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SMARTEST: A Surrogate-Assisted Memetic
Algorithm for Code Size Reduction

He Jiang , Guojun Gao, Zhilei Ren, Xin Chen, and Zhide Zhou

Abstract—Compiling source code effectively to meet various
criteria is a critical task in software engineering. Especially, code
size reduction has attracted much attention from both industry
and academia due to the requirement of resource utilization. Gen-
erally, developers rely on compiler optimization passes to realize
code size reduction. However, it is impractical to select a de-
sirable optimization sequence manually since a wide variety of
optimization passes are integrated into a compiler. Evolutionary
algorithms offer an impressive way to alleviate this problem. Nev-
ertheless, previous approaches fail to balance the exploitation and
exploration of the search space. Moreover, the expensive fitness
evaluation requires actual compilation, which makes the evolution
rather time-consuming. To tackle the challenges, we propose a
novel approach SMARTEST, which characterizes the systematic
exploitation of a huge volume of historical compilation informa-
tion. Specifically, SMARTEST comprises two components: 1) a
local search operator to enhance the solution quality; and 2) a
data-driven surrogate model to avoid expensive fitness evaluation.
We evaluate the effectiveness of SMARTEST over the cBench
benchmark suite. Experimental results indicate that SMARTEST
outperforms the standard level -Os by 2.17% on average, and
achieves 1.2 times code size reduction compared with the genetic
algorithm. Furthermore, experimental results over the benchmark
suite evidently show that SMARTEST gets a better result and takes
less actual fitness evaluations than its variants, which demonstrates
the contribution of the local search and the surrogate model.

Index Terms—Code size reduction, compiler optimization
selection, computationally expensive problems, memetic algorithm,
surrogate-assisted.

I. INTRODUCTION

IN THIS new era, software application mediates almost every
aspect of our lives. A lot of source code is produced every
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day, due to the increasing amount of applications. How to effec-
tively compile source code to a target program to satisfy certain
goals is a primary requirement of developers. By exploring the
compilation solutions space and simulating the fault-injection,
Serranocases et al. [1] apply a genetic algorithm (GA) and
a multiobjective optimization approach to select some good
optimization sequences to improve the reliability of programs.
Besides, the size of executable files is also considered as a
critical factor in the deployment of software applications, es-
pecially for embedded systems with limited on-chip memory
space [2]–[4]. Most compilers provide the standard optimization
level -Os to help developers optimize the code size of their
programs. However, -Os may not meet the requirement for
different programming languages, applications, and target ar-
chitectures [2], [5], [6]. Besides, modern compilers (e.g., GCC1

and LLVM2) offer an increasing number of optimization passes.
For example, the compiler GCC has provided more than 200
compiler optimization passes. Even if we only consider whether
an optimization pass is enabled or disabled, the size of the search
space will exceed 2200. This makes it unrealistic to select the
best optimization sequence for target programs manually. Thus,
developing advanced techniques is critical to help developers
select better optimization sequences to optimize the code size
of their programs.

So far, many techniques [3], [4], [7]–[10] have been pro-
posed to automatically select compiler optimization passes
for code size reduction. These techniques can be divided
into two categories—namely, the machine learning-based ap-
proaches [3], [7] and the evolutionary algorithm-based ap-
proaches [4], [8]–[10]. The machine learning-based approaches
focus on building machine learning models to predict the per-
formance of different optimization sequences. In contrast, the
evolutionary algorithm-based approaches often transform an op-
timization sequence (a set of optimization passes in this article)
into a genetic representation and define a fitness function to
determine the performance of the optimization sequence. During
the evolution, it performs the mutation, the crossover, and the se-
lection operators in an iterative paradigm. The machine learning-
based approaches can quickly verify whether an optimization
sequence can optimize the code size of a program, but it needs to
construct a large dataset to train the prediction model. While the
evolutionary algorithm-based approaches can better search the
space to find an optimization sequence for reducing the code size

1[Online]. Available: http://gcc.gnu.org/
2[Online]. Available: https://llvm.org/
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of the target programs, but with a time-consuming procedure to
determine the effectiveness of the optimization sequence. Thus,
in this study, we focus on combining the advantages of these
two approaches to further improve the code size reduction of
programs.

Specifically, two major challenges need to be addressed when
we utilize the evolutionary algorithm-based approaches effec-
tively with machine learning techniques to find high-quality
optimization sequences.

1) Neighborhood exploitation: The evolutionary algorithm-
based approaches apply a global search algorithm like GA,
which tends to concentrate more on the exploration of the
search space and produce diverse optimization sequences.
However, these approaches can fail to handle the exploita-
tion mechanism properly, in that the neighborhoods of the
current best individuals are not extensively investigated.

2) Expensive fitness evaluation: During the iterative pro-
cess, the evolutionary algorithm-based approaches need
to compile the program with all individuals to obtain their
effectiveness. While this fitness evaluation process is very
time-consuming.

To address the aforementioned challenges, we propose a novel
approach surrogate-assisted Memetic AlgoRiThm for codE Size
reducTion (SMARTEST) that efficiently selects promising op-
timization sequences for the program under compilation. First,
to tackle the neighborhood exploitation challenge, we embed a
local search procedure in the evolution process to improve the
quality of each individual generated by the genetic operators.
With a collaboration between the global search and the local
search, a balance between the exploration and the exploitation
could be achieved. Second, to tackle the expensive fitness eval-
uation challenge, we adopt a surrogate model to produce an
approximate fitness score, instead of using the actual fitness
score.

In particular, we train a random forests model to predict the
fitness score of each individual. This prediction mechanism
could alleviate the time-consuming issue of the fitness evalu-
ation, which in turn accelerates the overall search procedure.
By combining the local search and the surrogate model within
GA, we obtain the integrated SMARTEST framework. Taking
the compiler GCC as a case study, SMARTEST can achieve
better optimization sequences, and reduce the computation of
the optimization sequence evaluation.

To evaluate SMARTEST, we conduct experiments on the
cBench [11] benchmark suite, which covers 32 programs includ-
ing embedded functions and desktop programs. Experimental
results demonstrate that our approach and GA perform better
than the standard level -Os by 2.17% and 1.80% on average
in terms of the code size reduction for programs. Besides,
SMARTEST achieves 1.2 times code size reduction compared
with GA. Furthermore, experimental results over the benchmark
suite show that SMARTEST gets a better result and takes less
actual fitness evaluations than its variants. It demonstrates that
the local search and the surrogate model contribute to address-
ing the challenges of neighborhood exploitation and expensive
fitness evaluation.

