
Root Cause Localization for Unreproducible Builds
via Causality Analysis over System Call Tracing

Zhilei Ren
Key Laboratory for Ubiquitous Network

and Service Software of Liaoning Province;
School of Software, Dalian University of Technology

zren@dlut.edu.cn

Changlin Liu
Department of Computer and Data Sciences,

Case Western Reserve University
cxl1029@case.edu

Xusheng Xiao
Department of Computer and Data Sciences,

Case Western Reserve University
xusheng.xiao@case.edu

He Jiang
School of Software,

Dalian University of Technology
jianghe@dlut.edu.cn

Tao Xie
Department of Computer Science

and Technology, Peking University
taoxie@pku.edu.cn

Abstract—Localization of the root causes for unreproducible
builds during software maintenance is an important yet chal-
lenging task, primarily due to limited runtime traces from
build processes and high diversity of build environments. To
address these challenges, in this paper, we propose REPTRACE,
a framework that leverages the uniform interfaces of system call
tracing for monitoring executed build commands in diverse build
environments and identifies the root causes for unreproducible
builds by analyzing the system call traces of the executed build
commands. Specifically, from the collected system call traces,
REPTRACE performs causality analysis to build a dependency
graph starting from an inconsistent build artifact (across two
builds) via two types of dependencies: read/write dependencies
among processes and parent/child process dependencies, and
searches the graph to find the processes that result in the inconsis-
tencies. To address the challenges of massive noisy dependencies
and uncertain parent/child dependencies, REPTRACE includes
two novel techniques: (1) using differential analysis on multiple
builds to reduce the search space of read/write dependencies,
and (2) computing similarity of the runtime values to filter out
noisy parent/child process dependencies. The evaluation results of
REPTRACE over a set of real-world software packages show that
REPTRACE effectively finds not only the root cause commands
responsible for the unreproducible builds, but also the files to
patch for addressing the unreproducible issues. Among its Top-
10 identified commands and files, REPTRACE achieves high
accuracy rate of 90.00% and 90.56% in identifying the root
causes, respectively.

Index Terms—Unreproducible builds, localization, system call
tracing

I. INTRODUCTION

A software build is reproducible if given the same source
code, build environment, and build instructions, any user can
generate bit-by-bit identical copies of all specified artifacts [1].
In this definition, the source code refers to a copy of the
code checked out from the source code repository, and the
build artifacts include executables, distribution packages, and
file system images. Note that relevant attributes of the build
environment (including build dependencies, build configu-
ration, and environment variables) are kept as part of the

TABLE I
SNIPPET OF VARIATIONS, ACCORDING TO THE reprotest TOOL CHAIN

Variation First build Second build
env TZ “GMT+12” “GMT-14”
env LANG “C.UTF-8” one of “fr CH.UTF-8”, “zh CN”, “es ES”,

“ru RU.CP1251”, “kk KZ.RK1048”
umask 0022 0002
filesystem default file system disorderfs
.

input for building the artifacts. A reproducible software build
plays a critical role in various important applications, such as
build-environment safety, software debugging, and continuous
delivery [2], [3].

Reproducible-build validation has emerged in recent years
as one important software development practice, which aims
to construct an independently-verifiable bridge between the
source code and the build artifacts. Many open-source software
projects have initiated their validation processes, such as De-
bian [4], Guix [5], and F-Droid [6]. In particular, to validate the
reproducibility of software packages in different build environ-
ments, variations aside from the specified build environment
could be introduced deliberately. For example, disorderfs, a
userspace file system that introduces non-determinism into
metadata1, is used to validate whether the issue of file ordering
affects the reproducibility of the build. Table I illustrates
example variations introduced by the validation tool chain
named reprotest2 of the Debian distribution.

Once a build is identified as unreproducible (i.e., there
exists any artifact with different checksum values over build
environments with variations), it is critical yet challenging
to perform causality analysis that identifies the root causes
(usually one or more build commands) for the unreproducible
builds, since build processes usually produce insufficient run-
time traces for locating root causes. As shown in a previous
study [7], the main source of runtime traces available for

1https://tracker.debian.org/pkg/disorderfs
2https://tracker.debian.org/pkg/reprotest

https://tracker.debian.org/pkg/disorderfs
https://tracker.debian.org/pkg/reprotest

locating problematic files that result in unreproducible builds
is the build log, being the verbose output of the make build
system. However, the build log contains only high-level build
commands and cannot capture the low-level build commands
invoked by the high-level build commands; these low-level
build commands can play a critical role in causality analysis.
For instance, consider a POSIX Shell script invoked in a
Makefile. From the build log, the execution of the script
could be reflected, but we cannot know what underlying build
commands have been invoked inside the script. Also, the build
log often contains a lot of noises for causality analysis, such as
greeting information, progress indicator, and test case output.
Such irrelevant information makes it difficult to extract useful
information.

Another major challenge for causality analysis is to deal
with the high diversity of build environments. Indeed, it is
possible to instrument the build commands for tracing the
dependencies between the inconsistent artifacts and the build
commands for some specific build systems. However, such an
intrusive approach is not practical in many industrial software
projects, because modern software projects such as Linux
distributions often use different types of build systems (such as
Automake3 and CMake4) for different components. Addition-
ally, these projects use many build-maintaining scripts written
in POSIX Shell, Python, Perl, etc [8], [9]. It is difficult to
instrument all these scripts for tracing the executed commands.

To address these challenges, in this paper, we propose a
framework, REPTRACE, that collects the system call traces
of the executed build commands (i.e., the processes spawn
from the commands) and performs causality analysis over
the traces for identifying the root causes for unreproducible
builds. Our work is inspired by the recent successes of system
call tracing in monitoring executed commands for various
research fields, such as intrusion detection [10], computational
reproducibility [11], and system profiling [12]. In particular,
system call tracing provides two unique benefits. First, system
call tracing provides a uniform interface for monitoring the
operating system, such as process control, file management,
and communications. Hence, it is possible to capture more ac-
curate information of the build process. Second, since system
call tracing does not rely on certain types of build systems, it
can be used in different build environments.

To conduct causality analysis with system call tracing,
REPTRACE builds a dependency graph of inconsistent arti-
facts based on two types of dependencies, and searches the
graph to identify the process that causes the inconsistencies.
Specifically, REPTRACE defines two types of dependencies:
(1) read/write dependency: two processes p1 and p2 are said
to have the read/write dependency if p1 writes to a file and then
p2 reads from the file; (2) parent/child process dependency:
two processes p1 and p2 are said to have the parent/child
dependency if p1 spawns p2. Based on these dependencies,
REPTRACE starts from the inconsistent artifact, and then iden-

3https://www.gnu.org/software/automake/
4https://cmake.org/

tifies the responsible processes based on the dependencies of
the artifact. If there are other processes that have dependencies
on the identified process, and these processes also produce
inconsistent artifacts or generate inconsistent runtime values,
REPTRACE continues to trace back from these processes. This
tracing process stops if there are no more dependencies, and
then reports the last found processes as the root causes of the
unreproducible build.

However, in order to effectively identify root causes, causal-
ity analysis over system call traces needs to address two major
technical challenges:

• Massive noisy dependencies. The raw data of system
calls are noisy and of a huge volume [13]. Even only
considering the read/write dependencies, the number of
system call traces per package could be up to tens of
thousands in our work. However, most of the system call
traces are irrelevant to the root causes for unreproducible
builds. For example, on average only 8.59% of the write
system calls generate different data between different
rounds of build.

