
Many-Objective Test Database Generation
for SQL

Zhilei Ren1(B), Shaozheng Dong1, Xiaochen Li2, Zongzheng Chi1, and He Jiang1

1 School of Software, Dalian University of Technology, Dalian, China
{zren,jianghe}@dlut.edu.cn, dsz201493078@mail.dlut.edu.cn,

czz.dut@163.com
2 University of Luxembourg, Luxembourg City, Luxembourg

xiaochen.li@uni.lu

Abstract. Generating test database for SQL queries is an important but challeng-
ing task in software engineering. Existing approaches have modeled the task as a
single-objective optimization problem. However, due to the improper handling of
the relationship between different targets, the existing approaches face strong lim-
itations, which we summarize as the inter-objective barrier and the test database
bloating barrier. In this study, we propose a two-stage approach MoeSQL, which
features the combination of many-objective evolutionary algorithm and decom-
position based test database reduction. The effectiveness of MoeSQL lie in the
ability to handle multiple targets simultaneously, and a local search to avoid the
test database from bloating. Experiments over 1888 SQL queries demonstrate
that,MoeSQL is able to achieve high coverage comparable to the state-of-the-art
algorithm EvoSQL, and obtain more compact solutions, only 59.47% of those
obtained by EvoSQL, measured by the overall number of data rows.

Keywords: Test database generation · Search based software engineering ·
Many-objective optimization

1 Introduction

Recent years have witnessed the emergence and the rapid development of evolutionary
computation based test case generation research [1, 2]. Especially, due to the importance
in database-centric applications, test database generation for SQL queries has gained
great research interest [3, 4]. The idea is to construct test databases, in pursuit of certain
coverage criteria, such as to exercise all branches (also known as targets, see Sect. 2
for details) that can be executed in the SQL query. Due to the intrinsic complexity of
SQL features, e.g., JOINs, predicates, and subqueries, test database generation for SQL
queries can be difficult and time-consuming.

In the existing studies, this problem has been modeled as an optimization problem.
Various approaches such as constraint solving and genetic algorithmhave been employed
to solve the problem [3–5]. Among these approaches, EvoSQL [3], a search-based
algorithm, achieves the state-of-the-art results. EvoSQL features the support for the
SQL standard, and has been evaluated over a set of real-world SQL queries.

© Springer Nature Switzerland AG 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 229–242, 2020.
https://doi.org/10.1007/978-3-030-58115-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-58115-2_16

230 Z. Ren et al.

However, despite the promising results accomplished, we could observe signifi-
cant limitations in the existing studies. For example, EvoSQL models the test database
generation problem as a single-objective problem, by designing an objective function
that aggregates the coverage over all the branches. Consequently, such problem solving
mechanism may face great challenges, which are summarized as follows.

(1) Inter-objective relationship barrier: takingEvoSQL as an example, to achieve satis-
factory coverage, the underlying genetic algorithm has to be executed for multiple
times, to cover each branch in a sequential way. Hence, a solution from one pass of
evolution could not take all the branches into account. Also, the solutionswithin one
evolutionprocess couldnot help improve theother independent runsof evolution [6].

(2) Testdatabasebloatingbarrier:EvoSQLachieves thebranchcoveragebymerging the
test databases obtained by themultiple executions of the genetic algorithm. The final
test database may suffer from scalability issues [7], due to the improper handling of
the relationship between different targets. Although EvoSQL adopts a post-process
for reduction, chances are that the reduced test databases are still of large size.

To overcome these challenges, we propose a two-stage algorithm MoeSQL (Many-
objective evolutionary algorithm for SQL) in search of better test data.More specifically,
to tackle the inter-objective relationship barrier, in the first stage, we adopt a many-
objective evolutionary algorithm to avoid redundant computation. The many-objective
algorithm features a corner solution based sorting mechanism, with which we are able
to cover multiple targets in a single evolution process.

To tackle the test database bloating barrier, we further leverage the solutions obtained
from the first stage. We decompose the original problem into a series of sub-problems,
and employ a local search operator to achieve better solutions. Due to the reduction of
the search space, it is easier to obtain more compact test database.

By combining the two stages, we develop an integrated framework MoeSQL. To
evaluate MoeSQL, we consider real-world datasets for experiments, with 1888 SQL
queries [3]. Extensive experiments demonstrate that with the many-objective evolu-
tionary algorithm, MoeSQL is able to obtain high target coverage of 99.80%, which
is comparable to the state-of-the-art approach EvoSQL. Meanwhile, with the reduc-
tion stage, MoeSQL obtains much more compact test databases, only 59.47% of those
provided byEvoSQL, measured by the overall number of data rows for all the instances.

The main contributions of this paper are as follows:

(1) A many-objective search method is proposed for test database generation of SQL
queries. To the best of our knowledge, this is the first study that solves this problem
with a many-objective approach.

(2) We propose a novel decomposition based local search algorithm to address the test
database bloating issue in SQL test database generation.

(3) We implement a prototype of MoeSQL. The prototype system and the experiment
data are available at https://github.com/TheSecondLoop/MoeSQL.

(4) We conduct extensive experiments to demonstrate the effectiveness of MoeSQL
compared with the state-of-the-art algorithm.

The rest of the paper is organized as follows. Section 2 describes the background of
test database generation for SQLquerieswith amotivating example. Section 3 introduces

https://github.com/TheSecondLoop/MoeSQL

Many-Objective Test Database Generation for SQL 231

theproposed approach.The empirical study is presented inSect. 4. Finally, the conclusion
and future work are given in Sect. 5.

