
A Comprehensive Study of WebAssembly
Runtime Bugs

Yue Wanga, Zhide Zhoua, Zhilei Rena, b∗, Dong Liua, He Jianga, c
a School of Software, Dalian University of Technology, Dalian, China

b Key Laboratory of Safety-Critical Software, Nanjing University of Aeronautics and Astronautics, Nanjing, China
c Key Laboratory for Artificial Intelligence of Dalian, Dalian, China

wang yue11@163.com, cszide@gmail.com, dongliu@mail.dlut.edu.cn, {zren, jianghe}@dlut.edu.cn

Abstract—WebAssembly runtime is the infrastructure for ex-
ecuting WebAssembly, which is widely used as an execution
engine by web browsers or blockchain platforms. Bugs in the
WebAssembly runtime can lead to unexpected behavior and
even security vulnerabilities in any application that relies on it.
Therefore, to aid developers in understanding the WebAssembly
runtime, a thorough investigation of bugs in the WebAssembly
runtime should be conducted. To accomplish this, we carry
out the first empirical analysis of 867 real bugs across four
popular WebAssembly runtimes (V8, SpiderMonkey, Wasmer,
and Wasmtime). We analyze the WebAssembly runtime bug
characteristics based on their root causes, symptoms, bug-fixing
time, and the number of files and lines of code involved in the
bug fixes. Here are a few major research findings: 1) Incorrect
Algorithm Implementation accounts for 25.49% of WebAssembly
runtime bugs, the most prevalent of all root causes; 2) The
most prevalent symptom is Crash, which accounts for 56.86%
of WebAssembly runtime bugs; 3) At the median, the bug-fixing
time are 13, 4, 5, and 6 days for V8, SpiderMonkey, Wasmer,
and Wasmtime respectively; 4) Over 50% of bug fixes in the four
WebAssembly runtimes involve only one file, while more than
90% of bug fixes involve no more than 8 files; 5) The median
source code lines for bug fixes for V8, SpiderMonkey, Wasmer,
and Wasmtime are 18.5, 14, 26, and 36 lines, respectively.
Overall, our research summarizes 18 findings and discusses the
broad implications for WebAssembly runtime bug detection,
localization, debugging, and repair based on the key findings.

Index Terms—WebAssembly Runtime, Empirical Study, We-
bAssembly, Bug Characteristics.

I. INTRODUCTION

WebAssembly is a portable and executable bytecode format,

which provides compilation targets for advanced languages

such as C++, C#, and Rust. Since its release in 2017, We-

bAssembly has been widely used in various scenarios, such

as cryptocurrency [1], edge computing [2], and the internet

of things [3]. WebAssembly runtime is the infrastructure

for executing WebAssembly, which is widely used as an

execution engine by web browsers or blockchain platforms.

For example, the V8 engine inside Chrome [4] is an actual

execution environment for WebAssembly bytecode. Specifi-

cally, WebAssembly bytecode is parsed and converted by the

WebAssembly runtime into machine code relevant to the host

platform for execution.

The development and use of the WebAssembly runtime have

gradually become a popular trend [2], [4]–[11]. WebAssembly

*Corresponding author

runtime has a decisive impact on the accuracy of all We-

bAssembly programs running on the WebAssembly runtime.

Therefore, ensuring the correctness and robustness of the

WebAssembly runtime implementation is becoming increas-

ingly important. Like other applications, the WebAssembly

runtime is subject to bugs in its work. Based on the basic

role of the WebAssembly runtime, bugs in the WebAssembly

runtime can lead to unexpected behavior and even security

vulnerabilities in applications that rely on it [12]–[14]. In

practice, however, not all application developers can detect

WebAssembly runtime bugs on time. Especially inexperienced

developers may first assume that the behavior caused by the

defect is caused by their own programming. Therefore, to

better understand, detect, and fix WebAssembly runtime bugs,

the characteristics of WebAssembly runtime bugs need to be

analyzed.

This prompts us to conduct the first empirical study of

WebAssembly runtime bug characteristics to advance the un-

derstanding of WebAssembly runtime bugs. We selected We-

bAssembly runtimes V8 [4], and SpiderMonkey [15], which

are in two mainstream browsers, and two popular standalone

runtimes Wasmer [16], and Wasmtime [17] as research objects.

In total, we studied 867 real bugs in the four WebAssembly

runtimes. For each bug, we examined its issue messages,

comments, commit messages, or linked pull request messages.

The purpose of our research is to find the answers to the

following research questions.

RQ1: How are the root causes of WebAssembly runtime
bugs distributed? Root causes help researchers gain insight

into the nature of bugs. In this question, we first categorize

root causes for bugs based on a systematic process and 16

root causes are identified (described in Section III). We then

analyze the root cause distribution of these bugs.

RQ2: How are the symptoms of WebAssembly runtime
bugs distributed? Symptoms aid in understanding the con-

sequences of bugs and aid in designing test methods with

different test oracles. The symptoms are classified in a similar

process as the root cause, with six categories of symptoms

identified (described in Section III). We then further analyze

the distribution of symptoms for these bugs.

RQ3: What is the connection between WebAssembly
runtime bug root causes and symptoms? On the basis

of RQ1 and RQ2, we further dig into the obvious mapping

355

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/23/$31.00 ©2023 IEEE
DOI 10.1109/SANER56733.2023.00041

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

A
na

ly
si

s,
Ev

ol
ut

io
n

an
d

R
ee

ng
in

ee
rin

g
(S

A
N

ER
) |

 9
78

-1
-6

65
4-

52
78

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

N
ER

56
73

3.
20

23
.0

00
41

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

connection between some root causes and special symptoms,

which can deepen a more comprehensive understanding of

bugs for developers.

RQ4: How long do WebAssembly runtime bugs take
to fix? We not only examine the distribution of bug fixes

over time for WebAssembly runtimes but also further com-

pute statistics on bug-fixing times for different WebAssembly

runtimes, such as mean bug-fixing time and bug-fixing time.

RQ5: How many files and lines of code must be changed
to fix a WebAssembly runtime bug? We investigate the

fix of WebAssembly runtime bugs, i.e. the files and code

lines involved in the bug fixes. Not only did we analyze

the distribution of bug fixes across different WebAssembly

runtimes in files and lines of code, we further analyze the

correspondence between the root cause or symptom and the

number of files or lines of code involved in the bug fix.

RQ6: Do the bugs of different WebAssembly runtimes
have anything in common? The study of the commonalities

between different WebAssembly runtime bugs can help devel-

opers design more general testing and debugging techniques.

Based on our empirical results, 18 important findings are

revealed, and the specific information about these findings

is described in the relevant section of this paper (Section

IV). In addition, we discuss their broad implications for

WebAssembly runtime bug detection, localization, debugging,

and repair in light of some important findings (Section V).

For example, Findings 1 and 8 show that Incorrect Algorithm
Implementation is the most frequent root cause and can

result in a variety of symptoms, suggesting that developing

techniques that can automatically detect and locate these bugs

is a promising research direction.

Our research can aid in the better understanding of We-

bAssembly runtime bugs by researchers and developers. To

sum up, our paper contributes the following:

• We present the first empirical study of WebAssembly

runtime bugs, based on 867 real bugs in four widely-used

and distinct WebAssembly runtimes.