The contributions of this article are summarized as follows.

Fig. 1. Framework for selecting optimization sequences using evolutionary
algorithms.

1) We propose SMARTEST, a novel approach to efficiently
select optimization sequences to improve the code size
reduction of programs.

2) We present a novel local search scheme to balance the
exploitation and the exploration of the search space.

3) A surrogate model is proposed to mitigate expensive
fitness evaluation. To the best of our knowledge, this is
the first work to apply the surrogate model in selecting
optimization sequences for code size reduction.

4) Extensive experiments conducted on the well-known com-
piler GCC and the cBench benchmark suite show that
SMARTEST is effective. SMARTEST can select better
optimization sequences than the standard level -Os and
GA for a given program.

The rest of the article is structured as follows. We first provide
the background and the motivation of our work in Section II
and our approach in Section III. Then, we present the experi-
mental setup, experimental results, and the threats to validity in
Section IV. Next, we review related works in Section V. Finally,
Section VI concludes this article.

II. BACKGROUND AND MOTIVATION

A. Background

In this section, we present the background knowledge of
selecting optimization sequences for code size reduction and
demonstrate that it is a nontrivial task. An optimization sequence
consists of a set of optimization passes. When we focus on
whether an optimization pass is applied without regard to the
ordering of these optimization passes, the problem is defined as
selecting optimization sequences.

Fig. 1 shows a framework for selecting optimization se-
quences leveraging evolutionary algorithms. These algorithms
define the set of compiler optimization passes as the search
space and transform an optimization sequence into a genetic
representation. Then, some optimization sequence candidates
are selected to optimize the application under compilation. When
the source code of an application is given as input of the compiler,

Authorized licensed use limited to: Dalian University of Technology. Downloaded on October 05,2021 at 12:10:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: SMARTEST: A SURROGATE-ASSISTED MEMETIC ALGORITHM FOR CODE SIZE REDUCTION 3

the source code is transformed into an intermediate representa-
tion (IR) in the front-end. Then, a candidate of optimization
sequences will be adopted to optimize the IR in optimizer. After
that, the IR is transformed into the object code of the application
in the back-end. An objective metric is usually defined in terms
of performance, e.g., code size. Next, the framework evaluates
these candidates of optimization sequences and guides evolu-
tionary algorithms based on feedback information during the
exploration. Finally, a good optimization sequence is generated.

The evolutionary algorithm-based approaches can effectively
identify good optimization sequences that outperform the stan-
dard optimization levels [2], [4]. However, during the iterative
process when evolutionary algorithms are applied, the compiler
needs to compile the program with every optimization sequence
to get the optimization performance result. Thus, all individuals
are evaluated using the expensive, original fitness function. In
fact, some valueless individuals are not necessarily evaluated
using the original fitness function. Thus, it will lead to a compu-
tationally expensive problem and motivate us to consider a more
profitable approach.

Formally, let seq be a Boolean vector, which denotes an
optimization sequence. We use oi to refer to the ith element of the
vector seq, it indicates the ith compiler optimization pass applied
in the sequence. An optimization pass oi can be defined as a
Boolean variable of which the value is either oi = 1 (enabled),
or oi = 0 (disabled)

seq = (o1, o2, o3, . . ., on) (1)

wheren represents the number of optimization passes. These op-
timization passes are analyzed during the procedure of selecting
optimization sequences. We can find that the search space is an
exponential space (2n). For example, when n = 10, there is a
total of 1024 candidate sequences to be examined.

The compiler GCC is equipped with several standard levels
(-O1, O2, -O3, and -Os) to help developers use predefined
optimization passes. We take the version 7.3.0 as an example,
-O1 turns ON 43 optimization passes and tries to help reduce
code size and execution time, but those optimization passes
that take a great deal of compilation time are not applied. -O2
optimizes even more than -O1 and turns ON all optimization
passes specified by -O1 with 47 additional optimization passes.
This level increases the compilation time and improves the
performance of executable files. Besides, -O3 provides the most
aggressive optimization passes, which turns ON all optimization
passes specified by -O2 and 12 other optimization passes to
optimize programs. -Os is designed to optimize for code size,
which enables all -O2 optimization passes that do not increase
code size.

In this study, we concentrate on reducing the compiled code
size. For embedded systems or wireless sensor networks, opti-
mizing for code size is a more noticeable problem, even though
there is a tradeoff between the speed and the size. We consider
83 optimization passes of the compiler GCC 7.3.0 that the
standard level -Os involved reducing code size. According to the
definition of the above vector seq, the entire search space will
become very large. Thus, selecting good optimization sequences
by hand is unrealistic.

Fig. 2. Comparison of compiled code size among the standard levels and the
sequence obtained by GA in automotive_qsort1.

B. Motivation

Previous studies [4], [9], [10] have attempted to apply evo-
lutionary algorithms to select a better optimization sequence,
such as GA. As an example, we select a sample program au-
tomotive_qsort1 from the cBench to compare the compilation
optimization results of these different optimization sequences,
including the standard levels and the sequence obtained by GA.

Fig. 2 summarizes the code size of different executable files
that the program automotive_qsort1 is compiled using the stan-
dard levels (-O0, -O1, -O2, -O3, and -Os) and the optimization
sequences generated by GA. From the figure, we can see that
the code size is 5897 bytes using -O0. The other three standard
optimization levels -O1, -O2, and -Os get 4930 , 5026 , and 4624
bytes, respectively. The result shows that the standard levels
achieve significantly code size reduction over the default -O0
by about 15%–22% except for -O3. The reason is that -O3 is
designed to optimize the performance, which may make the code
size larger than -O0. Moreover, GA generates a better optimiza-
tion sequence and gets a smaller code size (4496 bytes) than the
standard levels. Therefore, the standard levels are not always
effective enough, we need to choose the adaptive optimization
sequence for each program.

Given a program P under compilation, we need to explore
an optimization sequence that can benefit the code size of
programs. We aim at finding an effective optimization sequence
seq = {oi1, oi2, oi3, . . ., oij}, where 1 ≤ i1, i2, i3, . . ., ij ≤ n.
The evolutionary algorithm based approaches can effectively
explore better optimization sequences over the standard levels.
However, during the iterative search process in the previous
studies, every individual is evaluated using the expensive fitness
function. To evaluate an individual, the program is required to
be compiled once with the optimization sequence. Thus, it leads
to the computationally expensive problem.