• Uncertain parent/child dependencies. When a com-
mand spawns a new process (as commonly seen in
the build process), the dependencies may or may not
be carried over to the child process. Simply discarding
all parent/child dependencies might fail to capture the
propagation trajectories toward the inconsistent artifacts.
In contrast, establishing dependencies for all parent/child
processes can produce many false warnings.

To tackle these two technical challenges, REPTRACE in-
cludes two novel techniques to capture the essential dependen-
cies relevant to unreproducible builds. To address the first chal-
lenge, REPTRACE narrows down the search scope by applying
differential analysis over system call traces of multiple builds.
More specifically, REPTRACE identifies the write system calls
that output different data between different builds, and traces
how these differences propagate to the inconsistent artifacts.
To address the second challenge, REPTRACE computes the
similarity of the runtime values (extracted from the system
call arguments, see Section II) passed between parent and
child processes to determine whether a dependency should be
established.

To assess the effectiveness of REPTRACE, we conduct an
evaluation over 180 real-world packages from the Debian
repository. For the task of build-command localization, REP-
TRACE accomplishes accuracy rate of 66.11% for the topmost-
ranked build command. If we further consider the Top-10
ranked build commands, the accuracy rate reaches 90.00%.
Furthermore, REPTRACE is effective in locating the files to
patch for unreproducible builds; compared with a related
state-of-the-art approach [7], REPTRACE achieves 10.56%
percentage improvement, considering the accuracy rate for the
topmost retrieved results.

This paper makes the following main contributions:

• The REPTRACE framework, being the first to conduct
system call tracing and causality analysis on the collected

https://www.gnu.org/software/automake/
https://cmake.org/

traces for locating root causes of unreproducible builds.
• The definition of two types of dependencies (read/write

dependencies among processes and parent/child process
dependencies) for causality analysis.

• Two novel techniques (differential analysis on multiple
builds and similarity computation of runtime values)
to address massive noisy dependencies and uncertain
parent/child dependencies.

• Comprehensive evaluation on 180 real-world packages
to demonstrate high effectiveness of REPTRACE and its
superiority over a related state-of-the-art approach [7].

II. BACKGROUND AND MOTIVATING EXAMPLE

In this section, we first describe the background of system
call tracing and our representation of the captured system
calls. Then, we provide a motivating example to illustrate the
causality analysis based on system call tracing. The example
uses a real-world package, i.e., airstrike (0.99+1.0pre6a-7), a
game packaged by the Debian repository.

A. Background and Definitions

To identify the root cause of unreproducibility, we first apply
system call tracing on both rounds of reproducibility validation
and collect the traces. A typical system call trace snippet of
the first round of build is presented in Fig. 1. From each line
of system call snippet, we can obtain the process identifier
(PID), the parent process identifier (PPID), the system call
name, and the arguments. We can also obtain each system
call’s start and end time, which is not illustrated in the figure.
In this work, we are interested in the file manipulation (such
as read, write, and rename) and the process-control-related
system calls (such as execve). With these system calls, we
could gain more insights into the build process. For instance,
Table II shows the processes that have the last access time to
the inconsistent artifacts, as well as typical build commands.
Also, with the PID and PPID information, we are able to
restore the process tree structure of the build.

To model the reproducibility validation, two rounds of
build are introduced as B1 and B2, respectively. Each
round of build comprises a sequence of processes, e.g.,
{P1, P2, P3, ...}. Specifically, a process is represented as a
tuple 〈PID,PPID, slist〉, where the first two fields are self-
explanatory, and the slist field indicates a list of system
call traces. Each system call s ∈ slist is represented by a
tuple 〈type, start-time, end-time, source, target, data〉. For the
type field, we are interested in a subset of system calls related
to file manipulation and process control, including read, write,
rename, execve, open, and fcntl. The start-time and the end-
time fields represent the starting and end time of the system
call. The remaining fields are system call specific:

1) read represents the read system call and its variants, such
as readv and preadv. The source field specifies the file to
read, and the data indicates the bytes read from source.

2) write represents the write system call and its variants,
such as writev and pwritev. The target field specifies the

1 4213 4212 execve("/usr/bin/ld", ["/usr/bin/ld", [...] "-o", "airstrike" ...

2 4212 4211 execve("/usr/bin/cc", ["cc", "-o", "airstrike", "-g", "-O2" ...

3 4000 3999 execve("/usr/bin/make", ["make", "-C", "src" ...

4 4000 3999 write(1<[...].log>, "cc -o airstrike [...] ./players.o ./airstrike.o ...

5 4028 4000 execve("/bin/sh", ["/bin/sh", "-c", "cc -o airstrike ...

6 4000 3999 read(8<pipe:[31387067]>, "./players.c\n./airstrike.c\n ...

7 4002 4000 write(1<pipe:[31387067]>, "./players.c\n./airstrike.c\n ...

Fig. 1. System call trace snippet for airstrike

file to write, and the data indicates the bytes written to
target.

3) rename represents the system calls of rename, renameat,
renameat2, and linkat. The source and target fields are
used to specify the file names for renaming (changing
from source to target).

4) execve represents the family exec system calls, i.e., ex-
ecve and execveat. The data field represents the build
command invoked, including both the executable and the
arguments.

5) open represents the system calls of open, openat, and
creat. The source and data fields indicate the file and the
corresponding flags assigned to the file.

6) fcntl manipulates a file descriptor. The source and the
data fields indicate the file and the corresponding flags
assigned to the file.

Note that we use an underscore () to denote that a specific
field of a system call is ignored. For example, for the rename
system call, only the source and target fields are used, and the
data field is ignored.
Definition 1 (runtime value): Given a process P , its runtime
value is defined as a set V = {s.data|s ∈ P.slist, s.type =
read,write, or execve}. The underlying motivation of runtime
value is that the data of the read, write, and execve system
calls play an important role during the propagation of the
inconsistencies.
Definition 2 (read/write dependency): Given two pro-
cesses 〈PID1,PPID1, slist1〉, 〈PID2,PPID2, slist2〉 of the
same build, a read/write dependency (PID1

f−→ PID2)
is established if (1) ∃〈read, st1, et1, f, , data1〉 ∈ slist1,
〈write, st2, et2, , f, data2〉 ∈ slist2, such that et1 >
et2, or if (2) ∃〈read, st1, et1, f1, , data1〉 ∈ slist1,
〈write, st2, et2, , f, data2〉 ∈ slist2, and another system call
〈rename, st3, et3, f, f1, 〉 from any process of the same build,
such that et1 > et3 > et2

5.
Definition 3 (parent/child process dependency): Given two
processes P1 and P2 with PIDs p1 and p2, respectively, of
the same round of build, if P1.PPID = P2.PID, there exists
a parent/child process dependency between the two processes,
denoted as p1 ⇒ p2.

B. Motivating Example

Based on these notations and definitions, we next present a
running example to motivate REPTRACE. With the captured

5In this definition, only single rename is considered in this type of
dependency. It is straightforward to extend to the case of multiple renames.
In this work, no significant difference is observed between the two variants.

