TRi, calculate the text length TL(TRi)=
∑n

i=1 ei,j ;

For all test reports, calculate the average text length TLavg=
∑m

i=1 TL(TRi)/m;

while TR 6= ∅ do
Select the test report TRk from TR, s.t. TLk = arg min

TL(TRi)

(|TL(TRi)− TLavg|);

c=c+ 1;
Gc={TRk}; // Select TRk as a seed test report
TR=TR\{TRk};
// Add other test reports to the new cluster
for (TRi ∈ TR) do

if (Sim TR(TRi, TRk) ≥ δ1) then
Gc=Gc

⋃
{TRi};

TR=TR\{TRi};
end

end

G=G
⋃
{Gc};

end

Return G;

the seed clusters. Before that, we introduce two kinds of prior knowledge related to crowdsourced test
reports.

First, workers prefer to revealing simple bugs rather than complex ones, thus resulting in massive
redundant test reports revealing same bugs. The numbers of test reports in some clusters heavily
outnumber those of some others. As a result, we adopt the cluster size as a metric to help determine seed
clusters for merging.

Second, in general, multi-bug test reports have high similarity values with distinct test reports. By an
in-depth observation to the annotation results as shown in Table 3, most of multi-bug test reports reveal
two or three bugs. For example, there are 54 test reports revealing two or three bugs over UBook. In
contrast, only 3 test reports reveal more than three bugs. As a result, we prescribe that a cluster can be
merged into no more than three seed clusters.

With the above prior knowledge, we let Num(Gi) denote the times of being merged of Gi. The merging
procedure is shown in Algorithm 2. First, all clusters subjected to Num(Gi) = 0 are selected to construct
a candidate set SC. The largest sized cluster Gk is selected as a seed from SC and removed from G.
Then other clusters whose similarities with Gk exceeding a threshold value δ2 can be merged into Gk.
These merged clusters are still retained in G, but no longer selected as seed clusters. If a cluster is merged
for three times, namely Num(Gi) = 3, it should be removed from G. The above steps repeat until no new
seed cluster is available or G becomes empty, and the algorithm terminates and the results are returned.

Example. As shown Fig. 3.b, G1 is selected as the first seed cluster. Assuming that the similarity
threshold value δ2 is set to 0.5, in this case, G4 and G5 can be merged into G1. Similarly, G2 and G3 are
selected as the second and the third seed clusters, respectively. Although TR6 reveals three bugs, but G5

containing test report TR6 is only merged for two times due to limited information for the third bug.
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Algorithm 2: Cluster merging

Input: c clusters G={G1, G2, . . . , Gc} and similarity matrix Sim C
Output: d(d < c) clusters
S=∅;
For each cluster Gi, Num(Gi)=0;

while G 6= ∅ do
SC={Gi|Gi ∈ G,Num(Gi) = 0};
if (SC==∅) then

break;

end
Select the largest sized cluster Gk from SC; // Select Gk as the seed cluster
G=G\{Gk};
for (Gi ∈ G) do

if (Sim C(Gi, Gk) ≥ δ2) and (Num(Gi) <3) then
Gk=Gk

⋃
Gi;

Num(Gi)=Num(Gi) + 1;

end

if (Num(Gi)==3) then
G=G\{Gi};

end

end

S=S
⋃
{Gk};

end

Return S; // d=|S| clusters are returned;

5 EXPERIMENTAL SETUP

In this section, we detail the experiment setup, including experiment platform, parameter settings,
experimental datasets, and evaluation metrics.

5.1 Experiment Platform and Parameter settings

All the experiments are conducted with JavaJDK1.8.0 60, compiled with Eclipse 4.5.1, and run on a PC
with 64-bitWin 8.1, Intel Core(TM) i7-4790 CPU, and 8G memory.

Our TERFUR framework involves two parameters, namely the similarity threshold values δ1 and δ2,
which may impact the clustering results. As for the empirical evaluation, we set δ1=0.8 and δ2=0.3 as
the default parameter values and present the tuning results in Section 6.1.