• We categorize the root causes and symptoms of We-

bAssembly runtime bugs and further analyze WebAssem-

bly runtime bug fix information (bug-fixing times, files,

and code lines).

• We summarize 18 findings and discuss the broad implica-

tions for WebAssembly runtime bug detection, localiza-

tion, debugging, and repair based on some key findings.

• We have released the dataset and code publicly available

online1 for others to copy or reproduce, or even do further

research based on our work.

II. WEBASSEMBLY RUNTIMES

The WebAssembly runtime is a program responsible for

translating WebAssembly binary instructions into native CPU

machine code. Generally speaking, there are three ways to

perform this translation: interpret execution, ahead-of-time

(AOT) compilation to the native executable, and just-in-time

1https://github.com/Wang11Yue/WebAssembly Runtime Bugs

Fig. 1. The architecture of WebAssembly runtimes.

(JIT) compilation to native machine code at runtime. As shown

in Fig. 1, WebAssembly runtime can choose to implement an

interpreter or an AOT/JIT compiler to accomplish one or more

translation methods. The WebAssembly runtime can provide

self-developed optimizing compilers, but usually, developers

reuse existing backend compilers such as LLVM [18]. In ad-

dition, some WebAssembly runtimes offer several translation

methods to balance compilation time and code quality. For

example, when browsing the web, using JIT compilation is a

reasonable choice because a fast startup is important to provide

a good user experience.

The existing WebAssembly runtime runs as a user space

program that sits between the WebAssembly application and

the underlying operating system [7], as shown in Fig. 1.

In this architecture, WebAssembly applications that want to

access IO or external resources need to call the WebAssembly

System Interface (WASI) [19], which defines a group of

POSIX-like interfaces to operating systems. In addition, the

WebAssembly runtime can be embedded in different host

programs to achieve the goal of using WebAssembly by the

host program. Different host programs can parse and execute

WebAssembly programs through the public APIs provided by

the WebAssembly runtime.

In this study, four popular WebAssembly runtimes were

selected for investigation, namely, V8 [4], SpiderMonkey

[15], Wasmer [16], and Wasmtime [17]. Although they are

all constructed using the aforementioned architecture, the

four WebAssembly runtimes are each distinct. For example,

implementations using different programming languages, em-

bedded implementations for Web environments or standalone

implementations for non-Web environments, and different de-

velopment organizations.

356

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

III. METHODOLOGY

A. Selection of WebAssembly Runtimes

As WebAssembly is adopted by more and more domains,

the ecosystem of WebAssembly runtime is also expanding.

In addition to the WebAssembly runtimes V8 (Chrome), Spi-

derMonkey (Firefox), JavaScriptCore (WebKit), and Chakra

(Edge), which are born in the four major browsers [5]. A large

number of standalone WebAssembly runtimes [6] that support

WebAssembly parsing and execution are also scrambling to

emerge.

We focus on the diversity and popularity of the project,

and the number of bugs in the project in this study. Therefore,

we select WebAssembly runtimes V8 [4], SpiderMonkey [15],

Wasmer [16], and Wasmtime [17] as research objects.

B. Collection of Bugs and Bug-Fixing Commits

1) Collection of Bugs: To investigate the characteristics of

WebAssembly runtime bugs, we follow existing work [20]–

[23] and first collect the fixed bugs from the WebAssembly

runtime issue tracking system, i.e., extracting issues with status

closed and fixed. However, the specific implementations of

the issue tracking system of V8, SpiderMonkey, Wasmer, and

Wasmtime are different, so different rule filters are applied to

them to obtain an initial list of WebAssembly runtime bugs

called BugSet1 (third column of Table I). This process is

carried out as follows:

Collecting V8 Bugs. We first search for WebAssembly

runtime bugs that satisfy the following screening criteria in

the issue tracking system for the V8 engine2: (1) the type of

issue is “Bug”, (2) its status is “Fixed”, (3) the issue has to do

with the WebAssembly runtime (i.e. the issue is classified in

the WebAssembly component of the V8 engine), and then the

BugSet1V 8 is obtained directly through the download link

provided by the issue tracking system.

Collecting SpiderMonkey Bugs. In the issue tracking sys-

tem of SpiderMonkey3, we first apply the following rule filters

to select WebAssembly runtime bugs: (1) the issue is of the

type “DEFECT”, (2) its status is “CLOSED”, “RESOLVED”,

or “VERIFIED”, (3) its “RESOLUTION” field is assigned to

“FIXED”, (4) the issue has to do with the WebAssembly run-

time (i.e. the issue is classified in the Javascript: WebAssembly
component of the SpiderMonkey engine), and then the filtered

bug list is downloaded directly through the link provided by

the issue tracking system to get BugSet1SpiderMonkey .

Collecting Wasmer/Wasmtime Bugs. Both Wasmer and

Wasmtime use GitHub as their issue tracking system4,5, where

developers categorize reported issues by giving each issue a

different tag. To collect as much and complete bug data as

possible, we refer to the method of the paper [24, 26-28] to

include Wasmer and Wasmtime closed issues and pull requests

into the screening scope. We build two queries to get the issues

2https://bugs.chromium.org/p/v8/issues/list?q=&can=1
3https://bugzilla.mozilla.org/query.cgi?format=advanced
4https://github.com/wasmerio/wasmer
5https://github.com/bytecodealliance/wasmtime

TABLE I
THE STATISTICS OF THE SUBJECTS COLLECTED IN OUR STUDY.

Runtime Duration Time BugSet1 BugSet2 BugSet3

V8 2016-08-23-2022-2-18 477 220 196
SpiderMonkey 2018-06-10-2022-03-31 453 325 325

Wasmer 2019-02-16-2022-03-15 380 224 209
Wasmtime 2019-12-05-2022-04-11 165 98 88

Total - 1,475 867 818

related to the WebAssembly runtime. Specifically, for Wasmer,

we look for closed issues and pull requests whose label is

assigned: “bug”. For Wasmtime, we focus on closed issues and

pull requests in GitHub repositories that have at least one label

assigned: “bug” or “fuzz-bug”. We used the GitHub REST API

[24] to build the crawler and retrieved 403 bugs for Wasmer

and 165 bugs for Wasmtime, respectively. But pull requests

are a kind of special issue with source code fix information,

which sometimes exists directly as a bug-fixing commit of

another issue [25], and sometimes exists as a separate issue.

So in Wasmer and Wasmtime, when a pull request as a bug-

fixing commit exists, it is necessary to determine whether the

issue that the pull request links to already exists. And if the

issue already exists, it is considered a duplicate bug that must

be filtered. Finally, we get BugSet1Wasmer containing 380

bugs and BugSet1Wasmtime having 165 bugs.

2) Collection of Bug-Fixing Commits: We then use the link

that exists between the bug report and the bug-fixing commit to

identify the fix information for bugs in BugSet1. To reduce

the noise of the data, we only focus on the case where a

bug corresponds to only one bug-fixing commit, and filter out

the bug data where a bug corresponds to multiple bug-fixing

commits or a bug has no corresponding bug-fixing commit

[21], [26]. In addition, for the few cases where a bug-fixing

commit fixes multiple bugs when classifying root causes and

symptoms of bugs, we follow the existing work [27]–[29] and

classify bugs and bug-fixing commits one by one as separate

individuals to obtain BugSet2′. But when analyzing bugs for

the fix information, to reduce noise, such bug data is filtered

out to obtain BugSet3′.
In this study, we only focus on coding-related bug fixes [22],

[23], [26], [30]. Therefore, BugSet2′ and BugSet3′ filter

out bugs whose fixes only involve unrelated files (e.g., test

cases, documents, change logs, *.md, .gitignore, LICENSE)

and unrelated changes (e.g., only change comments that are

unrelated to bug-fixing code). Finally, the research datasets

BugSet2 and BugSet3 for this experiment are obtained, as

shown in Table I.