Fig. 2. Dependency graph for airstrike

TABLE II
INCONSISTENT ARTIFACTS AND TYPICAL BUILD COMMANDS FOR THE

DEPENDENCY GRAPH OF airstrike

PID Artifact
4420 ./usr/games/airstrike
PID Build command
4420 objcopy [. . .] debian/airstrike/usr/games/airstrike”
4419 strip [. . .] debian/airstrike/usr/games/airstrike”
4242 cp –reflink=auto -a, debian/tmp/usr/games, debian/airstrike//usr/
4240 install airstrike [. . .]/usr/games/airstrike
4213 ld [. . .] -o airstrike [. . .] ./players.o ./airstrike.o [. . .]
4021 as -I [. . .] -o players.o /tmp/cc3wloBL.s
4142 as -I [. . .] -o airstrike.o /tmp/ccLbhlnX.s
4212 collect2 [. . .] -o airstrike [. . .] ./players.o ./airstrike.o [. . .]
4208 sh -c cc -o airstrike [. . .] ./players.o ./airstrike.o [. . .]
4000 make -C src airstrike
4002 find . -name *.c

system call traces, we are able to capture the dependencies
between the processes within the same build. The depen-
dency graph for airstrike contains in total 380 nodes. Each
of node represents a process. Starting from the process in
which the inconsistent artifact ./usr/games/airstrike is last
accessed (process with PID 4420), we are interested in how
the inconsistency is introduced by the root cause, and how it
is propagated.

Fig. 2 shows part of the dependencies between the pro-
cesses for airstrike. In the figure, the solid arrows and the
dashed arrows indicate the read/write dependencies and the
parent/child process dependencies, respectively. By traversing
the dependency graph, we can locate the root cause for the
unreproducibility. However, there may exist many irrelevant
dependencies in the graph. The reason is that the criterion
for establishing dependencies between process is loose, and
does not take the read/written data into consideration. We
should note that not all these processes in the graph introduce
inconsistencies between the two builds. For example, consider
the build command ld in the process with PID 4213, which
is the GNU linker to create an executable from object files.
With the dependency rule described in Definition 2, we have to
further investigate all the processes that write to the associated
object files. There are 42 object files during the link stage,
leading to 42 edges in the dependency graph. However, in
this case, all the object files are actually consistent between
different builds, implying that the corresponding edges all
represent irrelevant dependencies.

In fact, the inconsistency for airstrike results from the
order of the linker arguments; the order is propagated from

its parent process (with PID 4212). The corresponding build
command is collect2, a GCC utility to arrange to call various
initialization functions, and invoke the linker. By carefully
inspecting the traces, we find that the dependency between this
pair of processes could be revealed from the text similarity
between their build command arguments (4213 ⇒ 4212).
Following this clue, we could traverse to the process with
PID 4208 (cc). At this point, the hint for further traversal
(4208 ⇒ 4000) comes from the data field of the write system
call for the make command (see Table II). Finally, we can
discover a dependency toward a find command (4000

f−→
4002), where f=pipe:[31387067], indicating that the make
command reads the output of find through a pipeline. To this
end, we could gain better understanding for the root cause of
the inconsistent artifact, i.e., the file traversal order of find is
not guaranteed to be deterministic. Consequently, because the
link order relies on the output of find, the build artifact turns
out to be unreproducible.

Based on these observations, REPTRACE filters out the build
commands that write identical data between the two builds
of the validation; this filtering can effectively simplify the
dependency graph. Second, to identify the parent/child process
dependencies, we calculate the similarity of the runtime values
of the parent process and the child process, and establish
dependencies only for those parent/child processes that share
similar runtime values. In this way, we could identify the
relevant dependencies without introducing too many irrelevant
dependencies.

III. OUR REPTRACE FRAMEWORK

In this section, we describe the design and implementation
of the proposed REPTRACE framework. As illustrated in
Fig. 3, given the source package, we first adopt the tool
chain of reproducibility validation to build the source code
under the build environments with variations. During the
build process, we collect the system call traces of the two
builds using strace [14], a popular diagnosis utility. Then, we
construct the dependency graph based on the sliced, abstracted
system call traces, which are produced by applying differential
analysis over the two sets of system call traces. After that,
we intend to augment the dependency graph by detecting
the parent/child process dependencies with runtime values.
By improving the dependency graph with the runtime-value-
induced dependencies, the root causes could be better located
with the traversal over the improved dependency graph.

Fig. 3. The REPTRACE framework

A. Dependency Graph Generation and Augmentation

As mentioned in Section I, a major challenge of analyzing
system call traces lies in the massive volume of the gathered
data. To extract the useful information, meanwhile reducing
the noises, our key idea is to perform differential analysis of
the system call traces. In this work, because we are interested
in how the inconsistencies are generated between multiple
builds, and how these inconsistencies are propagated to the
build artifacts, we construct the dependency graph based
on the differences extracted from the system call traces. In
particular, in the dependency graph produced by REPTRACE,
the read/write dependencies are replaced with the difference-
induced dependencies, as defined below:
Definition 4 (difference-induced dependency): For the
two builds B1 and B2 of the reproducibility validation,
write-diff is denoted as a set

⋃
P∈B1

⋃
s∈P.slist

s.type=write

md5(s.data)−⋃
P∈B2

⋃
s∈P.slist

s.type=write

md5(s.data). Given two processes

〈PID1,PPID1, slist1〉 ∈ B1, 〈PID2,PPID2, slist2〉 ∈ B1,
a difference-induced dependency (DID, denoted as

PID1
f
↪−→ PID2) is established, if PID1

f−→ PID2,
and ∃ 〈write, st, et, , f, data〉 ∈ slist2, such that
md5(data) ∈ write-diff.

Algo. 1 shows the pseudo code of the dependency graph
construction based on difference-induced dependencies. The
proposed algorithm comprises two phases. First, the set write-
diff is calculated, based on the data field of each write system
call. The unique feature of our graph construction is that, to
reduce the noises within the system calls, the dependency
propagation focuses on the inconsistencies generated by the
write system calls between builds. Then, each pair of write and
read system calls are examined whether a difference-induced
dependency should be established between the corresponding
processes. In particular, for each write system call s1 with
respect to write-diff (Line 6), we examine whether there exists
a read system call reading from s1.dest after time s1.et. If so,
a dependency is established (Lines 8–12). Similarly, if the file
s1.dest is renamed by a rename system call s3 to s3.dest, and
later read by a read system call, a dependency should also be
established (Lines 13–18).