5.2 Experimental Datasets

We collect five crowdsourced test report datasets from industrial Apps, namely Justforfun with 291 test
reports, SE-1800 with 348 test reports, iShopping with 408 test reports, CloudMusic with 238 test reports,
and UBook with 443 test reports. All test reports are manually annotated by students. We carefully
check the annotation results and submit them to developers for further validation. Five datasets include
773 invalid test reports and 184 multi-bug test reports. 174 out of 184 multi-bug test reports reveal
two or three bugs. In TERFUR, all test reports are taken as the input of the filter and 745 invalid test
reports are successfully filtered out. Then the remaining test reports are processed further by NLP in the
preprocessor and automatically partitioned into clusters by the two-phase merging algorithm.
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5.3 Metrics

Cluster validity assessment, namely clustering result analysis, is divided into internal validity assessment
and external validity assessment [19, 32]. Internal validity assessment considers both the inter-cluster
similarity and the inner-cluster similarity, which usually uses objective functions to measure the perfor-
mance of algorithms. Thus ideal results may be not intrinsically appropriate to the actual data. External
validity assessment considers the consistency between clustering results and expected results, which
usually adopts manual evaluation to measure the performance of algorithms. In document clustering, the
quality of clustering results depends on the subjective judgments of professionals, thus external validity
assessment is more suitable to evaluate document clustering results [32].

Precision, recall, and F-measure derived from external validity assessment are the most commonly
used metrics, which have been widely employed to evaluate the performance of algorithms in document
clustering [10, 16] and document classification [20, 27]. In the same way, we first employ precision, recall,
and F-measure to evaluate the local result for each cluster, and then the global result by averaging over
the results of all clusters, namely microAverage Precision (AverageP), microAverage Recall (AverageR),
and microAverage F1-measure (AverageF1 ) [16, 20].

AverageP is an important metric to measure the cohesion degree of each cluster in the clustering results.
Assuming that G = {G1, G2, . . . , Gk} and P = {P1, P2, . . . , Pc} represent the clustering results and the
results of manual annotation, respectively, k does not necessarily equate to c, and Gi corresponds Pj .
The formula of AverageR is as follow [20]:

AverageP =

k∑
i=1

TP i

k∑
i=1

(TP i + FP i)

(2)

AverageR is an important metric to evaluate the level of consistency between the clustering results and
the manual annotation. The formula is as follow [20]:

AverageR =

k∑
i=1

TP i

k∑
i=1

(TP i + FN i)

(3)

AverageF1 is an external evaluation metric based on the combination of AverageP and AverageR. The
better the results of clustering, the higher the value of AverageF1 is. The formula is as follow [20]:

AverageF1 =
2AverageP ∗AverageR
AverageP +AverageR

(4)

Where TPi is the number of true positives, namely the numbers of test reports belonging to Gi and
Pj . FPi is the number of false positives, namely the number of test reports belonging to non-Gi and Pj .
FNi is the number of false negatives, namely the number of test reports belonging to Gi and non-Pj .

6 EXPERIMENTAL RESULTS

In this section, we investigate five research questions and conduct experiments on five industrial datasets
to evaluate TERFUR. In addition, we also verify whether TERFUR can greatly reduce the cost of manual
inspection for developers.
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iShopping iShopping

CloudMusic

Fig. 4. Results of TERFUR with different δ1 values.

CloudMusic

Fig. 5. Results of TERFUR with different δ2 values.

6.1 Investigation to RQ1

RQ1. How do the two parameters affect the performance of TERFUR?
Motivation. Two parameters in the two-phase merging algorithm, namely the similarity threshold

values δ1 and δ2, play a decisive role in clustering test reports. In this RQ, we mainly investigate the
impacts of the two parameters and attempt to find appropriate values to make sure that they can be
applied to all datasets.
Approach. Since there are two parameters in TERFUR, we gradually increase the value of one

parameter from 0 to 1 and keep the other one in a fixed value. We predefine a tuning step to 0.1 and
run TERFUR over iShopping and CloudMusic. Since developers expect accurate clustering results, we
regard AverageP as a main metric to evaluate the behavior of TERFUR over the two datasets. The best
values of parameters are determined and then applied to others. In order to facilitate observation, the
tuning results are presented in Fig. 4 and Fig. 5 over iShopping and CloudMusic with respect to δ1 and
δ2, respectively.