C. Bug Classification and Labeling

To characterize WebAssembly runtime bugs, we labeled the

root cause and symptom of each WebAssembly runtime bug

in BugSet2. Our classification of WebAssembly runtime bug

root causes and symptoms refers to the definitions of bug root

causes and symptoms in existing studies [27]–[29], [31]–[34].

For each bug, we examined its issue messages, comments,

357

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

commit messages, and linked pull request messages to deter-

mine the root cause and symptom categories.

To minimize subjectivity bias in the labeling process, the la-

beling of root causes and symptoms of WebAssembly runtime

bugs was performed manually by three authors familiar with

the WebAssembly runtime projects. First, the bugs were ran-

domly divided into 10 sets (the first 9 containing 87 bugs and

the last containing 84 bugs). Then two authors independently

labeled the root causes and symptoms of each set of bugs.

After each set of bugs was labeled, the two authors cross-

checked the label results and discussed the conflicting labels

until they reached an agreement (the process was repeated 10

times). During the repeated iterations of the discussion, the

two authors could be more clear about the categories of the

current bug labels. Finally, the third author verified the label

results of all bugs and worked with the original two authors

to resolve any disagreements.

D. Root Causes of WebAssembly Runtime Bugs

Referring to the classification of root causes in existing work

[27]–[29], [31]–[34], and then after the mentioned process of

classification and labeling (Section III-C), we conclude the

following 16 root causes of WebAssembly runtime bugs.

• Incorrect Algorithm Implementation: This root cause

is related to errors in the set of code steps that implement

the solution to a specific issue or calculation. Its fix is

usually found in function/method definitions that contain

some statements or blocks with a logical structure.

• Memory: This situation involves incorrect memory han-

dling, such as incorrect/failed memory allocation, mem-

ory leaks, dangling pointers, illegal accesses, etc.

• Incorrect Exception Handling: This type of bug is

caused by incorrect exception handling, e.g., incorrect or

inaccurate error information thrown, missing/redundant

exceptions, wrong class of exceptions thrown, etc.

• API Misuse: This type of bug can be subdivided into

two subcategories in WebAssembly runtime: 1) API Miss-
ing/Redundancy: This is because the developer is missing

/redundant the use of an API in the code; 2) Wrong
API: It is caused by the developer using a wrong API

name, argument, or receiver, which violates the API usage

restrictions.

• Type Problem: These bugs are caused by type-related

issues, e.g. type conversion, type checking, and type

inference.

• Incorrect Condition Logic: This is caused by an incor-

rect conditional expression. This type of bug is usually

fixed in statement blocks such as if-else, for loops, etc.

• Incorrect Assignment: This is caused by variables that

have been incorrectly initialized, assigned, or not initial-

ized.

• Incorrect Configuration: These bugs are related to in-

correct configuration of compilation, build, compatibility,

and installation files. The result of these bugs will either

fail to build or behave unexpectedly.

• Missing Condition Checks: This type of bug lacks the

necessary conditional statements to handle special cases,

such as boundary values, null checks, etc.

• Concurrency: These bugs relate to incorrect manipula-

tion of concurrent oriented structures (e.g., threads, locks,

shared memory, and race conditions).

• Environment Incompatibility: These bugs are related

to not correctly handling some characteristics (e.g. the

number of bytes of the architecture) of a particular

environment, for example, hardware or operating system.

• External API Incompatibility: This type of bug is

caused by an API incompatibility between the We-

bAssembly runtime and a third-party library, which is

usually associated with updates to the third-party library.

• Dependent Module Issue: These bugs are brought by

failing to import necessary dependent modules or by

importing the incorrect modules.

• Logical Order Error: These bugs are caused by an

illogical ordering of the statements, and the solution is

usually to rearrange the statements.

• Incorrect Numerical Computation: This type of bug is

caused by incorrect use of operands or operators, missing

operands in calculations, and other incorrect numerical

calculations.

• Others: This type of bug cannot be assigned to any of

the above categories and occurs very infrequently.

E. Symptoms of WebAssembly Runtime Bugs

Referring to the classification of symptoms in existing work

[27]–[29], [33], [34], according to the classification and label-

ing process (Section III-C) described above, we summarize

the following 6 symptoms for WebAssembly runtime bugs.

• Crash: This symptom indicates that the WebAssembly

runtime has abruptly terminated, which is typically ac-

companied by an error message.

• Incorrect Functionality: This symptom arises when the

WebAssembly runtime operates improperly but does not

crash, for example, by yielding unexpected results or an

inaccurate intermediate state.

• Build Error: This symptom means incorrect compilation,

build, and installation of a WebAssembly runtime.

• Bad Performance: This symptom denotes using up more

time or resources than anticipated (e.g. memory).

• Hang: This symptom means that the WebAssembly run-

time is still not responding after running for a long time.

• Unreported: The symptoms of WebAssembly runtime

bugs cannot be determined by looking through the issue

messages, comments, commit messages, and linked pull

request messages.

IV. RESULTS AND ANALYSIS

In this section, we discuss and analyze the experimental

results obtained according to the method described above.

358

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The distribution of bugs by root causes.

A. RQ1: How are the root causes of WebAssembly runtime
bugs distributed?

Fig. 2 shows the distribution of WebAssembly runtime bugs

by root causes. As demonstrated by the figure, the most

frequent root cause, accounting for 221 bugs, is Incorrect
Algorithm Implementation, which includes 62 in SpiderMon-

key, 45 in Wasmer, 66 in V8, and 48 in Wasmtime. Among

them, the bugs of Incorrect Algorithm Implementation in

Wasmtime account for 48.98% of all its bugs, which is the

highest percentage among the four WebAssembly runtimes.

An observation of this part of bugs finds that Incorrect Algo-
rithm Implementation in Wasmtime always occurs in the code

generation phase, which deserves developers of Wasmtime to

devote more attention.

Finding #1: Incorrect Algorithm Implementation accounts for
25.49% of WebAssembly runtime bugs, the most prevalent of
all root causes.

The second most prevalent root cause, Memory, is respon-

sible for 148 bugs, including 72 in SpiderMonkey, 33 in

Wasmer, 36 in V8, and 7 in Wasmtime. This phenomenon

should be related to the direct access to raw bytes and

manual memory management of WebAssembly. WebAssembly

runtime memory is an abstract RAM (essentially a linear

array of bytes) with only the most basic read and writes

functionality, very close to the bottom, with no advanced

memory management and garbage collection implemented.

The developers are required to manage memory, and segment

errors or memory leaks can easily occur if memory is not used

properly. This result shows that safe handling of memory at

the WebAssembly runtime is quite difficult and requires further

research by the WebAssembly runtime developers.

Finding #2: Memory leads to a large number of WebAssembly
runtime bugs, accounting for 17.07% of all bugs. This result
indicates that memory safety management in WebAssembly
runtime is challenging.