In this article, we present a novel approach-based on the
surrogate model to address this computationally expensive prob-
lem. When evaluating the optimization result of an optimization
sequence in the local search, our approach applies the surro-
gate model to offer an approximate fitness score, instead of
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Fig. 3. Example of solution representation.

compiling the program. In this way, our approach can resolve
the computationally expensive problem.

III. PRELIMINARIES

In this section, we first present the solution representation
and the fitness function of selecting optimization sequences.
Then, we describe the workflow of our approach, SMARTEST,
followed by a more detailed description of its components,
including the genetic operators, the local search, and the
surrogate model.

A. Representation

Every individual in the population is called a candidate so-
lution. In this study, a candidate solution is represented as an
optimization sequence (a set of available optimization passes).
We concentrate on whether an optimization pass is used. Thus,
we use a Boolean vector, seq = (o1, o2, o3, . . ., on), to represent
an individual where each dimension is a compiler optimization
pass. The values of the variables within the vector are 0 or 1,
which are represented as genes in a chromosome. Eighty three
optimization passes are enabled by the standard and the most
aggressive level (-Os), i.e., n = 83. The full list of optimization
passes we analyzed is available at the compiler GCC website3.
Besides, the solution representation has a fixed length, which
corresponds to the total number of the selected optimization
passes. Because the order of optimization passes is fixed in
GCC4. We do not need to consider the order of optimization
passes in this article.

Fig. 3 shows an example of solution representation in this
study. We set the variable oi in the vector seq to 1 or 0, where
1 represents that we turn ON a specific optimization pass by
using -f 〈 optimization name 〉, while 0 represents that we turn
OFF the corresponding optimization pass using -fno-〈 optimiza-
tion name〉. Thus, we use the method to control whether an
optimization pass is applied or not. Then the program can be
compiled using the optimization sequence that the individual
represents. Furthermore, the compilation result of the optimiza-
tion sequence on the program can also be evaluated.

B. Fitness Function

In evolutionary algorithms, the fitness score of a candidate
solution is used to evaluate its quality. It also determines whether
the candidate should be inherited to the next generation. We need
to define a fitness functionFitness(seq) that measures the code
size reduction of different optimization sequences. In this study,

3[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/
Optimize-Options.html

4[Online]. Available: https://stackoverflow.com/questions/33117294/order-
of-gcc-optimization-flags

we regard the code size as an optimization objective. Besides,
we compare the performance of an optimization sequence with
the default -O0 on the same program, because -O0 does not
offer any optimization on the code size. Hence, this leads to the
following fitness function:

Fitness(seq) = code_size(-O0)− code_size(seq) (2)

where code_size(seq) is the code size of the object file after
performing the optimization sequence seq on the program.
According to the definition of the fitness function, it is to be
maximized by the search.

C. Our Approach: SMARTEST

To resolve the challenges of the neighborhood exploitation
and the expensive fitness evaluation as mentioned in Section I,
we design a new evolution algorithm, named SMARTEST.
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In Algorithm 1, we present the pseudo-code of SMARTEST.
Considering that a program will be compiled, we use
SMARTEST to identify a good optimization sequence for reduc-
ing code size. First of all, we introduce several parameters, pnum,
α,β, andN . Where pnum is the population size,α is the crossover
rate, β is the elitism rate, and N is the maximum of iterations.
Our approach first randomly generates the initial population
(line 4). The population size determines the convergence rate.
The bigger the size is, the higher the convergence rate is. To
evaluate its influence on SMARTEST, we experimentally set
the initial population size in Section IV.

After the initialization, the program is compiled using these
optimization sequences. An individual in the population repre-
sents one optimization sequence. Then we apply the fitness func-
tion Fitness() to calculate the fitness scores of all individuals.
By doing so, we can obtain and store the maximum fitness score
fmax and the optimization sequence seqmax with the maximum
fitness score (lines 5-7). Meanwhile, in line 9, SMARTEST con-
structs the surrogate model Surrogate() using the compilation
information in the dataset, including the optimization sequences
in the initial population and their effectiveness in terms of the
code size for the target program.

During each iteration (lines 10-32), we first select and store a
number of best individualspopa of the population, which ensures
that these individuals automatically survive in evolution (lines
11-12). For the rest of the individuals in the current population
(lines 14-26), the selection, the crossover, and the local search
will be employed to produce new individuals in order. At the
beginning of this process, the roulette wheel selection is utilized
to select two parents from the current population (line 15). It
makes the genes of the sterling individuals pass on to the next
generation with a higher probability. Then, we use the single-
point crossover operator to generate new individuals based on
the crossover probability α (lines 16-21). After the crossover
operation, via using the surrogate model Surrogate(), the
local search is applied to search for the local optimum of the
individuals in the rest population popb. Once obtaining its local
optimum, all individuals are substituted with their corresponding
local optimum (lines 23-26).

Following these three operations, in line 27, we adopt the
fitness function to re-evaluate these newly generated individuals
in popb. After that, we combine the elite individuals popa and
the new individuals popb to form the next population (line
28). When the next population is generated, we added the new
compilation information to the dataset and update the surrogate
model Surrogate(), the maximum fitness score fmax, and the
optimization sequence seqmax with the maximum fitness score
(lines 29-30).

This iterative process repeats until a predefined number of
generations N has been reached. Finally, we get the result with
the best optimization sequence seqmax and its fitness score fmax.

D. Genetic Operators

In this work, we perform two genetic operators on the popu-
lation: the selection and the crossover. These two operators are
applied to help drive the algorithm toward obtaining the best
optimization sequence.

1) Selection: The goal of the selection is to determine which
genes of candidates should be carried to the next generation. In
our approach, we would like to favor the individuals that lead
to a larger code size reduction with a higher fitness score. The
roulette wheel selection is adopted as the selection mechanism
for this purpose [12], [13].

In the roulette wheel selection, the probability of selecting the
individual seqi is Fitness(seqi)/

∑pnum
i=1 Fitness(seqi), where

Fitness(seqi) is the fitness score of the individual seqi and
pnum is the total number of individuals in the current population.
Therefore, the higher the fitness score of an individual is, the
more chances it is to be selected. For example, the population
contains 4 individuals and their fitness scores are {1, 2, 3, 4},
respectively. Summing these fitness scores, we can apportion a
percentage of total fitness. It gives the strongest individual of a
value of 40% and the weakest 10%. This percentage of fitness
scores can be used to configure the roulette wheel. Thus, the
probabilities of selecting these four individuals are {10%, 20%,
30%, 40%}. Each time the wheel stops, the fitter individual has
a larger chance of being selected.