Results. In Fig. 4, we use two sub-figures to present the tuning results when δ2=0.3 and δ1 varies in
[0, 1]. As the change of δ1, TERFUR achieves different results in terms of AverageP , AverageR, and
AverageF1 over iShopping. When δ1 is set to 0.8, TERFUR rises to the peak and achieves 51.29% in
terms of AverageP , 52.19% in terms of AverageR, and 51.74% in terms of AverageF1 . The similar findings
can be observed over CloudMusic. When δ1 is equal to 0.8, TERFUR achieves the best value 73.40%
in terms of AverageP , the corresponding values of AverageR and AverageF1 are 78.41% and 75.82%,
respectively. Hence, δ1=0.8 is a good choice in our datasets.

In Fig. 5, we also use two sub-figures to present the tuning results when δ1=0.8 and δ2 varies in [0, 1].
As shown in the figure, TERFUR shows basically similar tendency with the change of δ2. For example,
TERFUR rises from 29.50% to 51.29% and falls from 51.29% to 36.52% in terms of AverageP with the
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continuous growth of δ2 from 0 to 1 over iShopping. AverageR and AverageF1 follow almost the same
change trends as well. When δ2 is set to 0.3, TERFUR achieves the best results in terms of AverageP ,
AverageR, and AverageF1 . Hence, δ2=0.3 is a good choice in our datasets. In the following experiments,
we keep the two parameters in their tuned values, namely δ1=0.8 and δ2=0.3.

Conclusion. The two parameters influence the results of TERFUR. The values of three metrics vary
with the changes of the two parameters and are more sensitive to δ1. According to the tuning results,
δ1=0.8 and δ2= 0.3 may be effective to apply to all datasets.

6.2 Investigation to RQ2

RQ2. Can TERFUR outperform classical Fuzzy C-Means clustering algorithm?
Motivation. Given multi-bug test reports in our datasets, FULTER can be viewed as a special

fuzzy document clustering problem. We explore a new two-phase merging algorithm to automatically
partition test reports into clusters. To further evaluate FULTER, we carry out another experiment by
comparison with Fuzzy C-Means algorithm (FCM), a classical fuzzy clustering algorithm, which has been
widely applied to fuzzy document clustering [33]. In this RQ, we mainly investigate whether TERFUR
outperforms FCM.
Approach. FCM tries to minimize the squared error objective function [5, 33] by iteratively updating

the prototypes (namely cluster centroids) and the fuzzy membership of objects (namely test reports in this
study) to all clusters. FCM usually requires Euclidean relations between objects [45]. In our experiment,
we replace the two-phase merging algorithm with FCM in the third component and transform the text
relations into Euclidean ones by normalizing vector space model. There are two key parameters in FCM,
namely number of clusters and weighting exponent [33]. In order to conduct convincing comparison, we
gradually increase the number of clusters to determine the best results while setting the parameter of
weighting exponent to an empirical value 2 [5, 33].

Results. Table 10 shows the comparative results in terms of AverageP , AverageR, and AverageF1
between TERFUR and FCM. Obviously, TERFUR outperforms FCM over all datasets. For example,
TERFUR improves FCM by 14.04% in terms of AverageP , 28.20% in terms of AverageR, and 22.73% in
terms of AverageF1 over Justforfun. As seen from the results, TERFUR performs well over Justforfun,
CloudMusic, and UBook. Due to the poor quality of test reports of SE-1800 and iShopping, both
TERFUR and FCM achieve low AverageP , AverageR, and AverageF1 . As for SE-1800, the descriptions
of most test reports contain a lot of mixed information (e.g., testing details and test steps), which makes
a great negative impact on similarity computation. As for iShopping, 230 valid test reports reveal 68
bugs (namely clusters) which have been validated by developers, as shown in Talbe 2. Many clusters may
contain only one test report which may be falsely partitioned to other clusters with a high probability.

FCM works poorly in partitioning crowdsourced test reports into clusters over all the datasets. For
example, FCM only achieves 23.37% in terms of AverageP , 32.53% in terms of AverageR, and 27.19% in
terms of AverageF1 over iShopping. Although FCM performs well over Jusforfun and CloudMusic and
achieves 64.11% and 64.81% in terms of AverageP , respectively, there is still a wide gap between FCM
and TERFUR.
Conclusion. FCM can be applied to resolve the FULTER problem, however, it is not an effective

method to partition test reports into clusters. TERFUR works well and achieves better results than
FCM.

6.3 Investigation to RQ3

RQ3. Do the two filtering rules really work to break through the invalid barrier?
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Table 10. Results of TERFUR and FCM over all datasets.