According to Fig. 2, Incorrect Exception Handling has

26 in SpiderMonkey, 44 in Wasmer, 17 in V8, and 8 in

Wasmtime, which is the third-ranked root cause. The reason

the WebAssembly runtime contains many incorrect exceptions

handling bugs is probably due to the exception interaction

TABLE II
THE DISTRIBUTION OF API MISUSE BUGS.

Runtime API M/R
Wrong API

Receiver Name Argument Total

SpiderMonkey 5 0 7 7 14
Wasmer 3 1 4 9 14

V8 6 0 1 7 8
Wasmtime 2 1 1 1 3

Total 16 2 13 24 39

M/R is an abbreviation for Missing/Redundancy.

between the WebAssembly runtime and the embedder. In the

exception handling of WebAssembly runtime, an exception to

some instructions will generate a trap, which will immediately

abort the current computation. But traps can be handled

without the WebAssembly runtime, because an embedder

usually provides a way to handle such cases, for example,

by specifying them as JavaScript exceptions.

Finding #3: Incorrect Exception Handling accounts for
10.96% of WebAssembly runtime bugs, the third-ranked root
cause.

API Misuse is the fourth largest source of WebAssembly

runtime bugs. We refer to existing work [27], [28], [35], [36]

to subdivide such bugs into two subcategories. Table II shows

the results, Wrong API is the most prevalent subcategory

leading to API Misuse in WebAssembly runtime, accounting

for 70.91%, followed by API Missing/Redundancy, accounting

for 29.09%. Among the Wrong API, wrong API parame-

ters account for the largest proportion (61.54%), followed

by wrong API names (33.33%). This indicates on the one

hand that developers may lack domain knowledge related to

API usage, and on the other hand, the need for better and

more detailed documentation of API usage by developers. In

addition, API Missing/Redundancy is the subclass that most

frequently leads to API Misuse in MuBench [35], [37] (one

of the most extensive benchmarks for API Misuse studies,

which researches 90 actual API Misuse bugs from multiple

Java projects). This differs from the API Misuse subcategories

distribution in the WebAssembly runtime. On the one hand,

existing API misuse detectors are more likely to detect bugs

caused by API Missing/Redundancy [35], so it is necessary

to develop an API misuse detection technique that is distinct

from conventional software for the WebAssembly runtime. On

the other hand, existing API misuse detectors have limitations

in terms of precision and recall [35], [38], so our bug data can

be used to train existing API misuse detectors to help improve

their functionality.

Finding #4: API Misuse is the fourth-ranked root cause, with
Wrong API being the most likely subcategory to cause API
Misuse at 70.91%.

B. RQ2: How are the symptoms of WebAssembly runtime bugs
distributed?

Fig. 3 shows the distribution of bugs by symptoms. The

most frequent symptom is discovered to be Crash, which

accounts for 493 bugs, including 180 in SpiderMonkey, 117 in

359

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE DISTRIBUTION OF BUGS IN EACH ROOT CAUSE CATEGORY BY SYMPTOMS.

Root Cause
Symptom

Crash Incorrect Functionality Build Error Bad Performance Hang Unreported Totalsymptom

Incorrect Algorithm Implementation 103 69 16 21 4 8 221
Memory 122 16 1 4 1 4 148
Incorrect Exception Handling 78 14 0 2 1 0 95
API Misuse 25 24 5 1 0 0 55
Type Problem 28 15 4 0 0 4 51
Incorrect Assignment 17 16 9 1 0 3 46
Incorrect Condition Logic 30 14 1 1 0 0 46
Concurrency 28 5 0 0 2 2 37
Incorrect Configuration 3 4 28 0 0 2 37
Missing Condition Checks 24 3 5 2 1 2 37
Environment Incompatibility 9 0 17 0 0 0 26
External API Incompatibility 10 0 9 0 0 2 21
Dependent Module Issue 0 1 14 0 0 0 15
Logical Order Error 7 4 0 0 0 1 12
Incorrect Numerical Computation 6 5 0 0 0 0 11
Others 3 2 3 1 0 0 9

Totalcause 493 192 112 33 9 28 867

Fig. 3. The distribution of bugs by symptoms.

Wasmer, 137 in V8, and 59 in Wasmtime. This shows that if

the developers of WebAssembly runtime cannot discover and

deal with such bugs in time, the user experience will be greatly

reduced. Therefore, the introduction of exception-handling

strategies can be considered to improve the robustness of the

WebAssembly runtime. In addition, when the WebAssembly

runtime crashes, it often carries error message reports which

can help developers locate and debug such bugs.

Finding #5: The most prevalent symptom is Crash, which
accounts for 56.86% of WebAssembly runtime bugs.

Incorrect Functionality is the second most prevalent symp-

tom, with a total of 192 bugs, including 63 in SpiderMonkey,

46 in Wasmer, 58 in V8, and 25 in Wasmtime. This symptom

is considered application-specific [33], so a test oracle setup to

detect such bugs requires developers to have domain-specific

knowledge, which creates many challenges for testing and

fixing bugs that exhibit such symptoms.

Finding #6: Incorrect Functionality accounts for 22.15% of
WebAssembly runtime bugs, and testing and fixing such bugs

requires developers to have domain-specific knowledge.
Fig. 3 illustrates that in the symptom category of We-

bAssembly runtime bugs, Build Error ranks third, accounting

for 12.92%. Of these, bugs that manifest as Build Error
account for more in SpiderMonkey (16.92%) and Wasmer

(20.54%) than in V8 (1.36%) and Wasmtime (8.16%). This

demonstrates that compiling, building, and installing Spi-

derMonkey and Wasmer is challenging and deserve more

attention from developers. Other than that, the symptoms of

Bad Performance and Hang account for just 3.81% and 1.04%,

respectively, of WebAssembly runtime bugs.

Finding #7: Build Error ranks third in the symptoms, account-
ing for 12.92% of WebAssembly runtime bugs.

C. RQ3: What is the connection between WebAssembly run-
time bug root causes and symptoms?

Table III shows the number of symptoms exhibited by the

bugs in each root cause category. As can be seen, the top three

root causes, Incorrect Algorithm Implementation, Memory, and

Incorrect Exception Handling, occur in practically all symp-

tom categories, except for the Build Error and Unreported
categories in Incorrect Exception Handling. Bugs caused by

these three root causes account for 53.52% of all bugs, which

indicates that these bugs occur frequently and have various

impacts. Therefore, WebAssembly runtime developers ought

to give the creation of tools for detecting, locating, and fixing

such bugs more consideration.

Finding #8: Incorrect Algorithm Implementation, Memory,
and Incorrect Exception Handling can lead to almost all types
of bug symptoms. They account for 53.52% of all bugs.

According to Table III, the two most frequent symptoms of

WebAssembly runtime are Crash and Incorrect Functionality.

Except for Dependent Module Issue in Crash, External API
Incompatibility and Environment Incompatibility in Incorrect
Functionality, all other categories of root causes can induce

these two symptoms. This suggests that developers should pay

more attention to bug detection for these two symptoms, such

360

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

(a) The empirical cumulative distribution function of bug-fixing time.

(b) The statistics of the bug-fixing time.