2) Crossover: By applying the crossover operator [14], we
can combine the genetic information of two selected parents
to generate new offspring. It is adopted to evolve high-quality
individuals from the existing population and form a new popu-
lation. Since the chromosome (in our case, it stores the genetic
information of the optimization sequence) is represented by a
binary array, we use the single-point crossover [15] to support
the recombination.

For the single-point crossover, firstly, a single crossover point
is randomly selected in the parents’ sequences. Then, two new
offsprings are produced by exchanging the genetic information
after the selected random position. Newly generated solutions
are added to the new population by applying the crossover
operator to all parents. For example, two individuals i = (1010)
and j = (1101) are selected as parents, after applying the single-
point crossover operator in position two, their offsprings will be
(1001) and (1110).

E. Local Search

As discussed in Section I, a major challenge faced by the
evolutionary algorithm-based approaches lies in the lack of the
exploitation of intensification. Hence, we apply a local search
operator to systematically explore the immediate neighborhood
of each incumbent individual, in search of opportunity for local
improvement. Thus, SMARTEST can potentially find a better
optimization sequence.

We detail the local search procedure in Algorithm 2. For an
individual seqi in the current population, we produce candidate
neighbors N(seqi) of seqi by flipping each bit first (line 4).
The number of candidate neighbors is equal to the population
size. Then all these neighbors are evaluated with respect to
their fitness (line 5). After selecting the best neighbor with the
maximum fitness (line 6), the search continues until the local
optimum seq′i is found. Thus, we replace the original individual
with the local optimum in the current population. During every
repetition process of finding the local optimum, we only con-
sider the candidate neighbors of the individual, if the individual
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has N(seqi) bits, we consider N(seqi) candidate neighbors.
Thus, it will help us to systematically explore the immediate
neighborhood and ensure the result is still local optimum. By
embedding the local search in each generation of the evolution,
SMARTEST is essentially a memetic algorithm [16].

F. Surrogate Model

To alleviate the time-consuming issue of the fitness evalua-
tion, we employ a surrogate model in SMARTEST. The design
of the surrogate model is based on the random forests model [17],
which is one of the most commonly used surrogate models [18]–
[21]. Random forests are an ensemble learning technique, in
which several decision trees are organized as a whole model for
classification or regression tasks. By generating many decision
trees at training time and aggregating their results, the method
outputs the voting result or the mean prediction of all trees.
Compared with an individual tree, random forests can obtain
better performance by correcting over-fitting to the training set.

In this study, we utilize the random forests model as the
surrogate model. During the execution of SMARTEST, we first
randomly generate many initial individuals and evaluate their
effectiveness in terms of the code size for the target program.
Then, the initial individuals are treated as features, and the
effectiveness of these individuals is their labels. Each feature
value in individuals is 1 or 0, indicating whether the optimization
pass is used or not. We train the initial surrogate model using
these initial individuals (lines 4 to 9 in Algorithm 1). In the
iterative process, the individuals in each iteration are added to
retrain the surrogate model to obtain a more accurate prediction
(line 29 in Algorithm 1). The random forests model works as
follows.

1) Repeatedly select a random sample with replacement of
the original training set forN times for each tree construc-
tion. Thus, Ntree bootstrap samples are drawn.

2) For each of the bootstrap samples, build an unpruned tree.
Then, at each node, choose the best split from Mtry
features that are randomly sampled. The tree is built until
no splits are possible or the node size reaches.

3) Predict a new sample by aggregating the prediction results
of all the trees, i.e., averaging the predictions of multiple
regression trees.

Where Ntree is the number of trees in the forest, Mtry is
the number of features that are randomly selected for all splits.

Our approach builds a regression tree using randomly selected
training samples. Some samples are left out, which are used
to test the accuracy of the tree. Here, we apply RandomFore-
stRegressor in Python to implement our model, and default
parameters are used. For example, the number of trees in the
forest is 100, the maximum depth of the tree is set none. The
details of parameter settings are listed on the official web site5.

We apply root-mean-square error (rmse) to estimate the error
rate of the random forests model. The rmse is calculated as
shown below, where y is the actual value, and ẏ is the predicted
value. The estimation of the error rate will guarantee and help
us build a good random forests model

RMSE =

√√√√ 1

N

n∑
i=1

(ẏ − y)2. (3)

Once the model is constructed, we use the model to predict the
reduced code size of object code performed on an optimization
sequence, instead of the actual value. It can solve the challenge
of expensive fitness evaluation by reducing the actual fitness
evaluation number.

The procedure is beneficial for obtaining better predictive
performance by decreasing the bias, because a single tree may
be highly sensitive to noise in the original training set. How-
ever, simply training several trees on the same training set are
correlated, bootstrap sampling is an appropriate method to train
different de-correlated trees.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

In this section, we experimentally evaluate the proposed
SMARTEST. Prior to the result presentation of our evaluation,
we first introduce the experiment design and the research ques-
tions (RQs). All the experiments are repeated 15 times with
different random seeds since the evolutionary algorithms have
the stochastic nature. Since the objective under consideration is
the code size, according to the definition of the fitness function
introduced in Section III-B, we need to obtain the code size
of the executable file. In this study, we use the Size command
to get the sum of the size of the text and data segment as the
code size in terms of bytes. The text segment, also known as
the code segment, is a portion of an object file. It corresponds
to the program’s virtual address space that contains executable
instructions. Then, the data segment is also a portion of an
object file and corresponds to the address space of a program
that contains initialized static variables. Besides, SMARTEST
is written in Python, because of the large availability of libraries.
Then, all the experiments are conducted on an Intel Core i7
3.60 GHz CPU with 8 GB memory, running GNU/Linux with
kernel 4.15.0.

To systematically evaluate SMARTEST, we investigate and
answer the following RQs.

5[Online]. Available: https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html
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RQ1: How do the parameters impact SMARTEST?
Motivation: When applying SMARTEST to select good op-

timization sequences, different parameters need to be chosen,
including the population size, the crossover rate, and the elitism
rate. The choice of these three parameters might have an impact
on the performance of SMARTEST. A better parameter setting
might lead to a good optimization sequence with better perfor-
mance. To shed light on the problem of parameters, we design
this RQ.