Dataset
TERFUR FCM

AverageP AverageR AverageF1 AverageP AverageR AverageF1

Justforfun 78.15% 73.01% 75.49% 64.11% 44.81% 52.76%

SE-1800 53.62% 47.43% 50.34% 38.72% 42.64% 40.58%

iShopping 51.29% 52.19% 51.74% 23.37% 32.53% 27.19%

CloudMusic 73.40% 78.41% 75.82% 64.81% 45.35% 53.36%

UBook 67.68% 55.35% 60.90% 35.99% 43.26% 39.29%

Table 11. Some statistical results after applying two rules

Justforfun SE-1800 iShopping CloudMusic UBook

#Report 291 348 408 238 443

#Invalid Report 61 146 193 149 238

#Falsely F-Report 0 1 0 0 0

#Correctly F-Report 59 143 178 145 220

#Unsuccessfully F-Report 2 3 15 4 22

#Falsely F-Report: The number of valid test reports filtered out falsely by the two rules.
#Correctly F-Report: The number of invalid test reports filtered out correctly by the two rules.
#Unsuccessfully F-Report: The number of invalid test reports filtered out unsuccessfully by the two rules.

Motivation. A mass of invalid reports in our datasets may waste plenty of time of developers.
Meanwhile, these test reports may impose negative impacts on our clustering algorithm. We elaborately
design two rules and integrate them into the first component of TERFUR to filter out invalid test reports
to break through the invalid barrier. In this RQ, we mainly validate whether the two rules work to
remove invalid test reports.
Approach. Invalid test reports have been carefully annotated by the students and tagged as “invalid”.

We take all test reports as the input of the filter, then independently run the filter. We record the results
and compare the remaining test reports with the original datasets.
Results. Table 11 shows the results after applying the filtering rules. In our datasets, invalid test

reports account for 20.96%-62.61%. With the filter, 59, 143, 178, 145, and 220 invalid test reports are
filtered out, respectively. The numbers of remaining test reports in five datasets are 232, 204, 230, 93,
and 223, respectively, which means the numbers of inspected test reports have been greatly reduced. Only
2, 3, 15, 4, and 22 invalid test reports are not filtered out by our rules. In our framework, we randomly
sample a subset of invalid test reports and consequently design the two heuristic rules. However, there
are still some invalid test reports which do not match the heuristic rules. Nevertheless, most of invalid
test reports can be filtered out. Only one valid test report is falsely filtered out by our rules over SE-1800,
which has little impact on TERFUR for clustering test reports.

Conclusion. Our filtering rules work well to filter out invalid test reports and ensure that nearly
all the valid test reports are not filtered out. The two well-designed rules can effectively reduce the
unnecessary cost in inspecting test reports for developers.

6.4 Investigation to RQ4

RQ4. Can the description enhancement strategy effectively improve the effectiveness of TERFUR?
Motivation. Due to the poor quality of test reports, we adopt the description enhancement strategy

to selectively enhance the descriptions with the inputs following certain rules to break through the
uneven barrier. In this RQ, we mainly investigate whether the description enhancement strategy can
help clustering.
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Table 12. Impact of description enhancement strategy on experimental results

Dataset
TERFUR TERFUR-D TERFUR-ID

AverageP AverageR AverageF1 AverageP AverageR AverageF1 AverageP AverageR AverageF1

Justforfun 78.15% 73.01% 75.49% 71.49% 57.86% 63.96% 81.19% 78.34% 79.74%

SE-1800 53.62% 47.43% 50.34% 51.69% 47.56% 49.54% 45.32% 44.29% 44.80%

iShopping 51.29% 52.19% 51.74% 53.91% 53.91% 53.91% 50.43% 51.10% 50.77%

CloudMusic 73.40% 78.41% 75.82% 70.21% 75.86% 72.93% 61.17% 74.12% 67.02%

UBook 67.68% 55.35% 60.90% 74.70% 70.19% 72.37% 64.12% 60.87% 62.45%

Approach. In our datasets, both the inputs and the descriptions contain natural language information.
Two intuitive strategies for similarity measurement are to utilize either the descriptions or the combination
of both the inputs and the descriptions. In TERFUR, we consider the two strategies to calculate similarity
as baselines for comparisons in the preprocessing. To do so, we name them TERFUR-D (the description)
and TERFUR-ID (the combination of both the input and the description). Likewise, we tune the two
parameters of TERFUR-D and TERFUR-ID over Justforfun and CloudMusic, respectively, and then
apply the tuned parameters to all datasets.
Results. Table 12 presents the evaluation results in terms of AverageP , AverageR, and AverageF1 of