Algorithm 1: Difference-based dependency graph generation

Input: System call traces for read, write, and rename
1 begin
2 G← emptygraph
3 write-hash1 ←

⋃
P∈B1

⋃
s∈P.slist

s.type=write

md5(s.data)

4 write-hash2 ←
⋃

P∈B2

⋃
s∈P.slist

s.type=write

md5(s.data)

5 write-diff← write-hash1 − write-hash2
6 for write system call s1 where md5(s1.data)∈ write-diff do
7 pid-write← pid-of(s1)
8 for read system call s2 do
9 if s2.src = s1.dest and s2.et > s1.et then

10 pid-read← pid-of(s2)
11 add-edge(G, pid-read, pid-write)
12 end
13 for rename system calls3 do
14 if s3.src = s1.dest and s3.dest = s2.src and

s2.et > s3.et > s1.et then
15 pid-read← pid-of(s2)
16 add-edge(G, pid-read, pid-write)
17 end
18 end
19 end
20 end
21 return G
22 end

Furthermore, to tackle the challenge of the uncertain par-
ent/child process dependency, REPTRACE utilizes the text
similarity of the runtime values. As discussed in Section II,
the runtime values passed between the processes can be used
to reveal the dependencies. In particular, for script-based build
systems, the runtime values are mostly in the format of plain
text. Consequently, we could leverage text similarity to make
decisions on whether dependencies should be established.
Specifically, the relevance value is calculated as follows.
Definition 5 (relevance value): Given two processes with
PIDs p1 and p2, each with a sequence of runtime values
V1 = {v11, v12, . . . v1m} and V2 = {v21, v22, . . . v2n}, the
relevance between the two processes is calculated as

relevance(p1, p2) = max
v1∈V1,v2∈V2

{max{cosSim(v1, v2), lcsSim(v1, v2)}},
(1)

where cosSim and lcsSim represent the cosine-based [15]
and the longest-common-substring-based [16] similarity, re-
spectively. Note that for lcsSim, we consider the longest
common substring percentage, with the value ranging within
[0, 1]. The motivation behind the similarity measurement is
that the length of the runtime values might be of arbitrary
length. Hence, using only one type of similarity might not
be effective for various cases. Specially, we skip the pairs of
runtime values when the runtime values contain binary data by
assigning 0 to the similarity value. With the relevance value,
the runtime-value-induced dependency is defined as follows.
Definition 6 (runtime-value-induced dependency): Given
two processes with PIDs p1 and p2 of the same round of
build, there exists a runtime-value-induced dependency (RID,
denoted as p1

I
=⇒ p2) if p1 ⇒ p2, and the relevance value

between the processes is larger than the pre-defined threshold.
Based on Definition 6, the dependency graph constructed

with Algo. 1 can be further improved based on Algo. 2. For

Algorithm 2: Dependency graph augmentation

Input: Dependency graph G, relevance threshold THRESHOLD
1 begin
2 G′ ← G
3 for node ∈ G′ do
4 PID← pid-of(node)
5 parent-pid← parent-of(node)
6 Calculate relevance with Eq. 1.
7 if relevance > THRESHOLD then
8 add-edge(G′, PID, parent-pid)
9 end

10 end
11 return G′

12 end

each node that represents a process, we calculate its relevance
value with its parent process. If the relevance value is greater
than the given threshold, a runtime-value-induced dependency
should be established.
Running example: Using the package airstrike, we explain
how the two mechanisms work. First, when evaluating the
process with PID 4213 (the ld command), for those input
files (of the ld command) that are consistent between builds,
it is obvious that their corresponding write system calls are
associated with the same hash values. Hence, these processes
could be neglected. Second, similarly, to demonstrate that the
parent/child process dependency works, consider the child pro-
cess (with PID 4213) and the parent process (with PID 4212).
The relevance value calculated by Eq. 1 is 0.9993, which
provides strong evidence that there should be a dependency
between the two processes.

B. Graph-Traversal-based Causality Analysis

After constructing and augmenting the dependency graph,
REPTRACE traverses the graph, searching for the root causes
for the unreproducible builds. As shown in Algo. 3, REP-
TRACE starts the traversal from the nodes that represent the
processes directly accessing the inconsistent artifacts. From
these nodes, REPTRACE performs a breadth-first search, and
obtains a set of nodes without outgoing edges to other un-
visited nodes in the graph (Line 2). Since the edges in the
dependency graph indicate the trajectories of the inconsis-
tency propagation, these nodes indicate that the inconsistency
propagation stops at these nodes, i.e., no more inconsistencies
propagated to other processes. With these nodes obtained,
REPTRACE then ranks them based on their relevance values
among other nodes in the dependency graph (Lines 6–11).
The higher the accumulated relevance value is, the higher
probability the corresponding nodes would be the root causes.

Finally, to realize the file-level localization, we start from
the ranked list of build commands retrieved by Algo. 3, in
search of the most relevant files. More specifically, based
on the preliminary investigation, two different paradigms of
patches are identified.
• Case 1: for those packages in which scripts are re-

sponsible for the unreproducibility, such as the wildcard
function of Makefiles and the hash-table traversal of Perl
scripts, the scripts are to be patched, being opened in
the same process as the one where the root causes are
identified.

Algorithm 3: Graph-traversal-based root-cause localization

Input: Improved dependency graph G
1 begin
2 node-set← breadth-first-search(G)
3 for node m ∈ node-set do
4 PIDm ← pid-of(m)
5 node-weight[PIDm]← 0
6 for node n ∈ G do
7 PIDn ← pid-of(n)
8 node-weight[PIDm]←

node-weight[PIDm] + relevance(PIDm, PIDn)
9 end

10 end
11 ranked-list← sort(node-set, node-weight)
12 return ranked-list
13 end

Algorithm 4: File-level localization

Input: Node set node-set, Weights for the nodes node-weights, File set file-set
1 begin
2 for file f ∈ file-set do file-weight[f]← 0
3 for node m ∈ node-set do
4 PIDm ← pid-of(m)
5 switch typeof(m) do
6 case 1: search in the current process do
7 for file f opened with CLOEXEC flags do
8 file-weight[f]←

file-weight[f] + node-weight[PIDm]
9 end

10 end
11 case 2: search in the parent process do
12 PPIDm ← parent-of(m)
13 t1 ← get-execve-text(m)
14 for file f opened with CLOEXEC in process PPIDm do
15 t2 ← get-text(f)
16 sim ← max{cosSim(t1, t2), lcsSim(t1, t2)}
17 file-weight[f]←

file-weight[f] + node-weight[PPIDm]× sim
18 end
19 end
20 end
21 end
22 ranked-file-list← sort(file-set, file-weight)
23 return ranked-file-list
24 end

• Case 2: for the build commands that may introduce in-
consistencies, such as the gzip and the date commands. In
this case, the scripts to be patched are typically opened in
the parent process of the identified process. For example,
in the motivating example airstrike, the inconsistency is
introduced by the find command. However, the file to
be patched is the Makefile in which find is invoked (see
Fig. 4).

To distinguish the two cases, we adopt a heuristic rule
based on the flags associated to each opened file. In particular,
the scripts are typically opened with the CLOEXEC flags
(FD CLOEXEC or O CLOEXEC), indicating that the files
are to be closed automatically after successful execve system
calls. During our preliminary experimentation, we observe
that the CLOEXEC flags are generally effective in classifying
the scripts and the other files, with two exceptions, i.e., the
processes invoking Python scripts or the tar compressing
utility, which are processed in a specialized way. With the
heuristic classifying rule, the process of localization for the
file to patch is described in Algo. 3.
Running example: For the package airstrike, after obtaining
the dependency graph, the root cause for the unreproducible
build can be found by traversing the graph. As shown in Fig. 2,

--- a/src/Makefile
+++ b/src/Makefile
@@ -2,7 +2,7 @@
#
CFLAGS += $(shell sdl-config --cflags) -Isprite -I. -Isupport -DINLINE=inline
CFLAGS += ‘dpkg-buildflags --get CFLAGS‘

-CFILES:= $(shell find . -name ’*.c’)
+CFILES:= $(sort $(shell find . -name ’*.c’))
OBJECTS:= $(CFILES:.c=.o)

Fig. 4. Patch snippet for airstrike

we can observe that the node with zero outgoing unvisited edge
(process with PID 4002, the find command) is the root cause.
Furthermore, since no file is opened with the CLOEXEC flags
in the process with PID 4002, REPTRACE checks its parent
process, and locates the file to be patched (src/Makefile), which
is shown in Fig. 4.