Fig. 4. The bug-fixing time for V8, SpiderMonkey, Wasmer, and Wasmtime
in bug fixes.

as designing effective test oracles, which can find WebAssem-

bly runtime bugs caused by multiple root causes.

Finding #9: WebAssembly runtime with 79.01% of the conse-
quences of bugs are Crash and Incorrect Functionality, and
the root causes of these two symptoms are varied.

Bad Performance is only strongly associated with Incor-
rect Algorithm Implementation. In particular, 63.64% of the

33 bugs demonstrating Bad Performance are brought on by

Incorrect Algorithm Implementation. Build Error is strongly

associated with multiple root causes, with Incorrect Configura-
tion having the highest number of 28, followed by Environment
Incompatibility with 17, Incorrect Algorithm Implementation
with 16, and Dependent Module Issue with 14. This clear cor-

relation can help developers speed up the debugging process.

When a bug is one of these two symptoms, developers can

quickly investigate the root cause that is highly correlated with

the symptom to narrow down the suspects.

Finding #10: Bad Performance is closely associated with
Incorrect Algorithm Implementation. Build Error is closely
associated with four root causes (i.e. Incorrect Configuration,
Environment Incompatibility, Incorrect Algorithm Implemen-
tation, and Dependent Module Issue).

D. RQ4: How long do WebAssembly runtime bugs take to fix?

The distribution of bug-fixing across time is examined by

this research question. In this study, bug-fixing time is defined

as the time interval between the date when a bug report is filed

in the bug tracking system and the date when the bug is fixed

and will not be changed again. The ideal bug-fixing time is 0

days, which means that a bug is fixed as soon as it is reported.

But in practice, it usually takes longer to fix a bug, sometimes

(a) The empirical cumulative distribution of the number of files involved
in a bug fix.

(b) The statistics on the number of files involved in bug fixes.

Fig. 5. The number of files involved in bug fixes.

even years, because of resource and time constraints, etc. We

collect the start time and end time of bugs in BugSet2 by

referring to existing work [22], [23], and calculate their time

interval, i.e., bug-fixing time, in days.

The relationship between the bug-fixing time and the per-

centage of bugs is depicted in Fig. 4(a). It can be seen

that about 90% of the bugs in V8, SpiderMonkey, Wasmer,

and Wasmtime are fixed within 195, 25, 195, and 152 days,

respectively. Fig. 4(b) provides statistics on bug-fixing time

(including mean, median, standard deviation (SD), minimum

(Min), and maximum (Max)). As can be observed, for V8, Spi-

derMonkey, Wasmer, and Wasmtime, the median bug-fixing

time are 13, 5, and 6 days, respectively. On average, bugs are

repaired in 71.88 days for V8, 21.78 days for SpiderMonkey,

55.06 days for Wasmer, and 48.29 days for Wasmtime. The

bug-fixing time of SpiderMonkey is much shorter than V8,

Wasmer, and Wasmtime, which indicates that the developers of

SpiderMonkey are more active in bug maintenance. Moreover,

the bug-fixing time for these four WebAssembly runtimes is

lower than the average fixing time of 111 and 98 days for the

popular compilers GCC and LLVM in the existing study [22].

Finding #11: At the median, the bug-fixing time are 13, 4,
5, and 6 days for V8, SpiderMonkey, Wasmer, and Wasmtime
respectively.

E. RQ5: How many files and lines of code must be changed
to fix a WebAssembly runtime bug?

This research question investigates the number of files and

lines of code involved in fixing bugs in V8, SpiderMonkey,

Wasmer, and Wasmtime. A deeper comprehension of bug

fixes in the WebAssembly runtime can provide useful guid-

361

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
THE STATISTICS ON THE NUMBER OF FILES INVOLVED IN BUG FIXES FOR

EACH ROOT CAUSE CATEGORY.

Root causes Mean Median SD Min Max

Incorrect Algorithm Implementation 3.81 2.5 3.65 1 19
Memory 3.34 2 4.31 1 27
Incorrect Exception Handling 3.24 1 4.25 1 28
API Misuse 1.16 1 0.46 1 3
Type Problem 2.47 1 2.34 1 10
Incorrect Assignment 1.39 1 1.42 1 10
Incorrect Condition Logic 1.43 1 1.04 1 6
Concurrency 4.34 2 8.71 1 46
Incorrect Configuration 2.83 1 6.04 1 34
Missing Condition Checks 1.22 1 0.48 1 3
Environment Incompatibility 4.13 2 6.62 1 31
External API Incompatibility 5.84 3 10.05 1 46
Dependent Module Issue 1.40 1 0.83 1 4
Logical Order Error 1.00 1 0 1 1
Incorrect Numerical Computation 1.36 1 0.92 1 4
Others 4.00 1 7.19 1 38

TABLE V
THE STATISTICS ON THE NUMBER OF FILES INVOLVED IN BUG FIXES FOR

EACH SYMPTOM CATEGORY.

Symptoms Mean Median SD Min Max

Crash 2.87 1 3.76 1 31
Incorrect Functionality 2.77 1 4.44 1 46
Build Error 2.52 1 3.27 1 23
Bad Performance 4.45 2 4.51 1 19
Hang 1.22 1 0.44 1 2
Unreported 4.65 2 7.26 1 34

ance on automated debugging techniques for WebAssembly

runtime bugs, in addition to helping developers design better

WebAssembly runtimes. We use the bug-fixing commits of

BugSet3 as the object of our study, and extract information

about files and lines of code related to source code changes

by parsing the patches in the bug-fixing commits. Specifically,

we do not consider changes in unrelated files (e.g., test cases,

documents, change logs, *.md, .gitignore, LICENSE) [22],

[23], [26].

1) Number of files: Fig. 5(a) depicts the empirical cu-

mulative distribution of the number of files necessary to fix

a bug. From Fig. 5(a), it can be seen that about 90% of

the bug fixes in SpiderMonkey involve 4 files, while more

than 90% of the bug fixes in V8, Wasmer, and Wasmtime

involve no more than 6, 8, and 8 files, respectively. In partic-

ular, 48.98%, 58.77%, 51.67%, and 43.18% of the bug fixes

in V8, SpiderMonkey, Wasmer, and Wasmtime, respectively,

involve only one file. In addition, most bug fixes in the

four WebAssembly runtimes involve no more than 30 files

at most. Fig. 5(b) provides statistics on the number of files in

bug fixes (including mean, median, standard deviation (SD),

minimum (Min), and maximum (Max)). On average, V8 and

SpiderMonkey require 2.72 and 2.32 file modifications to

fix a bug, respectively, while Wasmer and Wasmtime require

3.75 and 3.51 files, respectively. This may indicate that the

code implementations of V8 and SpiderMonkey have a better

modular design compared to Wasmer and Wasmtime since the

bug fixes in V8 and SpiderMonkey involve fewer files than in

Wasmer and Wasmtime.

(a) The empirical cumulative distribution of lines of code involved in a bug
fix.

(b) The statistics for the lines of code involved in bug fixes.

Fig. 6. The lines of code involved in bug fixes.

Finding #12: Over 50% of bug fixes in the four WebAssembly
runtimes involve only one file, while fixes for more than 90%
of bugs involve no more than 8 files.

Table IV shows statistics on the files involved in bug fixes

for each root cause category (including mean, median, stan-

dard deviation (SD), minimum (Min), and maximum (Max)).