TERFUR, TERFUR-D, and TERFUR-ID. TERFUR and TERFUR-D outperform TERFUR-ID in terms
of AverageP , AverageR, and AverageF1 over all the datasets but Justforfun. For example, compared with
TERFUR-ID, TERFUR and TERFUR-D achieve 12.23% and 9.04% improvements in terms of AverageP ,
4.29% and 1.74% improvements in terms of AverageR, and 8.80% and 5.91% improvements in terms of
AverageF1 over CloudMusic, respectively. TERFUR achieves better results than TERFUR-D in terms of
AverageP , AverageR, and AverageF1 over Justforfun, SE-1800, and CloudMusic. For example, TERFUR
improves TERFUR-D by up to 6.66% in terms of AverageP , 15.15% in terms of AverageR, and 11.53%
in terms of AverageF1 over Justforfun, respectively. In contrast, TERFUR-D achieves better results than
TERFUR over iShopping and UBook. For example, TERFUR-D improves TERFUR by up to 7.02%
in terms of AverageP , 14.84% in terms of AverageR, and 11.47% in terms of AverageF1 over UBook.
Meanwhile, TERFUR-ID achieves better results than both TERFUR and TERFUR-D over Justforfun.
Conclusion. The inputs of test reports can enhance the descriptions, but sometimes may bring noises.

As a consequence, better results can be available when choosing an appropriate strategy by prejudging the
degree of similarity between the inputs and descriptions. Clearly, our description enhancement strategy
is more effective than using the combination of both the input and the description.

6.5 Investigation to RQ5

RQ5. Can TERFUR reduce the number of inspected test reports for developers?
Motivation. Developers cannot check all test reports in reality. Driven by the motivation, we thus

issue the new problem of FULTER. In an ideal case, test reports in one cluster detail the same bug
after fuzzy clustering, developers only need to inspect one representative test report from each cluster.
However, it is hard to achieve the 100% accuracy by automated clustering algorithms. In this RQ, we
investigate experimentally whether TERFUR can reduce manual efforts by prioritizing test reports.
Approach. In the literature, a prioritization technique combining a Diversity strategy and a Risk

strategy (DivRisk) has been proposed to prioritize test reports [13]. More specifically, keywords are
extracted first from test reports to build a keyword vector model. Then the risk values of test reports
are calculated and the distance matrix is constructed based on the keyword vector model. Next, the
most risky test report is selected as the first one for inspection. After that, nc (nc=8) test reports with
the largest distance(s) with the inspected ones are selected to form a candidate set, and the most risky
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Table 13. The average number of inspected test reports

App Algorithm 25% 50% 75% 100%

Justforfun

Best 1.25 8.5 14.75 21

DivRisk 3.25 47.5 117.5 208

TERFUR-DivRisk 3.25 18.5 64.25 207

SE-1800

Best 4 10 18 26

DivRisk 18 47 92 241

TERFUR-DivRisk 12 27 50 145

iShopping

Best 6 18 35 52

DivRisk 13 39 79 228

TERFUR-DivRisk 22 42 91 206

CloudMusic

Best 2.25 7.5 12.75 18

DivRisk 10.25 34 50.5 128

TERFUR-DivRisk 5 10.5 15.75 39

UBook

Best 2 7 14.5 22

DivRisk 8.5 34 92 223

TERFUR-DivRisk 6.5 23 45.5 75

test report is selected from the set for inspection. When detecting a real bug, all keywords of this test
report in the keyword vector model are increased by a given value δ (δ = 0.2). Finally, the prioritization
sequence is returned.

Although DivRisk achieves competitive results for developers, there is still a room for improvement
for reducing manual inspection. Thus, we propose an improved test repost prioritization technique by
combining TERFUR and DivRisk (TERFUR-DivRisk). In TERFUR-DivRisk, we first run TERFUR to
generate the clustering results. Then the most risky test report is selected from the largest sized cluster
and removed from all clusters. Next, nc(nc=8) test reports with the largest distance(s) with the inspected
ones are selected from the second largest sized cluster to construct the candidate set, and the most risky
test report is selected from the set. We remove this test report from all clusters and update the keyword
vector model as well. After all clusters are operated once, we start a new round from the largest sized
cluster. The above steps repeat until all clusters become empty, then the procedure terminates and the
recommendation sequence is returned.