IV. EVALUATION

In this section, we apply REPTRACE on real-world software
packages and evaluate the effectiveness of REPTRACE. We
seek to investigate the following research questions (RQs):

1) RQ1: Is REPTRACE effective in locating the root causes
for unreproducible builds?

2) RQ2: How effectively can the DID and RID mechanisms
improve the construction of dependency graphs?

3) RQ3: Is REPTRACE sensitive to the parameter in the
runtime-value-induced dependency?

4) RQ4: Is REPTRACE helpful in locating the problematic
files to patch?

Among these RQs, RQ1 evaluates the ability to accurately
identify the root causes for unreproducible builds, because
the command-level localization is the unique feature of REP-
TRACE. In particular, by comparing various variants of REP-
TRACE, we intend to examine how each component con-
tributes to REPTRACE. RQ2 evaluates the impact of the two
mechanisms on the search space. By comparing the statistics
of the dependency graphs induced by the different variants of
REPTRACE, we could gain more insights into both the DID
and RID mechanisms. RQ3 evaluates the sensitivity of the
parameter on REPTRACE. Finally, RQ4 evaluates the ability
of file-level localization of REPTRACE by comparing with the
best known results.

A. Evaluation Setup

REPTRACE is implemented in Java 1.8, and the evaluation
is conducted on an Intel Xeon 2.5 GHz server with 16 GB
memory, running Debian 9.6.
Metrics. To evaluate the effectiveness of REPTRACE, we mea-
sure the accuracy rate, precision, recall, F-1 score, and Mean
Reciprocal Rank (MRR) in identifying root causes for unre-
producible builds. The metrics are computed by examining the
ranked build commands (RQ1) and files (RQ4) returned by
REPTRACE. The Top-N build commands/files in the ranked
list are called the retrieved list, and are compared with the
relevance list to compute the precision, recall, and F-1 score
(represented using P@N, R@N, and F-1@N, respectively). In
particular, Top-N accuracy rate, e.g., A@N, is used to measure
the percentage of packages for which the Top-N list provides

(a) Box-plot statistics (b) Comparison of build time

Fig. 5. Comparison of build time statistics

at least one problematic command/file [17]. Besides, MRR is
an aggregate metric to evaluate the quality of the retrieved
results.
Tools under comparison. In our evaluation, we compare
REPTRACE with a set of variants. First, a set of three
variants of REPTRACE are chosen, each considering part
of the mechanisms of REPTRACE. For example, we denote
REPTRACE(¬DID) as the variant of REPTRACE in which the
difference-induced dependency is not employed. There are also
two other variants denoted as REPTRACE(¬RID) and REP-
TRACE(¬DID, ¬RID), in which parent/child dependencies are
not considered. With these variants, we investigate how the
proposed mechanisms collaborate as an integrated framework.
Second, we compare REPTRACE with REPLOC, the state-of-
the-art tool for file-level localization [7].
Dataset. We use a set of 180 packages from the Debian repos-
itory, following previous work [7] as our evaluation dataset.
The reasons that the scale of the dataset is relatively small are
as follows. First, due to the evolution of the Debian repository,
especially the build tool chain and the build dependencies,
some old packages used in the previous work could not be built
from source. Second, due to the necessity of manual annotation
for the root causes, to evaluate the ability of causality analysis,
we do not consider all the packages as in the previous work.
Besides, since we focus on the identification of the root causes,
which are represented as build commands, we do not consider
the packages for which the patches are within source code.

In the dataset, the root causes cover the following cate-
gories: timestamp (such as gzip, date, and tar that capture the
current date and/or time), randomness (such as dict/hash-table
traversal of Python and Perl scripts), file ordering (such as find
in findutils and the wildcard issue of make), locale (such as
sort and lynx without setting the locale environment variable),
uname and hostname (uname and hostname that capture the
system information).

To construct the ground truth for evaluating causality anal-
ysis, we check the execve system call traces that match the
patches obtained from the bug-tracking system of Debian.
For each package, we check not only according to the build
command line text, but also the context indicated by the path
from the root of the process tree to the problematic build

TABLE III
RESULTS OF REPTRACE AND OTHER APPROACHES FOR THE COMMAND-LEVEL LOCALIZATION TASK

Approach A@1 A@5 A@10 P@1 P@5 P@10 R@1 R@5 R@10 F-1@1 F-1@5 F-1@10 MRR
REPTRACE(¬DID, ¬RID) 0.0944 0.1056 0.1500 0.0944 0.0300 0.0200 0.0824 0.1014 0.1444 0.0850 0.0431 0.0336 0.1042
REPTRACE(¬DID) 0.0389 0.0833 0.1333 0.0389 0.0278 0.0200 0.0280 0.0787 0.1259 0.0306 0.0366 0.0322 0.0663
REPTRACE(¬RID) 0.6056 0.6556 0.6556 0.6056 0.2533 0.1461 0.3916 0.5841 0.5912 0.4401 0.3040 0.1921 0.6306
REPTRACE 0.6611 0.8944 0.9000 0.6611 0.3156 0.1839 0.4524 0.8129 0.8319 0.4993 0.3960 0.2510 0.7672

TABLE IV
RESULTS OF WILCOXON SIGNED RANK TEST FOR THE COMMAND-LEVEL

LOCALIZATION TASK

Metrics REPTRACE vs. p-value Effect size

P@1
REPTRACE(¬DID,¬RID) <0.0001 0.9808
REPTRACE(¬DID) <0.0001 0.9333
REPTRACE(¬RID) 0.1228 0.2381

R@1
REPTRACE(¬DID,¬RID) <0.0001 0.9707
REPTRACE(¬DID) <0.0001 0.9236
REPTRACE(¬RID) 0.0372 0.3555

command. Meanwhile, for the file-level localization, we adopt
an approach in the literature [7], i.e., we extract the file names
from the patches as the ground truth.
Overhead of system call tracing. As REPTRACE is built
upon system call tracing, we measure to what extent system
call tracing slows down the build process. We compare the
statistics of the build time under two circumstances, i.e., with
or without system call tracing. In Fig. 5, the box-plots and
the scatter plot represent the distribution of build time over
all the packages. From the figure, we observe that when
using system call tracing, build time increases accordingly.
For the two cases, the median build time is 4.77s and 8.84s,
respectively. Meanwhile, the maximum build time for the two
circumstances is of the same order of magnitude. Such results
indicate that the overhead of system call tracing is acceptable
for industrial-level builds.

B. RQ1: Command-Level Localization

As discussed in Section III, a unique feature of REPTRACE
lies in its ability to locate the root causes for unreproducible
builds. Prior to this work, the localization task realized by
REPLOC [7] is mainly at the file level. Hence, the guidance
toward the patch of the unreproducible builds tend to be
limited. In contrast, with the system call tracing, especially the
data provided by the execve system call, REPTRACE is able
to identify the potential build commands that are responsible
for the unreproducible issues.

In this RQ, we compare the results of causality analysis
in Table III. The table is organized as follows. The first
column represents the names of the approaches in comparison,
including REPTRACE and its three variants. Then, Columns
2–14 indicate the measurements employed to evaluate each
approach, i.e., the accuracy rate, precision, recall, F-1 score,
and MRR.