From Table IV, External API Incompatibility, Concurrency,

Environment Incompatibility, and Incorrect Algorithm Imple-
mentation are the four root causes for the highest number of

files involved in bugs fixes (except for the Others category),

with a mean of 5.84, 4.34, 4.13, and 3.81, and a median of 3,

2, 2, and 2.5, respectively. Furthermore, Incorrect Algorithm
Implementation has the highest percentage of bugs at 25.49%,

which indicates that this category has a greater weight and

developers should pay more attention.

Finding #13: The bug fixes for External API Incompatibility,
Concurrency, Environment Incompatibility, and Incorrect Al-
gorithm Implementation rank the top four (except Others) in
terms of the number of files involved, with an average of 5.84,
4.34, 4.13, and 3.81.

Table V provides statistics for the files involved in bug fixes

for each symptom category. On average, Bad Performance has

far more files involved in bug fixes than the other symptom

categories (except Unreported), but it only accounts for 3.81%

of all bugs. Crash (except Unreported) is next, with its bug

fixes involving an average of 2.87 files and exhibiting Crash
bugs accounting for 56.86% of all bugs. Hang is the symptom

involving the fewest files (except Unreported), with an average

of only 1.22 files. This suggests that the Crash symptom

deserves more attention from developers.

362

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
THE STATISTICS FOR THE NUMBER OF LINES OF CODE INVOLVED IN BUG

FIXES FOR EACH ROOT CAUSE CATEGORY.

Root causes Mean Median SD Min Max

Incorrect Algorithm Implementation 103.82 58.5 128.96 3 907
Memory 108.34 29 347.15 1 3,661
Incorrect Exception Handling 75.07 28 133.16 2 893
API Misuse 5.93 3 8.35 1 52
Type Problem 43.04 24 63.97 2 363
Incorrect Assignment 11.8 5 22.45 1 138
Incorrect Condition Logic 14.27 9 14.79 2 68
Concurrency 124.31 31 319.01 1 1,551
Incorrect Configuration 20.44 8.5 34.28 1 174
Missing Condition Checks 12.92 8.5 14.72 1 70
Environment Incompatibility 114.96 28.5 192.9 4 604
External API Incompatibility 65 20 145.46 1 648
Dependent Module Issue 36.6 6 75.67 1 259
Logical Order Error 11.13 11 5.17 2 17
Incorrect Numerical Computation 5.73 2 5.53 2 18
Others 92.67 11 14.72 1 485

TABLE VII
THE STATISTICS FOR THE NUMBER OF LINES OF CODE INVOLVED IN BUG

FIXES FOR EACH SYMPTOM CATEGORY.

Symptoms Mean Median SD Min Max

Crash 74.80 21 215.19 1 3,661
Incorrect Functionality 63.6 16 151.61 1 1,551
Build Error 47.78 12 103.89 1 585
Bad Performance 110.06 70 113.15 2 394
Hang 45 23 47.32 4 129
Unreported 86.19 16.5 159.36 1 606

Finding #14: Bug fixes for Bad Performance involve the
highest number of files (except Unreported), with an average
of 4.45. Bug fixes for Crash have the second highest number
of files (except Unreported), with an average of 2.87.

2) Lines of Code: We investigate changes in the source

code lines related to bug fixes in addition to the files. In our

study, the number of modified lines of code is defined as the

sum of the number of lines of code added and the number of

lines of code subtracted. As shown in Fig. 6(a), over 50% of

the bug fixes in the four WebAssembly runtimes involve less

than 36 lines of source code. About 90% of the bug fixes in

V8, SpiderMonkey, Wasmer, and Wasmtime involve no more

than 110, 110, 301, and 348 lines of code, respectively. As

can be seen in Fig. 6(b), the means of the lines of code to

fix a bug in V8, SpiderMonkey, Wasmer, and Wasmtime are

45.40, 45.42, 113.19, and 114.95, with the median lines of

code being 18.5, 14, 26, and 36. This suggests that bugs in

V8 and SpiderMonkey are usually localized, and despite their

overall intricacy, the codebase is little affected overall by the

bug fixes.

Finding #15: The median source code lines for bug fixes for
V8, SpiderMonkey, Wasmer, and Wasmtime are 18.5, 14, 26,
and 36 lines, respectively.

The statistics on the lines of code used to fix bugs for each

root cause category are shown in Table VI (including mean,

median, standard deviation (SD), minimum (Min), and maxi-

mum (Max)). In terms of median, bug fixes for Incorrect Algo-
rithm Implementation require the most lines of code involving

58.5 lines with a mean of 103.82, which indicates that bugs in

this root cause category may have high challenges in locating

(a) The correlation of root causes. (b) The correlation of symptoms.

Fig. 7. The correlation between WebAssembly runtimes.

bugs and fixing them automatically [39]–[41]. In terms of

average, the bug fixes of API Misuse, Incorrect Assignment,
Incorrect Condition Logic, Missing Condition Checks, Logical
Order Error, and Incorrect Numerical Computation all involve

less than 20 lines of code, and the bugs caused by these six

root causes account for 23.88% of all bugs, slightly less than

the 25.49% of Incorrect Algorithm Implementation.

Finding #16: At the median, Incorrect Algorithm Implemen-
tation bug fixes require the most lines of code involved at 58.5
lines, with a mean of 103.82. Bug fixes for the six categories
of root cause involved an average of fewer than 20 lines of
code, representing 23.88% of all bugs.

Table VII provides statistics for the number of lines of

code involved in bug fixes for each symptom category. Bad
Performance bug fixes involve the highest number of lines

of code with an average of 110.06 lines and a median of

70 lines. This may be due to the strong correlation between

Bad Performance and Incorrect Algorithm Implementation. On

average, the second highest number of lines of code involved

in bug fixes was Crash with 74.80 lines, followed by Incorrect
Functionality with 63.60 lines (except Unreported). Similar to

the files involved, Hang is the symptom involving the least

number of lines of repair code, with an average of only 45

lines.

Finding #17: On average, the bug fixes of Bad Performance
involve the most lines of code with 110.06 lines. Hang is the
symptom that involves the least number of lines of code fixed,
with an average of only 45 lines.

F. RQ6: Do the bugs of different WebAssembly runtimes have
anything in common?

To measure the commonality between WebAssembly run-

times, referring to existing work [27], [28], [42], we computed

Spearman correlations for each pair of WebAssembly runtimes

based on their root cause distribution and symptom distri-

bution. The Spearman correlation coefficient is a statistical

measure used to indicate the strength of a monotonic relation-

ship between two pairwise variables [43]. Fig. 7 displays the

results of the correlations, where [0.8, 1.0] indicates a very

strong correlation, [0.6, 0.79] indicates a strong correlation,

[0.4, 0.59] indicates a moderate correlation, and [0.2, 0.39] is

a weak correlation.

363

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

In terms of the root causes, Fig. 7(a) shows that there is a

very strong correlation between Wasmer and Wasmtime, and a

strong correlation between SpiderMonkey and V8, Wasmtime.

However, there are weak, moderate correlations between V8

and Wasmer, Wasmtime. From Fig. 2, it can be seen that this

may be related to the two root causes of Incorrect Condition
Logic, and Concurrency. They are more distributed in V8,

accounting for 10.45%, and 12.73% of V8, but very little

in Wasmer and Wasmtime, respectively. This suggests that

developers should distinguish between differences and consis-

tency in the root cause of bugs across different WebAssembly

runtimes when designing solutions for locating and fixing

WebAssembly runtime bugs.