In order to verify the efficiency of TERFUR-DivRisk, we employ the cost of inspection to detect the
given number (25%, 50%, 75%, and 100%) of bugs as the metric and introduce linear interpolation [13, 25]
to determine the number of inspected test reports. We choose Best and DivRisk [13] prioritization
strategies as baselines for comparisons. Assuming that we know in advance which test reports reveal
true bugs or are multi-bug ones. Naturally, multi-bug test reports should be inspected first in the Best
strategy. For example, there are 25 bugs in Justforfun, two multi-bug test reports revealing four and
three different bugs will be inspected first. In this case, only 1.25 test reports need to be inspected in the
case of detecting 25% bugs (namely 6.25 bugs) according to the linear interpolation. In addition, we run
DivRisk over the original datasets.
Results. Table 13 records the numbers of inspected test reports in detecting 25%, 50%, 75%, 100%

bugs. As shown in the table, we observe that Best just needs to inspect a small amount of test reports
over all the datasets. For example, Best needs to inspect 1.25, 8.5, 14.75, and 21 test reports for detecting
25%, 50%, 75%, and 100% bugs over Justforfun, respectively. Correspondingly, DivRisk needs to inspect
3.25, 47.5, 117.5, and 208 test reports and TERFUR-DivRisk needs to inspect 3.25, 18.5, 64.25, and 207
test reports, respectively.
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TERFUR-DivRisk outperforms DivRisk over all the datasets but iShopping and can provide best
approximation to the Best results. For example, TERFUR-DivRisk needs to inspect 5, 10.5, 15.75, and
39 test reports for detecting 25%, 50%, 75%, 100% bugs over CloudMusic, the numbers of inspected
test reports are close to those of Best. Compared with DivRisk, TERFUR-DivRisk can achieve
51.22%, 69.12%, 68.81%, and 69.53% improvements with respect to the number of inspected test reports,
respectively. Unfortunately, TERFUR-DivRisk needs to inspect more test reports than DivRisk in the
case of detecting 25%, 50%, and 75% bugs over iShopping. The reason for this may be due to that
TERFUR provides the lowest AverageP over this dataset, i.e., TERFUR does not work well to cluster
test reports of iShopping.
Conclusion. The results of TERFUR-DivRisk are significantly better than those of DivRisk. By

combining TERFUR and DivRisk, developers only need to inspect a small number of test reports for
detecting 25%, 50%, and 75% bugs.

7 THREATS TO VALIDITY

In this section, we discuss the threats to validity, including external threats and internal threats.

7.1 External Threats

In crowdsourced testing, workers are recruited in an open call format. In general, they have no social
relationship with each other in this situation [17, 31]. In this study, students are invited as workers to
perform testing and submit test reports. In such a way workers have certain social relations, so the results
may be different from those of workers from open platforms. In the literature [44], an empirical study
shows that both students and professionals present similar performance for a new emerging technology.
Thus, this threat has been reduced.

In this study, developers have no enough time to annotate all test reports. Therefore, we invite three
graduate students to annotate the datasets independently. Their experience and personal opinions may
influence the annotation results. In order to minimize the bias, each test report belongs to a cluster if it
gets two or more votes from students. We submit the ambiguous test reports to developers for exact
decisions.

7.2 Internal Threats

In our experiment, all test reports are written in Chinese, which may threaten the generalization of our
technique to other natural languages. However, NLP techniques are widely used in text processing and
can be applied to various natural languages. Using other NLP tools, such as Stanford NLP toolkit6,
the vector space model can be built for test reports written in other natural languages. Meanwhile, the
two-phase merging algorithm is associated with text similarity but independent of textual information.
Therefore, this threat will be minimized.

In TERFUR, we propose a new fuzzy version of two-phase merging algorithm based on hierarchy
clustering. As a consequence, a potential drawback exists in our algorithm. That is, if a test report is
assigned into a wrong cluster in the first phase, it will always belong to this cluster in the second phase.
In order to overcome this drawback, we try to ensure that test reports in one cluster detailing the same
bug by setting a large similarity threshold value in the first phase.