From the table, we could observe that REPTRACE is able to
effectively locate the root causes responsible for the unrepro-
ducibility. Especially, when considering the topmost retrieved
build command, REPTRACE is able to achieve an accuracy
rate of 0.6611. The accuracy rate increases to 0.9000 if we
consider the Top-10 results, implying that for 90.00% of the
packages, we can obtain at least one build command that is

among the root causes by traversing the Top-10 results. In
contrast, the results for the variants of REPTRACE are not so
promising. We should note that, from the table, we observe
that the precision and F-1 score values are not very high.
The reason for the low values of precision and F-1 score
might be that, for the unreproducible packages, the number
of processes that construct the root causes is relatively small.
Within the dataset, there are 99 packages for which there
is single build command that causes unreproducibility, and
the average number of root causes is 3.41. Consequently, the
precision value for the Top-10 results tends to be low, also
influencing the F-1 score. Under such circumstance, the MRR
metric reflects the ability to rank root causes to the top of
results. From the table, we observe that REPTRACE is able to
achieve the best MRR.

To gain higher confident on drawing conclusion from the
comparison results, we employ the nonparametric Wilcoxon
signed rank test. For the null hypothesis, we assume that
there exists no significant difference with respect to the results
obtained by the approaches under comparison. Table IV shows
the comparison results, organized as follows. The first column
indicates the metrics over which the comparison is conducted.
The second column specifies the approaches against which
REPTRACE is compared. The third and fourth columns present
the p-value and effect size (also known as the rank-biserial
correlation) [18], respectively. From the comparison results,
we observe that under each comparison scenario except when
comparing REPTRACE with REPTRACE(¬RID) over the P@1
metric, the null hypothesis is rejected, with p-value < 0.05.
This observation confirms that the DID mechanism contributes
more to the performance.

Fig. 6 shows the results obtained by REPTRACE and its
variants, against the length of the retrieved list. We con-
sider the precision and recall as the measurements. When
we compare the behavior of the variants, we could measure
the improvement brought by each mechanism. For exam-
ple, when we compare REPTRACE(¬DID, ¬RID) with REP-
TRACE(¬RID), we could see that for both the measurements,
the curves for REPTRACE(¬DID, ¬RID) are always below
those of REPTRACE(¬RID). This observation confirms the
contribution of the DID mechanism, which not only provides
a smaller dependency graph (see RQ2 for more discussion),
but also helps locate the root cause more accurately. A
similar observation could be made when we compare REP-
TRACE(¬DID) and REPTRACE. Furthermore, to understand
whether the RID mechanism works, we compare REPTRACE
with REPTRACE(¬RID). From Fig. 6, we could see that
REPTRACE outperforms REPTRACE(¬RID).
Answer to RQ1: REPTRACE is able to effectively identify

(a) Trend for precision

(b) Trend for recall

Fig. 6. Comparison of REPTRACE and its variants

the root causes that are responsible for unreproducible builds,
and these root causes are helpful in understanding why repro-
ducibility validation fails.

C. RQ2: Impacts on Dependency Graph Construction

In REPTRACE, there are two main mechanisms, i.e., the
reduction based on differential analysis, which intends to
shrink the scale of search space, and the runtime-value-based
dependency identification, which may enlarge the dependency
graph. Hence, in this RQ, we analyze the statistics of the
dependency graphs constructed by REPTRACE and its variants,
to explore whether the DID mechanism is able to achieve the
reduction of search space and yet preserve the precision in
causality analysis.

To gain an intuitive understanding of the influence of
the two proposed mechanisms, in Fig. 7, we present the
comparison of the graph statistics of the dependency graph
generated by the variants of REPTRACE, respectively. For each
variant, we report the statistics of the dependency graph for all
the packages, to reflect the influence of each mechanism. For
each sub-figure, we plot the distribution of typical properties in
log scale, including the number of nodes (num nodes), number
of edges (num edges), average node degree (avg degree), and
maximum node degree (max degree). All the statistics are
illustrated as box-plot.

From the figure, we could observe the following two inter-
esting phenomena. On one hand, when comparing Fig. 7(a)
and Fig. 7(b), we could see the reduction effect of the DID
mechanism. Without the DID-based reduction mechanism,
there are on average 169.37 nodes in the dependency graph.
Meanwhile, with the reduction, there are on average 15.64
nodes in the dependency graph, being of a much smaller scale.
Also, for other graph attributes, similar phenomena could be
observed. For instance, the maximum node degree of the graph

for REPTRACE(¬DID, ¬RID) is larger than that for REP-
TRACE(¬RID), implying that without the DID mechanism,
there may exist nodes with more dependencies. Consequently,
the possibility of incorporating irrelevant dependencies may
also increase. This observation to some extent explains why
the results of the variants without DID are not satisfying in
RQ1.

On the other hand, when comparing Fig. 7(b) and Fig. 7(d),
we could observe that if the RID mechanism is considered
over the DID-reduced dependency graph, there are not many
nodes and edges introduced by the runtime-value-induced
dependency mechanism. Hence, the overhead caused by the
runtime-value-induced dependencies is in general acceptable.
In contrast, when comparing Fig. 7(a) and Fig. 7(c), we
observe a drastic increase in attribute values of dependency
graph, implying that if the RID mechanism is considered over
the dependency graph without reduction, the corresponding
graph would be much more complex. This observation to some
extent explains why REPTRACE(¬DID) performs the worst
among the variants.

Furthermore, Fig. 8 shows the distribution of the execution
time in log scale for REPTRACE and its variants. From the
figure, we could observe that REPTRACE(¬RID) is the fastest
variant, with median execution time of 5.88s. The reason is
that the scale of the dependency graphs for this variant is
smaller than other variants. REPTRACE is slower, with median
execution time of 9.51s, but is within the same order of
magnitude. In contrast, the two variants without DID are much
slower. In particular, REPTRACE(¬DID) is the least efficient
variant in comparison, due to the lack of reduction realized by
the DID mechanism, and the extra dependencies introduced
by the RID mechanism. This observation also conforms with
Fig. 7(c), which presents the statistics of the most complex
dependency graph.
Answer to RQ2: In this RQ, we confirm that the DID
mechanism is able to effectively reduce the search scope of
the localization task. Also, the extra edges introduced by the
RID mechanism is acceptable when the DID mechanism is
applied. With the dependencies induced by the differences of
the write system call and the runtime values, REPTRACE is
able to achieve median execution time of 9.51s.

D. RQ3: Parameter Sensitivity Analysis

As mentioned in Section III-A, we introduce a threshold
in the RID mechanism, to detect the potential dependencies
between parent processes and child processes. Hence, we shall
evaluate REPTRACE’s sensitivity to the threshold. Fig. 9 shows
the results of the sensitivity analysis over a subset of the
40 randomly selected packages. The figure is organized as
follows. The x-axis represents the value of the parameter,
which ranges from 0 to 1, with the step of 0.10. The y-axis
indicates the quality measurement, i.e., the precision and recall
considering the Top-1 result.