From Fig. 7(b), it can be found that the four WebAssembly

runtimes have a strong correlation in the symptoms, which

indicates the generality of our findings on the symptoms

exhibited by bugs. It also further demonstrates the possibility

of creating common tests, debugging, and repair techniques

for different WebAssembly runtimes.

Finding #18: The four WebAssembly runtimes have moderate
and strong correlations in root causes of bugs (except for V8
and Wasmer) and strong correlations in symptoms of bugs.

V. DISCUSSION

We will analyze the broader implications of our findings

using the important findings from the preceding section. In

particular, lessons will be learned from the findings to direct

future work on testing, debugging, identifying, and resolving

WebAssembly runtime bugs.

Findings 1, 2, 3, and 8 show that bugs in Incorrect Algorithm
Implementation, Memory, and Incorrect Exception Handling
occur frequently and can cause almost every symptom. There-

fore, designing techniques that can automatically detect and

locate bugs caused by these three root causes is a promising

research direction. Furthermore, according to finding 16, the

fixing of bugs caused by Incorrect Algorithm Implementation
often involves multiple lines of code, with an average of

103.82 lines of code. This suggests that existing bug-fixing

techniques may need to be enhanced to address multi-point

bugs, i.e., bugs that exist in multiple statements.

The two symptoms of WebAssembly runtime bugs that

account for the majority of bugs (79%) are Crash and Incorrect
Functionality (Findings 5, 6, and 9). Therefore, it is necessary

to design automatic testing techniques for them, which can

facilitate WebAssembly runtime to detect bugs caused by

various root causes. Crash bugs usually have well-defined test

oracles, so automated test input generation techniques may be

a promising option for testing Crash bugs. Since Incorrect
Functionality bugs involve determining the correctness of

the intermediate state of the program, their test oracles are

difficult to define. Differential testing [40] might be a potential

direction. In addition, bugs that exhibit Crash often come with

an error message, which can help developers locate and debug

bugs. For example, Wu et al [44] proposed a method to locate

buggy classes and functions using error messages carried by

bugs that exhibit crashes.

Findings 12, 13, and 14 can provide useful information

for studying WebAssembly runtime automatic location and

debugging techniques. For example, our findings show that the

average number of files involved in the fix for a Crash bug is

2.87, which can help developers narrow down suspicious files

when trying to isolate bugs that exhibit Crash.

The fixes for bugs caused by six categories of root causes

at WebAssembly runtime involve an average of fewer than 20

lines of code and account for 23.88% of all bugs (Finding

16). And these six categories of root causes (i.e., API Mis-
use, Incorrect Assignment, Incorrect Condition Logic, Miss-
ing Condition Checks, Logical Order Error, and Incorrect
Numerical Computation) can cause all bug symptoms (Table

III). This suggests that many bugs in the WebAssembly

runtime are amenable to existing techniques for automatic bug

detection, localization, and repair [41], which could aid in the

development of these techniques.

VI. THREATS TO VALIDITY

Internal threats. The classification for bugs may be in-

accurate, which poses an internal threat to the validity of

our results. To mitigate this threat, we refer to existing work

[27]–[29], [31] for classification definitions of bug root causes

and symptoms to initiate our labeling process. To minimize

subjectivity bias in the labeling process, the classification

of WebAssembly runtime bugs was done manually by three

authors who are familiar with WebAssembly runtime projects.

During the classification process, the two authors first label

the bug data independently, then cross-check the label results

of each other and discuss the differences until a consensus is

reached. Finally, the third author verifies all the labeled data,

and for those data that still conflict, the three authors continue

the discussion until a consensus is reached. Despite the great

care taken by the authors, there is still the possibility of

incorrect classification, which cannot be completely avoided.

External Threats. The representativeness of the bug dataset

used in this study may be a threat to external validity. To

reduce this threat, we systematically collected 867 bugs from

four popular WebAssembly runtimes as our study data. To

make sure we focus on the true bugs and bug fixes, we

first chose only closed and fixed issues that are marked as

“bugs” [21]–[23], [26], [30], and then we collected fixes for

bugs as per existing work [21]–[23], [26]. According to the

results of the commonality analysis in Section IV, the root

causes of bugs are mostly moderately and strongly correlated,

while the symptoms are strongly correlated across the four

WebAssembly runtimes. This indicates that our findings are

representative and general.

VII. RELATED WORK

Empirical Studies on Software Bugs. The most relevant

to our study is the qualitative and quantitative study by

Romano et al. [45] on bugs in three popular WebAssembly

compilers. Our study differs fundamentally from [45] due to

the different research tools. The WebAssembly compiler they

studied is a tool for compiling source programs written in

364

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

high-level languages (e.g., C/C++/Rust) into WebAssembly

binary modules. However, the WebAssembly runtime we study

is the program responsible for parsing and executing the

WebAssembly binary module. As far as we know, we are the

first to perform an empirical analysis of the bug characteristics

of the WebAssembly runtime.

Besides, many research works have been done in studying

bugs in software systems [20]–[23], [27]–[30], [42], [45]–[49].

For example, Shen et al. [28] conducted an empirical study

on the bugs of deep learning compilers (TVM, Glow, and

nGraph). Garcia et al. [29] carried out a study for autonomous

vehicle software systems bugs. Ocariza et al. [47] investigated

client-side JavaScript bug characteristics.

WebAssembly Runtime Development. WebAssembly run-

times have been developed for a variety of domains [2], [4],

[7]–[11], [16], [17], [50]–[52]. For example, Wen et al. [8] de-

veloped an operating system, which enables IoT and edge de-

vices to safely and efficiently run WebAssembly applications.

Salim et al. [11] developed TruffleWasm to execute standalone

WebAssembly modules while also providing interoperability

with other GraalVM-hosted languages. For IoT devices with

constrained resources, Jacobsson et al. [20] implemented a

WebAssembly interpreter. Our research focuses on the bug

characteristics of the WebAssembly runtime, which can pro-

vide an auxiliary role in the development of WebAssembly

runtime research applicable to various domains.

VIII. CONCLUSION

As the WebAssembly runtime is increasingly developed and

used in various domains, the quality of the WebAssembly

runtime is becoming more and more significant. To assure

the dependability of WebAssembly runtime, the characteristics

of WebAssembly runtime bugs are required to analyze in

depth. Therefore, we conduct the first empirical study of We-

bAssembly runtime bugs by analyzing 867 bugs arising in four

popular WebAssembly runtimes (V8, SpiderMonkey, Wasmer,

and Wasmtime). We analyze the WebAssembly runtime bug

characteristics based on their root causes, symptoms, bug-

fixing time, and the number of files and lines of code involved

in the bug fixes. From this study, we summarize 18 findings

and provide an extended discussion of our main findings,

which can guide future WebAssembly runtime bug detection,

bug debugging, bug location, and bug repair.

ACKNOWLEDGMENT

We are very grateful to the anonymous reviewers for their

thoughtful comments, which enable us to make improvements

to the paper. This work is supported in part by the National

Natural Science Foundation of China under Grants 62132020,

62072068, 62032004, 62202078, and Fundamental Research

Funds for the Central Universities NO.NJ2020022.