6http://nlp.stanford.edu/software
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Table 14. A comparison among the three tasks from distinct aspects

Crash reports bucketing Duplicate bug report detection Crowdsourced test report fuzzy clustering

Task Find a similar bucket Find a similar class Partition all test reports into clusters

Submission Frequency Very high Low High

Completeness Part of a bug report A complete bug report A complete test report

Redundancy Degree Very high Low High

8 RELATED WORK

In this section, we summarize previous studies related to our work. There are four major areas: crash
report bucking, duplicate bug report detection, crowdsourced testing, and fuzzy document clustering.

8.1 Crash Report Bucketing

Crash reporting system collects crash reports and classifies similar ones to the same bucket to automatically
produce bug reports. Cause analysis and classification for crash reports are important issues for developers.

Many studies explore call stack information to classify crash reports. The failure similarity classifier is
built to calculate the similarities between crash reports based on the tuned call stack edit distances [3].
However, it is hard to be implemented since the whole model will take great computing cost on generating
a total of 11 penalty parameters. A crash graph is constructed by extracting call stacks from multiple
crash reports in one bucket, which can provide aggregated information about crashes for developers [21].
ReBucket measures the similarities using Position Dependent Model (PDM) by extracting simplified call
stacks and then partitions crash reports into distinct buckets using the hierarchical clustering method
[11]. In addition, the literature implements the call stack matching by measuring the similarities of their
function names to quickly identify the recurrences of crashes [34].

The target of crash report bucketing is to assign newly arrived crash reports to corresponding buckets
to automatically form bug reports. Its resolutions usually leverage structured stack traces to extract
features and calculate the similarities between crash reports. In contrast, our work aims to cluster all test
reports. Table 14 summarizes some differences between the two tasks from different aspects. Different
from crash reports, crowdsourced test reports for Apps are usually written with different free-form texts
on mobile phones and have relatively low redundancy and submission frequency.

8.2 Duplicate Bug Report Detection

In bug report resolutions [55–57], duplicate bug report detection is one of the most important tasks.
Assigning duplicate bug reports to different developers for fixing will take up a great deal of manpower,
which motivates researchers to seek efficient solutions to this problem.

Many methods are proposed for duplicate bug report detection [7, 43]. NLP techniques are one of the
most used methods and five key steps including tokenization, stemming, stop words removal, vector space
representation, and similarity calculation are sequentially performed [43]. Some researchers also leverage
IR techniques for duplicate bug report detection. For example, IR techniques are uniformly adopted to
calculate the similarities for both natural language information and execution information [51]. However,
it requires additional efforts to create the execution information. To overcome the differences of different
descriptive terms in bug reports, IR techniques and topic modeling are combined for detecting duplicate
bug reports [36]. Another body of method is machine learning. A discriminative model is trained by
Support Vector Machine (SVM) to retrieve duplicate bug reports from a collection [47]. However, SVM
requires a long time to build the model. To overcome the shortcoming, a retrieval function extending the
BM25F is proposed in [46].

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39. Publication date: June 2017.



39:24 • H. Jiang et al.

In duplicate bug report detection, existing methods either build vector space model or extract features
for similarity computation and recommend the most relevant historical bug reports for an emerging one.
In contrast, our work aims to partition all test reports into clusters. Table 14 summarizes the differences
between the two tasks from different aspects. Compared against bug reports, crowdsourced test reports
for Apps have the following characteristics. First, test reports are often submitted by non-professional
testers. Second, test reports are written in natural language on mobile phones, thus they are generally
shorter and less informative, but also include more screenshots due to the ease of capturing screenshots
on mobile phones. Finally, test reports submitted by workers in a short time may be highly redundant
and unstructured.

8.3 Crowdsourced Testing

Crowdsourcing is proposed by Howe and Robinson in 2006, which is the process of an organization
crowdsourcing their work to undefined, online individuals in an open call form [17, 31]. It tries to resolve
problems by combining both human and machine computing power. Crowdsourced testing has become
a fairly new trend in software engineering due to its cost-effectiveness, impartiality, diversity, and high
device and configuration coverage [15].