From the figure, we could observe that, REPTRACE is not
very sensitive to the threshold, in terms of both measurements.
For example, for all the parameter values, the precision value

(a) REPTRACE(¬DID, ¬RID) (b) REPTRACE(¬RID)

(c) REPTRACE(¬DID) (d) REPTRACE

Fig. 7. Dependency graph statistics for variants of REPTRACE

Fig. 8. Comparison of execution time for variants of REPTRACE

is always above 70.00%. Also, both the recall and accuracy
rate reach the best results around [0.30, 0.70].
Answer to RQ3: REPTRACE is not very sensitive to the pa-
rameter, and generalizes well over different packages. Hence,
for the other parts of the evaluation, the parameter value is
assigned with 0.50.

E. RQ4: File-Level Localization

In this RQ, we evaluate whether REPTRACE is effective
in locating the problematic file, in which the unreproducible
issues should be patched. Specifically, we report the results
obtained by REPTRACE and other approaches under compar-
ison in Table V. The table is organized similarly as Table III,
except that REPLOC is also considered.

From the table, we can observe that REPTRACE is able
to rank the relevant files at the top of the retrieved list.
Compared with REPLOC, the Top-1 accuracy rate is 0.6667,
which is much higher than the results achieved by REPLOC.
The underlying reason might be that with the system-call-
based dependency graph, REPTRACE is able to accurately
locate the build commands for which there exists at least
one path in the dependency graph leading to the inconsistent
artifacts. Consequently, the file ranking based on these build
commands could provide valuable hints toward the problem-
atic files to be patched. In contrast, REPLOC relies on the

Fig. 9. Results of parameter sensitivity

build-log-based query augmentation, which is based on the
text similarity between the inconsistent artifact names and the
build commands, and using this text similarity tends to be less
accurate.

In addiction, an interesting observation is over the variants
without the DID mechanism. For example, despite not per-
forming well in RQ1, REPTRACE(¬DID) achieves an R@10
of 0.7029 in this RQ. A similar phenomenon could be found
for REPTRACE(¬DID, ¬RID) as well. The reason might be
that the retrieved build commands by these two variants may
still be relevant to the inconsistent artifacts, even when they are
not the root causes for unreproducibility. Hence, these build
commands may be helpful in file-level localization.

Similar to RQ1, we present the results of hypothesis testing
in Table VI. The table is organized the same way as RQ1. From
the table, similar phenomena could be observed. Moreover,
when comparing the topmost retrieved files by REPTRACE
with REPLOC, we find that REPTRACE outperforms REPLOC,
except that the p-value is slightly larger than 0.05 when the
recall metric is considered.
Answer to RQ4: REPTRACE is able to accurately locate the
problematic files that are responsible for the unreproducible
builds. From the comparisons with both the state-of-the-art
approach and the variants of REPTRACE, REPTRACE demon-
strates the superiority over these approaches.

V. THREATS TO VALIDITY

In our evaluation, there are two major threats to validity.
First, an important threat to validity is that we assume

the completeness of the necessary system call traces, which
may introduce inconsistencies during the build process. For
example, in our evaluation, all the builds are conducted under
an isolated environment, and do not need to communicate
with external systems once the build dependencies are met.
Hence, we do not capture the network-related system calls.
In real-world environments, inconsistencies could originate
from various sources. Hence, the linkage from the inconsistent
artifacts toward the root cause may be broken. During the
construction of the dataset, we have mitigated this issue by
manually inspecting the patches and the build scripts, to ensure
that the unreproducible issues are caused within the package.

Second, in our evaluation we adopt the off-the-shelf di-
agnosis tool strace to capture the system call traces. strace
is based on ptrace, and is available under GNU/Linux. To
generalize REPTRACE to other platforms, adaptations have to

TABLE V
RESULTS OF REPTRACE AND OTHER APPROACHES FOR THE FILE-LEVEL LOCALIZATION TASK

Approach A@1 A@5 A@10 P@1 P@5 P@10 R@1 R@5 R@10 F-1@1 F-1@5 F-1@10 MRR
REPTRACE(¬DID, ¬RID) 0.3889 0.7222 0.8000 0.3889 0.1667 0.0933 0.3403 0.6765 0.7598 0.3559 0.2606 0.1634 0.5143
REPTRACE(¬DID) 0.2556 0.6778 0.7333 0.2556 0.1567 0.0856 0.2139 0.6445 0.7029 0.2278 0.2462 0.1501 0.4316
REPTRACE(¬RID) 0.6444 0.8556 0.8611 0.6444 0.1967 0.1011 0.5727 0.8149 0.8251 0.5957 0.3098 0.1772 0.7320
REPLOC 0.5611 0.8333 0.8722 0.5611 0.1878 0.1017 0.5006 0.7839 0.8343 0.5189 0.2958 0.1780 0.6815
REPTRACE 0.6667 0.8778 0.9056 0.6667 0.2000 0.1067 0.5835 0.8311 0.8695 0.6091 0.3152 0.1868 0.7583

TABLE VI
RESULTS OF WILCOXON SIGNED RANK TEST FOR THE FILE-LEVEL

LOCALIZATION TASK

Metrics REPTRACE vs. p-value Effect size

P@1
REPTRACE(¬DID,¬RID) <0.0001 0.7353
REPTRACE(¬DID) <0.0001 0.8222
REPTRACE(¬RID) 0.3711 0.2000
REPLOC 0.0184 0.2923

R@1
REPTRACE(¬DID,¬RID) <0.0001 0.7131
REPTRACE(¬DID) <0.0001 0.8139
REPTRACE(¬RID) 0.7168 0.0857
REPLOC 0.0655 0.2485

be made. To mitigate this issue, we model the system calls
in a uniform way (see Section II-B), so that porting to other
platforms would be straightforward. The adaptation could be
realized by replacing strace with a platform-specific tracing
system, e.g., DTrace [19] for BSD-like OS and ETW [20] for
Windows.

VI. RELATED WORK

A. System Calls

Recent years have witnessed the growing research interests
of leveraging system call traces as a high-quality source of
system-wide information, to help boost the performance of
various tasks. For instance, Gao et al. [21] propose to use
system calls to capture the trajectories of malware behav-
iors [22], which could be further used to detect intrusion, or
conduct forensic analysis. Licker and Rice [23] address the
challenge of discovering the hidden dependency in the build
scripts, and detect bugs in the build process. Neves et al. [24]
develop a system-call-tracing-based diagnosis framework, Fal-
con, to achieve trouble-shooting functionality under distributed
environments. Pasquier et al. [25] propose a whole-system
provenance system that leverage system call to capture mean-
ingful provenance without modifying existing applications.
Van Der Burg et al. [26] address the license compatibility
problem, and devise a system-call-based approach to detect
potential license conflict. Liu et al. [27] systematically review
the studies focusing on host-based intrusion detection with
system calls.

Unlike the existing system-call-based research, in this work,
we focus on a novel problem domain, i.e., the localization task
of the root causes for unreproducible builds.

B. Reproducibility

As a new research problem, there are relatively few ap-
proaches focusing on the localization task for unreproducible
builds. The most relevant work is the work by Ren et al. [7], in
which the localization task is modeled as a task of information
retrieval, aiming to search for the problematic files that are
responsible for the unreproducibility. Also, in their work, the

localization is realized at the file level, unlike the level of build
command achieved in this work.

Besides the localization task for unreproducible builds, there
exist a series of closely related research directions. Among
these directions, a typical example is reproducible research.
For example, Guo [28] proposes a system-call-based frame-
work, CDE, which realizes the functionality of packaging
the program-execution environment. Following the idea, there
exist several related approaches, such as ReproZip [11] and
ProvToolbox [29]. Ivie and Thain [30] make a systematic
survey for the research topic. Compared with these previous
approaches, which emphasize the success of re-executing the
programs in diverse environments, in this work we are more
interested in tracing back along the system calls, to locate the
root cause for inconsistencies.