REFERENCES

[1] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel,
H. Bos, and G. Vigna, “Minesweeper: An in-depth look into drive-by
cryptocurrency mining and its defense,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 1714–1730.

[2] M. Jacobsson and J. Willén, “Virtual machine execution for wearables
based on webassembly,” in EAI International Conference on Body Area
Networks. Springer, 2018, pp. 381–389.

[3] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225–236.

[4] “V8,” https://v8.dev/, 2017.
[5] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2017, pp. 185–200.

[6] “Awesome webassembly runtimes,” https://github.com/appcypher/awe
some-wasm-runtimes, 2018.

[7] E. Wen and G. Weber, “Wasmachine: Bring the edge up to speed with a
webassembly os,” in 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). IEEE, 2020, pp. 353–360.

[8] S. S. Salim, A. Nisbet, and M. Luján, “Trufflewasm: a webassem-
bly interpreter on graalvm,” in Proceedings of the 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, 2020, pp. 88–100.

[9] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D. Stefan, “Gobi:
Webassembly as a practical path to library sandboxing,” arXiv preprint
arXiv:1912.02285, 2019.

[10] A. Prokopec, “Announcing graalwasm — a webassembly engine in
graalvm,” https://medium.com/graalvm/announcing-graalwasm-a-web
assembly-engine-in-graalvm-25cd0400a7f2, 2019.

[11] S. S. Salim, A. Nisbet, and M. Luján, “Towards a webassembly
standalone runtime on graalvm,” in Proceedings Companion of the 2019
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity, 2019, pp. 15–16.

[12] P. Ventuzelo, “Fuzz testing in webassembly vms,” https://medium.com
/wasmer/fuzz-testing-in-webassembly-vms-3a301f982e5a, 2020.

[13] B. Jiang, Z. Li, Y. Huang, Z. Zhang, and W. Chan, “Wasmfuzzer: A
fuzzer for webassembly virtual machines,” 2022.

[14] P. Ventuzelo, “A journey into fuzzing webassembly virtual machines,” ht
tps://fuzzinglabs.com/journey-fuzzing-webassembly-wasm-vm/, 2022.

[15] “Spidermonkey,” https://firefox-source-docs.mozilla.org/js/index.html,
2017.

[16] “Wasmer,” https://wasmer.io/, 2018.
[17] “Wasmtime,” https://Wasmtime.dev/, 2017.
[18] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[19] “Wasi.” https://wasi.dev/, 2019.
[20] D. Wang, S. Li, G. Xiao, Y. Liu, and Y. Sui, “An exploratory study of

autopilot software bugs in unmanned aerial vehicles,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 20–31.

[21] S. Chaliasos, T. Sotiropoulos, G.-P. Drosos, C. Mitropoulos,
D. Mitropoulos, and D. Spinellis, “Well-typed programs can go wrong: a
study of typing-related bugs in jvm compilers,” Proceedings of the ACM
on Programming Languages, vol. 5, no. OOPSLA, pp. 1–30, 2021.

[22] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, 2016, pp. 294–305.

[23] Z. Zhou, Z. Ren, G. Gao, and H. Jiang, “An empirical study of
optimization bugs in gcc and llvm,” Journal of Systems and Software,
vol. 174, p. 110884, 2021.

[24] “Github api v3.” https://developer.github.com/v3/, 2019.
[25] “Linking a pull request to an issue.” https://docs.github.com/en/issues/

tracking-your-work-with-issues/linking-a-pull-request-to-an-issue.
[26] P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian, Á. Beszédes,

R. Ferenc, and A. Mesbah, “Bugsjs: a benchmark and taxonomy of
javascript bugs,” Software Testing, Verification And Reliability, vol. 31,
no. 4, p. e1751, 2021.

[27] J. Chen, Y. Liang, Q. Shen, and J. Jiang, “Toward understanding deep
learning framework bugs,” arXiv preprint arXiv:2203.04026, 2022.

[28] Q. Shen, H. Ma, J. Chen, Y. Tian, S.-C. Cheung, and X. Chen, “A
comprehensive study of deep learning compiler bugs,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 968–980.

365

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

[29] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, Chen, and Q. Alfred,
“A comprehensive study of autonomous vehicle bugs,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 385–396.

[30] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 129–140.

[31] Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, and X. Shi, “Analyzing bug fix
for automatic bug cause classification,” Journal of Systems and Software,
vol. 163, p. 110538, 2020.

[32] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,
and S. Godfrey, “Defect categorization: making use of a decade of
widely varying historical data,” in Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and
measurement, 2008, pp. 149–157.

[33] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical software engineering, vol. 19,
no. 6, pp. 1665–1705, 2014.

[34] L. Jia, H. Zhong, X. Wang, L. Huang, and X. Lu, “An empirical
study on bugs inside tensorflow,” in Database Systems for Advanced
Applications: 25th International Conference, DASFAA 2020, Jeju, South
Korea, September 24–27, 2020, Proceedings, Part I 25. Springer, 2020,
pp. 604–620.

[35] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, vol. 45, no. 12, pp. 1170–1188, 2018.

[36] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable? A study of api misuse
on stack overflow,” in Proceedings of the 40th international conference
on software engineering, 2018, pp. 886–896.

[37] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“Mubench: A benchmark for api-misuse detectors,” in Proceedings of
the 13th international conference on mining software repositories, 2016,
pp. 464–467.

[38] Z. Gu, J. Wu, J. Liu, M. Zhou, and M. Gu, “An empirical study on
api-misuse bugs in open-source c programs,” in 2019 IEEE 43rd annual
computer software and applications conference (COMPSAC), vol. 1.
IEEE, 2019, pp. 11–20.

[39] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[40] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated debugging considered
harmful” considered harmful: A user study revisiting the usefulness of
spectra-based fault localization techniques with professionals using real
bugs from large systems,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2016, pp. 267–
278.

[41] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do automated
program repair techniques repair hard and important bugs?”Empirical
Software Engineering, vol. 23, no. 5, pp. 2901–2947, 2018.

[42] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study
on deep learning bug characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 510–
520.

[43] J. H. Zar, “Spearman rank correlation,” Encyclopedia of biostatistics,
vol. 7, 2005.

[44] M. Medeiros, U. Kulesza, R. Bonifacio, E. Adachi, and R. Coelho,
“Improving bug localization by mining crash reports: An industrial
study,” in 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2020, pp. 766–775.

[45] A. Romano, X. Liu, Y. Kwon, and W. Wang, “An empirical study of
bugs in webassembly compilers,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2021,
pp. 42–54.

[46] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2017, pp. 348–357.

[47] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical
study of client-side javascript bugs,” in 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 55–64.

[48] J. Eyolfson, L. Tan, and P. Lam, “Correlations between bugginess and
time-based commit characteristics,” Empirical Software Engineering,
vol. 19, no. 4, pp. 1009–1039, 2014.

[49] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1. IEEE, 2015, pp. 913–923.

[50] “Wasm3,” https://github.com/wasm3/wasm3, 2019.
[51] “Wasmedge,” https://github.com/WasmEdge/WasmEdge, 2019.
[52] A. Hall and U. Ramachandran, “An execution model for serverless

functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225–236.

366

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 08,2024 at 01:59:07 UTC from IEEE Xplore. Restrictions apply.