To investigate the potential of crowdsourced usability testing, the similar laboratory usability testing is
simultaneously performed as the comparison in distinct implementation [29]. Crowdsourced testing is
also introduced to perform costly GUI testing. The system under test is run in virtual machines and
crowdsourced workers are recruited to remotely perform semi-automated continuous testing [12]. Aiming
to validate whether oracle problems can be resolved by crowdsourced testing, the problems are split into
subtasks and solved by a group of workers online [38]. A tool for crowdsourced testing is developed to
efficiently recruit larger amounts of workers and evaluate the usability of web sites and web-based services
under many different conditions [35]. Although crowsourced testing gains a great success, there are still a
number of challenges. An empirical evaluation is conducted to investigate whether crowdsourced testing
and laboratory testing can compensate each other [15].

Some studies concentrate on addressing problems existing in crowdsourced testing. To overcome the
shortcomings (e.g., quality, management) in crowdsourced testing, Quasi-Crowdsourced Testing (QCT) is
put forward by introducing crowdsourced testing to education platforms [8]. To help developers inspect
test reports more quickly, a text-based technique called DivRisk is explored by combining a diversity
strategy and a risk strategy to prioritize test reports [13]. Given the ambiguity of natural language, a
hybrid analysis technique is proposed by leveraging both textual information and image information [14].
To reduce unnecessary inspection on false positive test reports, some researchers adopt a cluster-based
classification approach to discriminate the true positives from a large number of test reports [49]. However,
this method often requires abundant manually labelled training data. To overcome this obvious drawback,
some researchers consider to use more the efficient activity learning technique [50]. Likewise, our study
aims to cluster test reports to reduce the cost of manual inspection.

8.4 Fuzzy Clustering for Documents

Document clustering plays an important role in information retrieval and text processing, which can
help users systematically organize and manage documents. The most common document clustering is
hard clustering, i.e., each document is deterministically partitioned into a single cluster. However, a
document may often contain multiple topics or themes (e.g., a multi-bug test report in this study) and
can be partitioned into multiple clusters by some probabilities, which is called fuzzy document clustering
[37, 53] or soft document clustering [23, 28].
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There are many algorithms focusing on fuzzy document clustering. FCM is possibly the most popular
fuzzy clustering algorithm and has been successfully applied to various fuzzy document clustering problems
[33], which iteratively updates cluster prototypes and the fuzzy membership of objects to all clusters in
minimizing the squared error objective function [40]. Differing from FCM, fuzzy k-Medoid algorithms
employ actual objects as cluster prototypes [24]. Possibilistic C-Means (PCM) algorithms relax the
constraint that the sum of membership values of a object to all clusters equals 1 [2]. Fuzzy k-means
algorithms introduce a penalty term to minimize a different objective function [54]. In contrast, some
other fuzzy clustering algorithms have been proposed for fuzzy document clustering. Fuzzy Relational
Eigenvector Centrality-based Clustering Algorithm (FRECCA) constructs a graph representation of
objects in which nodes denote objects and weighted edges denote similarities of objects for fuzzy clustering
of sentence-level text [45]. Fuzzy Ontological Document Clustering (FODC) combining ontological
knowledge representation and fuzzy logic control provides a better solution to patent knowledge clustering
[48]. Fuzzy Latent Semantic Clustering (FLSC) is proposed to mine the latent semantics in web documents
[9].

FULTER can be viewed as a special form of fuzzy document clustering in which multi-bug test reports
should be deterministically partitioned into multiple clusters. The above methods are not suitable for
resolving FULTER without considering multi-bug test reports. Given domain knowledge, we explore a
fuzzy version of two-phase merging algorithm based on agglomerative hierarchical clustering.

9 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel fuzzy clustering framework named TERFUR to cluster crowdsourced
test reports for reducing the cost of manual inspection. Aiming to reduce an unnecessary inspection,
TERFUR first constructs a filter which leverages the null rule and the regular rule to filter out invalid test
repots. Then, a preprocessor is built to process test reports by NLP techniques and selectively enhance
the descriptions of test reports with the inputs, thus the similarities between relevant test reports are
more accurate. Finally, TERFUR uses a two-phase merging algorithm to implement fuzzy clustering for
crowdsourced test reports. We collect five crowdsourced test report datasets to evaluate the effectiveness
of TERFUR. The experimental results show that TERFUR can cluster redundant test reports with
high accuracy and significantly outperform comparative methods. In addition, experimental results also
demonstrate that TERFUR can greatly reduce the cost of test report inspection in prioritizing test
reports. In the future, we will deploy the framework for our industrial partners and continue to collect
crowdsourced test reports for validating our framework.
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