Method: We analyze the impact of parameters on SMARTEST
and tune parameters to obtain faster convergence in RQ1, in-
cluding the population size, the crossover rate, and the elitism
rate. The first parameter is the population size, which determines
how many individuals are created in the population. The second
parameter is the crossover rate. It specifies the probability of
whether two individuals are crossed over, if not, these two
individuals will be passed on to the next generation. The third
parameter is the elitism rate, which determines how many the
best individuals (i.e., elites in population) are copied to the next
generation from the current population without any change. To
shed light on the impact of these three parameters, we perform
an empirical analysis on the cBench benchmark suite and choose
the best configuration.

RQ2: How effective is SMARTEST?
Motivation: The most important criterion for SMARTEST to

be effective is that it should be able to find competitive opti-
mization sequences. In this RQ, we would like to investigate the
quality of the optimization sequence selected by SMARTEST,
and whether it is superior to GA and the standard level -Os.

Method: In this article, we explore the optimization sequence
with the compiler GCC for our research, because it is a popular
open-source compiler that supports many languages and archi-
tectures, it is also equipped with a large number of program
optimization techniques. Furthermore, we compile all programs
with the compiler GCC on the cBench [11], [22] benchmark
suite and evaluate our approach, which contains a wide vari-
ety of programs ranging from embedded functions to desktop
programs and is commonly adopted in finding optimization
sequences [23]–[26].

We compare the performance of SMARTEST, GA_s, and GA
in terms of the average best fitness reached among all the runs.
As a baseline algorithm, GA in this experiment represents a
variant of SMARTEST in which neither the local search nor the
surrogate model is considered. Besides, GA_s represents a stan-
dard GA that contains a mutation operator. These algorithms,
either our approach or the baseline algorithms, consist of 100
generations, which is consistent with existing guidelines [5], [9],
[27], [28].

RQ3: How do the local search and the surrogate model con-
tribute to the optimization sequence selection?

Motivation: In RQ2, we have demonstrated the effectiveness
of SMARTEST as an overall framework. To gain more insights
into the framework, we are interested in how the local search and
the surrogate model collaborate to achieve promising results.

Method: In this RQ, we consider SMARTEST and its two vari-
ants, i.e., the variant without the surrogate model (SMARTEST-
s), and the variant without the surrogate model and the local
search (SMARTEST-s-l). The experimental setup is the same as

Fig. 4. Impact of the population size.

Fig. 5. Impact of the crossover rate.

RQ2. Then, we apply the variants and experiment on the cBench
benchmark suite again. By comparing the original SMARTEST,
SMARTEST-s, and SMARTEST-s-l, we examine whether the
local search helps to tackle the challenge of neighborhood ex-
ploitation and whether the surrogate model is helpful to resolve
the challenge of expensive fitness evaluation.

B. Investigation of RQ1

In this RQ, we intend to investigate the impact of the three
parameters on SMARTEST using the convergence rate, includ-
ing the population size, the crossover rate, and the elitism rate.
To evaluate possible configurations of these parameters, we opt
for a set of values that are commonly used in search-based
software engineering (SBSE) problems [29]. Figs. 4– 6 provide
the impact analysis results of these three parameters. When
we analyze the impact of one parameter, only the parameter
is changing, the other two parameters keep the fixed values. In
the experiment design, we set the default values of these three
parameters: population size = 100, crossover rate = 0.8, and
elitism rate= 0.1. Besides, the various parameters with different
probabilities are described as follows:

1) population size: {50, 100, 150, 200};
2) crossover rate: {0.5, 0.8, 1};
3) elitism rate: {0.01, 0.1, 0.2, 0.5}.
In addition, we conduct a paired T-test to explore the statistical

significance of the difference between different probabilities for
three parameters. In this study, the significance level is set to
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Fig. 6. Impact of the elitism rate.

0.05. If the p-value is less than the significance level, there is a
significant difference between the two probabilities.

1) Population Size: We first consider the impact of the pop-
ulation size, which represents the number of optimization se-
quences presented in the population. To evaluate the impact of
the population size, we examine the number of generations that
SMARTEST takes to converge for different population sizes
ranging from 50 to 200 (i.e., 50, 100, 150, 200). The crossover
rate and the elitism rate are 0.8 and 0.1, respectively. Fig. 4 shows
the impact of the population size. From the figure, we can find
that the larger population size attains convergence faster. For
example, with increasing population size from 50 to 200, the
number of generations taken to arrive at a candidate solution be-
comes less. Moreover, the p-values are 0.3954, 0.2503, 0.3219,
0.7127, 0.1090, and 0.2274 among four population sizes. The
p-values are higher than 0.05. It means that different population
sizes have no significant difference. Notice that apart from
population size= 50, the difference among the other three values
is very negligible. However, increasing the population size will
lead to consuming more time. Hence, we restrict the population
size to 100 for SMARTEST.

2) Crossover Rate: As mentioned in Section III-D2, the
crossover rate is applied to determine the probability of whether
two individuals are crossed over. According to the guidance of
SBSE [29], we investigate three different crossover rates: {0.5,
0.8, 1}. Fig. 5 shows the impact of varied crossover rates. From
the figure, the following observations can be drawn. First, with
the increasing of crossover rate, the algorithm will achieve con-
vergence faster, because a larger crossover rate is associated with
more exploration. Second, even though the algorithm achieves
convergence differently, the final reduced code size is the same
(2.17%) with different crossover rates. In addition, the p-values
are 0.3577, 0.9336, and 0.2922 among the three crossover rates.
These three p-values are higher than 0.05. It means that there
is no significant difference among the three crossover rates.
It demonstrates that SMARTEST is not very sensitive to the
parameter of the crossover rate when it is applied to find a good
optimization sequence for code size reduction.

From the result of Fig. 5, we can find that SMARTEST can get
better results when the crossover rate is 0.8 in the early stage of
algorithm running, especially in the first 20 generations. Besides,
a higher crossover rate combined with local search can efficiently

explore more of the possible space of solutions and avoid falling
into the local optimal solution. Therefore, we choose a crossover
rate of 0.8 for our approach.

3) Elitism Rate: The elitism rate determines how many in-
dividuals can pass on to the next generation straightforwardly.
Fig. 6 provides the results obtained from the different elitism rate
values: {0.01, 0.1, 0.2, 0.5}. From the figure, we can see that
the approach may not achieve the candidate solution when the
elitism rate= 0.01 (i.e., elitism number= 1). Besides, the results
indicate that SMARTEST finds the candidate solution within the
shortest generations when the elitism rate is 0.1. In addition, the
p-values are 1E-07, 2.9E-05, and 0.0021 between 0.01 and the
other three rates. While the p-values are 0.4064, 0.0825, and
0.3664 between the biggest three rates. The p-values are higher
than 0.05 when the elitism rate is not 0.01. It means that there is
no significant difference among the biggest three rates. Hence,
we treat 0.1 as the parameter setting of the elitism rate.