VII. CONCLUSION

In this paper, we have presented the REPTRACE framework
to identify the root causes for unreproducible builds. The
framework leverages system call tracing’s uniform interfaces
for monitoring executed build commands in diverse build
environments. To tackle the challenges of leveraging system-
call-tracing-based information, REPTRACE filters irrelevant
dependencies among processes by using the differences of the
write data and the runtime values. Our extensive evaluation
over real-world packages demonstrates that REPTRACE is able
to achieve promising solutions for unreproducible builds.

In future work, as REPTRACE relies on the heuristic detec-
tion of the dependencies between parent processes and child
processes, we plan to explore more accurate techniques for
dependency identification. Also, it would be interesting to ex-
plore the possibility of automatically patching unreproducible
builds.

ACKNOWLEDGMENTS

Tao Xie is also affiliated with the Key Laboratory of
High Confidence Software Technologies (Peking University),
Ministry of Education. This work is supported in part by
the National Key Research and Development Program of
China under grant no. 2018YF-B1003900, the National Nat-
ural Science Foundation of China under grant no. 61772107,
61722202, 61529201, and NSF under grant no. CNS-1564274,
CCF-1816615, CNS-1755772.

REFERENCES

[1] Reproducible builds team, “Definition of reproducible builds,” https://
reproducible-builds.org/docs/definition/, 2018, accessed: 2019-03-04.

[2] M. Perry, “Deterministic builds part one: Cyberwar and global
compromise,” https://blog.torproject.org/deterministic-builds-part-one-
cyberwar-and-global-compromise, 2013, accessed: 2019-03-04.

https://reproducible-builds.org/docs/definition/
https://reproducible-builds.org/docs/definition/
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise

[3] B. Bzeznik, O. Henriot, V. Reis, O. Richard, and L. Tavard, “Nix
as HPC package management system,” in Proceedings of the Fourth
International Workshop on HPC User Support Tools. ACM, 2017, pp.
4:1–4:6.

[4] “Debian,” https://www.debian.org/, accessed: 2019-03-04.
[5] “Guix,” https://www.gnu.org/software/guix/, accessed: 2019-03-04.
[6] “F-Droid,” 2019, https://f-droid.org/.
[7] Z. Ren, H. Jiang, J. Xuan, and Z. Yang, “Automated localization

for unreproducible builds,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 71–81.

[8] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan, “A
large-scale empirical study of the relationship between build technology
and build maintenance,” Empirical Software Engineering, vol. 20, no. 6,
pp. 1587–1633, 2015.

[9] Y. Régis-Gianas, N. Jeannerod, and R. Treinen, “Morbig: A static
parser for POSIX shell,” in Proceedings of the 11th ACM SIGPLAN
International Conference on Software Language Engineering. ACM,
2018, pp. 29–41.

[10] Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee, F. Xu,
and Q. Li, “NodeMerge: Template based efficient data reduction for
big-data causality analysis,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 1324–1337.

[11] F. Chirigati, D. Shasha, and J. Freire, “ReproZip: Using provenance
to support computational reproducibility,” in Proceedings of the 5th
USENIX Workshop on the Theory and Practice of Provenance, 2013.

[12] C. Curtsinger and E. D. Berger, “Coz: Finding code that counts with
causal profiling,” in Proceedings of the 25th ACM Symposium on
Operating Systems Principles. ACM, 2015, pp. 184–197.

[13] B. Zong, X. Xiao, Z. Li, Z. Wu, Z. Qian, X. Yan, A. K. Singh,
and G. Jiang, “Behavior query discovery in system-generated temporal
graphs,” Proceedings of the VLDB Endowment, vol. 9, no. 4, pp. 240–
251, Dec. 2015.

[14] “Strace,” https://strace.io, accessed: 2019-03-04.
[15] “Cosine similarity,” https://commons.apache.org/proper/commons-text/

apidocs/org/apache/commons/text/similarity/CosineSimilarity.html, ac-
cessed: 2019-03-04.

[16] “Longest common substring percentage,” https://www.oracle.com/
webfolder/technetwork/data-quality/edqhelp/Content/processor library/
matching/comparisons/longest common substring percentage.htm,
accessed: 2019-03-04.

[17] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 689–699.

[18] D. S. Kerby, “The simple difference formula: An approach to teach-
ing nonparametric correlation,” Comprehensive Psychology, vol. 3, p.
11.IT.3.1, 2014.

[19] “DTrace,” https://dtrace.org, accessed: 2019-03-04.
[20] M. Jacobs and M. Satran, “About event tracing,” https://docs.microsoft.

com/en-us/windows/desktop/etw/about-event-tracing, accessed: 2019-
03-04.

[21] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,” in
Proceedings of 2018 USENIX Annual Technical Conference. USENIX
Association, 2018, pp. 113–126.

[22] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “SAQL: A stream-based query system for real-
time abnormal system behavior detection,” in Proceedings of the 27th
USENIX Conference on Security Symposium. USENIX Association,
2018, pp. 639–656.

[23] N. Licker and A. Rice, “Detecting incorrect build rules,” in
41st ACM/IEEE International Conference on Software Engineering.
ACM/IEEE, 2019, pp. 1234–1244.

[24] F. Neves, N. Machado, and J. Pereira, “Falcon: A practical log-based
analysis tool for distributed systems,” in Proceedings of the 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE/IFIP, 2018, pp. 534–541.

[25] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Proceedings
of the 2017 Symposium on Cloud Computing. ACM, 2017, pp. 405–
418.

[26] S. Van Der Burg, E. Dolstra, S. McIntosh, J. Davies, D. M. German, and
A. Hemel, “Tracing software build processes to uncover license com-
pliance inconsistencies,” in Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering. ACM/IEEE,
2014, pp. 731–742.

[27] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-based intrusion
detection system with system calls: Review and future trends,” ACM
Computing Surveys, vol. 51, no. 5, p. 98, 2018.

[28] P. J. Guo, “CDE: Run any linux application on-demand without installa-
tion,” in Proceedings of the 25th USENIX International Conference on
Large Installation System Administration. USENIX Association, 2011,
pp. 2–2.

[29] L. Moreau, B. V. Batlajery, T. D. Huynh, D. Michaelides, and H. Packer,
“A templating system to generate provenance,” IEEE Transactions on
Software Engineering, vol. 44, no. 2, pp. 103–121, 2018.

[30] P. Ivie and D. Thain, “Reproducibility in scientific computing,” ACM
Computing Surveys, vol. 51, no. 3, p. 63, 2018.

https://www.debian.org/
https://www.gnu.org/software/guix/
https://f-droid.org/
https://strace.io
https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/CosineSimilarity.html
https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/CosineSimilarity.html
https://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/Content/processor_library/matching/comparisons/longest_common_substring_percentage.htm
https://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/Content/processor_library/matching/comparisons/longest_common_substring_percentage.htm
https://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/Content/processor_library/matching/comparisons/longest_common_substring_percentage.htm
https://dtrace.org
https://docs.microsoft.com/en-us/windows/desktop/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/desktop/etw/about-event-tracing