Answer to RQ1: Experimental results show that, SMARTEST
is not very sensitive to the above three parameters. We choose the
parameter setting that performs relatively well, i.e., population
size = 100, crossover rate = 0.8, and elitism rate = 0.1.

C. Investigation of RQ2

In RQ2, we investigate whether SMARTEST can effectively
identify good optimization sequences for code size reduction.
As the recommended parameter setting in RQ1, the population
size is 100, the crossover rate is 0.8, and the elitism rate is 0.1.
Besides, for GA_s(the standard GA, which contains the mutation
operator), we use the mutation rate of 0.05 per gene [30]. Table I
shows the code size reduced for each program with different
optimization sequences, including -O0, -Os, and the optimiza-
tion sequences generated using GA and SMARTEST. The first
column represents the programs in the cBench benchmark suite
we analyzed in this study. The columns four, six, and eight
present the average value for the 15 executions on each program
for GA, GA_s, and SMARTEST. An exact number for each
program is reported on the columns two and three that indicate
the code size of executable files are compiled with -O0 and
-Os, respectively. The smaller the code size value, the better the
optimization sequence generated by the corresponding method
is. Additionally, we also report the code size reduction and the
percentage of code size reduction over the standard level -Os for
GA, GA_s, and SMARTEST in columns five, seven, and nine
of Table I. Thus, the higher value is to be preferred. Note that
the values in these columns are averaged over all programs, as
shown at the bottom of the table.

It can be seen from Table I that SMARTEST and GA out-
perform the standard default optimization level for most pro-
grams of the benchmark suite. When applying GA to find good
optimization sequences for code size reduction, GA achieves
0.04% to 5.58% code size reduction with an average value of
1.80%. Besides, when SMARTEST is utilized, it achieves 2.17%
of reduction on average and can identify a better optimization
sequence than -Os. Compared with GA, SMARTEST can even
obtain more code size reduction. The results, as shown in Table I,
indicate that SMARTEST is more effective than GA for code size
reduction.
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TABLE I
NUMBERS ON COLUMNS 2 AND 3 ARE CODE SIZE (BYTES) FOR -O0 AND -OS

The Numbers on Columns 4, 6, and 8 are the Average Code size(bytes) of the 15 Executions for GA, GA_s(standard GA, Which Includes Mutation Operator), and SMARTEST.
Columns 5, 7, and 9 are A(B%): (A)code Size Reduction and (B)percentage Code Size Reduction W.r.t. Optimized Code by -Os

Taking the program office_stringsearch1 as an example. The
code size of executable files is 9127, 7592, 7168, and 7152
that are compiled with the unoptimized, the standard level -Os,
GA, and SMARTEST, respectively. For the task of code size
reduction, both SMARTEST and GA can find good optimiza-
tion sequences to generate smaller executable files than -Os.
Besides, GA can achieve a 5.58% code size reduction over
-Os, while SMARTEST obtains a better reduction, by 5.80%.
This observation confirms the results from previous studies [8],
[9] that evolutionary algorithms can achieve better optimization
sequences than the standard levels. What is striking about the
results on most programs is that SMARTEST performs better
than GA. This is likely due to the fact that SMARTEST em-
ploys two helpful components, i.e., the surrogate model and the
local search. The surrogate helps SMARTEST search for more
sequences within the same amount of time. The local search can
find better individuals in the population.

Besides, we can find that the mutation can also improve the
performance of the approach on some programs, such as bzip2d,
office_rsynth, security_sha, and telecom_adpcm_c. Taking the
program bzip2d as an example, GA_s applies mutation and
achieves 1.73% code size reduction, while GA is 1.59%. How-
ever, according to the result of the paired T-test, the p-value is
0.7569 between GA and GA_s and is higher than 0.05. Thus,
we think that GA and GA_s have no significant difference in

the entire benchmarks. In addition, on most programs, GA_s
and GA get the same code size reduction. The potential reason
may be that the relation among different compiler optimization
passes is very complex and the distribution of good optimization
sequences is scattered, the mutation operation may not help GA
generate better compiler optimization sequences efficiently.

From the table, we can observe several interesting phenom-
ena. First, the results of SMARTEST are approximately the
same as GA on some programs, such as automotive_bitcount,
automotive_qsort1, and telecom_CRC32. This was probably
because these programs can hardly be reduced or the opportunity
of code size reduction is very small. Thus, SMARTEST cannot
find a better chance than GA to reduce the executable file.
Second, the experiment empirically confirms that the proposed
approach, SMARTEST, can effectively find better optimization
sequences than GA since it achieves more reduction than GA on
about 80% of the programs.

In addition, we conduct a paired T-test to explore the statis-
tical significance of the difference between three approaches,
including GA, GA_s, and SMARTEST. The p-values are
1.49099E-05 between SMARTEST and GA, 3.07269E-05 be-
tween SMARTEST and GA_s, and 0.7569 between GA and
GA_s. The p-values between SMARTEST and the other two
approaches are lower than 0.05. It means that there is a signif-
icant difference between SMARTEST and other approaches in
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Fig. 7. Boxplot of code size reduction over -Os among SMARTEST, GA and
GA_s.

a pairwise comparison. While the p-value of GA and GA_s is
higher than 0.05, it indicates that these two approaches have no
significant difference.

Moreover, we provide the boxplot in Fig. 7 to show descriptive
statistics for GA, GA_s, and SMARTEST according to the code
size reduction over -Os. The boxplot for the two approaches
shows the median value as the centerline. Then, the lower and
upper hinges of each box represent 25% and 75% quantile,
respectively. The lower and upper whiskers indicate the small-
est and largest values, respectively. As seen from the figure,
SMARTEST, GA_s, and GA can generate smaller executable
files than -Os (all reduction values are greater than 0), which
demonstrates that only using the standard levels is not enough.
In addition, SMARTEST performs better than GA and GA_s as
a whole and can effectively find a better optimization sequence
for code size reduction (the box of SMARTEST is higher).

Answer to RQ2: By comparing SMARTEST with the baseline
GA and GA_s, as well as the standard level -Os, we demonstrate
that SMARTEST, GA_s, and GA can identify good optimization
sequences. All three approaches can generate smaller executable
files than -Os. Furthermore, SMARTEST can effectively find
better optimization sequences than GA and GA_s.

D. Investigation of RQ3

In this RQ, we validate whether the local search and the
surrogate model help tackle the two challenges in selecting
optimization sequences. On all programs in the cBench bench-
mark suite, we compare the performance of code size reduction,
the actual number of fitness evaluations, and average execution
time of SMARTEST, SMARTEST-s, and SMARTEST-s-l. In
this study, we use the actual fitness evaluations to represent the
execution time of the algorithms as in [31], since the execution
time of each iteration is different and the actual evaluation
takes up most of the execution time of the three algorithms.
We record the code size reduction every one hundred actual
fitness evaluations and continue until 10 000 evaluations. Fig. 8
shows the impact on the local search and the surrogate model
for programs with the change in the actual number of fitness
evaluations.

As shown in Fig. 8, compared with SMARTEST-
s, SMARTEST-s-l converges faster, which indicates that

Fig. 8. Comparison between SMARTEST, SMARTEST-s, and SMARTEST-
s-l.

SMARTEST-s-l gets the final optimization sequence using less
actual fitness evaluations. However, SMARTEST-s obtains bet-
ter optimization sequences than SMARTEST-s-l at the end of
the evolution. A possible reason may be that SMARTEST-s-l
focuses more on the diversification mechanism. In contrast,
SMARTEST-s provides better intensification via the local search
operator and can exploit the neighborhood structure of the indi-
viduals more effectively. Thus, it is demonstrated that the local
search is beneficial for solving the challenge of neighborhood
exploitation.

Furthermore, we compare SMARTEST with SMARTEST-
s for analyzing the contribution of the surrogate model. By
comparing the curves associated with the two variants, similar
observations could be obtained, i.e., SMARTEST converges
faster than SMARTEST-s, and SMARTEST finds better com-
piler optimization sequences when the iteration terminates. The
potential reason for this finding is that SMARTEST-s puts a lot
of effort into local search to search for the local optimum, there
are many low-quality solutions that are actually compiled. In
contrast, the surrogate model can drive SMARTEST to increase
the opportunity to explore more search space, which is useful
for finding more optimal solutions and prevents search from
being trapped into local optimum. Similar conclusions are also
obtained by Zhong et al. [32]. Therefore, SMARTEST tends
to explore search spaces much larger than SMARTEST-s and
has more global search ability to explore new search areas.
Therefore, the surrogate model is substantially helpful in solving
expensive fitness evaluation challenge.

Besides, we also report the details of the code size reduction
and the actual fitness evaluations for these three variants to
converge in Table II. From the table, we find that SMARTEST
can achieve 2.17% of code size reduction when the number
of actual fitness evaluations is 4100. While SMARTEST-s and
SMARTEST-s-l find worse optimization sequences after 4900
and 4300 actual fitness evaluations, which reduces 1.92% and
1.80% of code size, respectively. Then, the average execution
time of the three approaches for each program is listed in Table II.
We can find that SMARTEST takes an average of 6490 seconds
on each program, of which 208 seconds are used to train the
surrogate model. While SMARTEST-s and SMARTEST-s-l take
7508 and 6588 s, respectively. Compared with SMARTEST-s-l,
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TABLE II
CODE SIZE REDUCTION, THE ACTUAL FITNESS EVALUATIONS, AND AVERAGE EXECUTION TIME WHEN THREE APPROACHES CONVERGE

although SMARTEST needs to spend extra time to train the
surrogate model, it can still find better compiler optimization
sequence to achieve code size reduction within less time. It
demonstrates that it is valuable to spend some time training the
surrogate model.

In addition, we conduct a paired T-test to explore the statis-
tical significance of the difference between three approaches,
including SMARTEST, SMARTEST-s, and SMARTEST-s-l.
The p-values are 9E-05 between SMARTEST and SMARTEST-
s, 3.11E-06 between SMARTEST-s and SMARTEST-s-l, and
1.81E-16 between SMARTEST and SMARTEST-s-l. The p-
values are lower than 0.05. It means that there is a significant
difference between SMARTEST and other approaches in a
pairwise comparison.

Therefore, by employing the local search and the surro-
gate model, SMARTEST can identify befitting optimization
sequences and consumes less actual fitness evaluations than
SMARTEST-s and SMARTEST-s-l. This offers a reasonable
way to address the two challenges identified in this study.

Answer to RQ3: Comparing the results of code size reduction
and actual fitness evaluation of SMARTEST with its variants,
we conclude that the local search is advantageous to address
the challenge of neighborhood exploitation. Furthermore, the
surrogate model is indeed helpful in addressing the challenge of
expensive fitness evaluation.

E. Threats to Validity

In this section, we discuss some of the potential threats to the
validity of this study.

1) Internal Validity: Threats to internal validity might come
from the possible faults in our algorithm implementation. To
mitigate this threat, we reviewed all the source code and tested
the implementation carefully before the experiments were con-
ducted. Furthermore, the performance of the search algorithm
may vary with the random variations in the approach. To cope
with this problem, we followed the guideline in SBSE [29] and
ran the approach 15 times with different random seeds.

2) External Validity: With respect to external validity, we
collect 32 programs in the cBench benchmark suite from prior
work [23]–[26]. Although these programs belong to several
types, including embedded systems and desktop programs, they
may not be representative and not enough in general. More
research needs to be conducted to evaluate the performance of
our approach. Besides, we only consider the code size as the
optimization objective in our study. However, there are other
optimization performance metrics, such as the execution time
and the energy efficiency, we hence strongly encourage the
application of our approach to these metrics.

V. RELATED WORK

This section reviews related work in compiler optimization
selection for code size reduction, SBSE, as well as evolutionary
algorithms for computationally expensive problems.

A. Compiler Optimization Selection for Code Size Reduction

Two categories of methods are designed to deal with the prob-
lem of compiler optimization selection for code size reduction,
i.e., evolutionary algorithms and machine learning algorithms.

Cooper et al. [4] study the code size reduction of generated
object code by using GA. The results of the proposed algorithm
are compared with a fixed optimization sequence and optimiza-
tion sequences selected randomly. It demonstrates that GA can
develop a new fixed sequence to reduce code size. Nagiub and
Farag [8] add a new genetic operator called pass-over operator in
GA to generate good optimization sequences for reducing code
size. The added operator enhances the chromosomes’ selection
for the next generation during iteration. It also proves that the
designed approach can assist to optimize the software automati-
cally. Besides the selection of optimization passes with boolean
values, other optimization passes with non-Boolean values are
also studied. For instance, Chebolu et al. [9], [10] apply GA
to tune the compiler parameter set. The results obtained by the
proposed algorithm show that there is a significant impact of
parameter tuning on the code size.

Machine learning algorithms are another major type of ap-
proach to select promising compiler optimization passes for code
size reduction. These approaches collect the feature information
from programs and construct a predictive model based on the
training data. The training data contains massive optimization
sequences and programs, as well as the performance results
of these optimization sequences on each program. Once the
model is constructed, given a new program, the feature values
are also extracted from the program and then fed into the
trained model. Finally, the model can predict the performance
of an optimization sequence on the program. However, machine
learning models have several drawbacks. First, it requires a
relatively large amount of training data, which takes time to
obtain the performance results of many optimization sequences
on programs. Second, these approaches can only consider lim-
ited optimization sequences. Foleiss et al. [3] analyze the effect
of combinations of compiler optimization passes on code size
through the association rule generation algorithm. It is capable
of figuring out which combinations of optimization passes bring
out similar code size reduction. Their experimental results indi-
cate that the relationship among optimization passes can gener-
ate reduced code. In addition, Milepost GCC [7], an open-source
machine learning-based compiler, also provides the function to
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reduce code size. It combines static program features, run-time
dynamic features, and optimization passes to train a machine
learning model, then the model can automatically learn the best
optimization passes for a new program on a given architecture.

In contrast to previous studies, we attempt to apply the
surrogate-assisted memetic algorithm in selecting optimization
sequences for code size reduction, which extends its application
to computationally expensive problems.

B. Search-Based Software Engineering

SBSE refers to a body of work in which search techniques such
as GA are applied to resolve complicated software engineering
problems [33]–[35]. So far, enormous search techniques can be
applied throughout the whole software life cycle, such as testing,
maintenance, etc.

Castelein et al. [35] devise three search-based approaches to
generate the test data for complex SQL queries. The evaluation
results demonstrate that 98.6% of all queries can be covered by
GA. Abdessalem et al. [36] model the vision-based control sys-
tem testing as a search-based problem. They combine decision
tree models with multiobjective search algorithms and generate
78% more pivotal test scenarios. Afterwards, search algorithms
are also applied to other testing problems, such as function
testing [37], energy testing [38], mutation testing [39], as well
as regression testing [40]. Moreover, evolutionary computation
has also been applied to other phases of the software life cycle.
For example, Soltani et al. [41] utilize an interesting guided GA
with postfailure analysis to reproduce failure for large real-world
programs. An empirical investigation shows that 82% of the
crash can be reproduced using this approach. To solve the next
release problem better, the authors in [42] and [43] put forward
a hybrid ACO algorithm and a multilevel algorithm. Other
work about applications of optimization algorithms in software
engineering includes coding tools and techniques [44], security
and protection [45], etc.

As shown in the above applications in SBSE, we consider
the compiler optimization selection for code size reduction as a
search task, then try to adopt the surrogate-assisted memetic
algorithm to search for a better optimization sequence for
programs.

C. Evolutionary Algorithms for Computationally Expensive
Problems

When applying evolutionary algorithms in a number of ap-
plications, there is no fitness function or the fitness evaluation
takes a lot of time. Thus, it will lead to computationally expensive
problems.

In general, the approximation in optimization usually utilizes
three levels of approaches, i.e., the problem approximation,
the functional approximation, and the evolutionary approxima-
tion [46].

The problem approximation uses an approximate problem
to replace the original problem, which makes it relatively easy
to solve. For example, network functions virtualization (NFV)
is the basis of distributed cloud networking, the goal of the
NFV service distribution problem is to determine the network

resources and allocation of the cloud. Feng et al. [47] convert the
problem into a minimum cost multicommodity-chain network
design problem on a cloud-augmented graph, which is proven
to be NP-hard.

The functional approximation means that an explicit fit-
ness function is designed in evolutionary computation. Gavalas
et al. [48] provide several approximation algorithms for the arc
orienteering problem in directed graphs and undirected graphs,
respectively. A mathematical model can be designed to evaluate
the performance of a turbine blade, instead of running the wind
tunnel experiments [49].

Besides the aforementioned two kinds of approximations, a
great deal of previous research into approximations has focused
on evolutionary approximation. These approaches apply approx-
imate models, often known as surrogates, in fitness evaluations
to decrease the actual calculation. For example, the individual-
based models mainly select some of the individuals to evaluate
fitness using an approximate model [50], [51], while others are
evaluated by the original fitness function. The generation-based
models focus on determining which generations adopt the real
fitness function, while other generations are estimated [52], [53].
Nguyen et al. [54] develop a new surrogate assisted genetic
programming for the automated design of dispatching rules.
Their algorithm calculates the best individual of each generation
using the fitness function, which has shown great potential for
the automated design system. For the optimization of large scale
expensive problems, Sun et al. [31] consider using the posi-
tional relationship between individuals in competitive swarm
optimizer to estimate the fitness. An empirical study shows
that their approach outperforms the original competitive swarm
optimizer. For the high-dimensional expensive problems, Sun
et al. [55] skillfully combine a surrogate-assisted particle swarm
optimization (PSO) algorithm and a surrogate-assisted social
learning-based PSO to find high-quality solutions. Furthermore,
multiple surrogate models are adopted to solve bilevel optimiza-
tion problems [56] and adaptive model selection strategies are
proposed to choose an appropriate surrogate for replacing the
original fitness function [57].

To the best of our knowledge, the application of the surrogate
model has so far been scarcely studied to achieve selecting
compiler optimization passes for code size reduction. In this
study, we present a surrogate-assisted memetic algorithm toward
addressing the research gap.

VI. CONCLUSION

In this study, we propose a novel approach, SMARTEST,
to select good optimization sequences for code size reduction.
SMARTEST builds on the surrogate model and the local search
to replace the original individual with its local optimum by using
the approximate fitness score instead of the actual fitness score.
Then our approach is evaluated on the compiler GCC and the
cBench benchmark suite. The results indicate that SMARTEST
can generate smaller binary code and outperform GA and the
standard level -Os. Furthermore, by comparing SMARTEST
with its variants, we demonstrate that the local search is ben-
eficial for tackling the challenge of neighborhood exploitation.
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Additionally, the surrogate model contributes to addressing the
challenge of expensive fitness evaluation in selecting optimiza-
tion sequences.

For the future work, we intend to extend SMARTEST to sup-
port multiobjective optimization, rather than only the code size
of executable files. In fact, it is necessary to generate executable
files that follow specific execution time, resource consumption,
and other requirements.
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