2 Background and Motivating Example

2.1 Coverage Criteria

For the test database generation task, we intend to populate a set of databases based on
certain coverage criteria. Considering the following SQL query S as an example:

SELECT * FROM
Ta JOIN Tb ON Ta.p = Tb.q -- step 1
WHERE (Ta.a = 1) OR (Ta.b = 2); -- step 2

In the query S, both columns a and b are non-nullable. To thoroughly test S, we adopt
the SQL full predicate coverage criteria [8], which is inspired by the modified condition
decision coverage [9] in software testing studies. The underlying idea is that given a
SQL query, all the possible conditions which contribute to the query should be tested.
For example, if we combine the modified conditions of the predicates in the WHERE
clause of S with two predicates, we obtain six queries, generated by the SQL analysis
tool SQLFpc [8]. More specifically, the predicates “Ta.a= 1” and “Ta.b= 2” correspond
to targets 1–3 and 4–6, respectively:

(1) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 0) AND NOT (Tb.b = 2);
(2) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 1) AND NOT (Ta.b = 2);
(3) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 2) AND NOT (Ta.b = 2);
(4) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 1);
(5) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 2);
(6) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 3);

With these targets, the next goal is to construct a set of test databases, so that each
of the six queries, when applied on the test databases, retrieves non-empty result. If
such goal is accomplished, it is claimed that the test databases have achieved complete
coverage on the SQL query under test.

2.2 Test Database Generation

In this study, we focus on search-based test database generation. In these approaches, a
common technique is to encode the test databases as candidate solutions, and model the
objective function based on certain coverage criteria. For example, EvoSQL uses the
concept of physical query plan [10] to divide each target into several execution steps.
The objective function of the test database is determined according to its performance
on each execution step. More specifically, the search problem is defined as follows:

Problem 2.1 (single-objective model). Let R = {r1, . . . , rk} be the set of coverage
targets of the SQL query under test. Find a set of test databasesD = {t1, . . . , tk} to cover
all the coverage targets in R, i.e., one that minimizes the following objective function:

min F(D,R) =
∑k

i=1
step_level(ti, ri) + step_distance(ti,L), (1)

232 Z. Ren et al.

where step_level(ti, ri) denotes the number of steps that are not executed, and
step_distance(ti,L) is the distance of ti in satisfying the first unsatisfied step L.

To explain the objective function, consider the distance of target 2 (SELECT *
FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 1) AND NOT (Ta.b = 2)) and
db 1 in Fig. 1(a). In the physical query plan of S, target 2 can be divided into two steps:
the first step considers the predicate in the FROM clause, and then the predicate in the
WHERE clause (see the comments in S). The predicate in the FROM clause could be
satisfied by db 1. In db 1, an empty result is returned when the predicate in theWHERE
clause is examined. Hence, there are no unexecuted steps, i.e., step_level(ti, ri) = 0.
Meanwhile, in db 1, the predicate “Ta.a = 1” in the WHERE clause is not satisfied.
According to the predicate, we choose the closest value 0 in column a of db 1. Then,
the step distance is calculated as step_distance(ti,L) = |0 − 1| = 1 [11]. In this way,
we can calculate the distance between the test database and the coverage target. Further
details about the objective function evaluation could be found in reference [3].

(a) Test databases obtained by EvoSQL (b) A more compact test database

Fig. 1. Example of solutions for query S

Obviously, the objective function is essentially an aggregate formof amulti-objective
problem. Typically, existing approaches such as EvoSQL optimize each term of the
summation in Eq. 1 with respect to each target, in a sequential way. The number of test
databases equals to the number of coverage targets. For example, for query S, EvoSQL
executes the underlying genetic algorithm six times, and generates six test databases,
each with one row for Ta and Tb, respectively. However, the single-objective model
may face obvious challenges:

(1) Inter-objective relationship barrier: In the SQL query S, targets 1–3 share the same
predicate “Ta.b = 2”. During the evolution towards target 1, the solutions obtained
during the search procedure may also partially satisfy some predicates of targets
2–3. Although EvoSQL uses the population of the previous pass of evolution as the
initial population for the next pass, the performance of this approach may depend
on the invocation sequence of the underlying genetic algorithm. Consequently,
single-objective approach cannot deal with the inter-objective relationship properly.

(2) Test database bloating barrier: In Fig. 1(b), we present a more compact solution (db
7with five data rows) that satisfies all the targets of the query S. Compared with the
results of EvoSQL, db 7 has the same coverage but less data rows. Interestingly,
although EvoSQL is equipped with a reduction operator, the results in Fig. 1(a)
could not be further simplified.

Many-Objective Test Database Generation for SQL 233

3 Our Approach

In order to tackle the two challenges of the existing algorithms, we propose our two-stage
algorithm MoeSQL. In the first stage, the algorithm takes the coverage target generated
by SQLFpc as the input, and obtains multiple databases to cover different targets. These
databases serve as an intermediate solution to the problem. In the second stage, we use
these solutions to divide the problem into sub-problems, and solve the induced problems
to achieve a more compact solution.

3.1 Many-Objective Test Database Generation

To generate test database with many-objective algorithms, we first modify the problem
definition in Sect. 2 as follows.

Problem 3.1 (many-objective model). Let R = {r1, . . . , rk} be the set of coverage
targets of the SQL query under test. Find a test database t to cover as many coverage
targets in R as possible, and keep the test database compact, i.e., minimize the following
k + 1 objectives:

min F ′(t,R) = (d(t, r1), d(t, r2), . . . , d(t, rk), size(t))
T , (2)

where d(t, ri) = step_level(t, ri) + step_distance(t,L) denotes the distance between
the test database t and the coverage targets ri as in Eq. 1. The extra objective size(t)
represents the number of data rows in the test database t. The superscript T represents
transpose of vector.

The pseudo code of TestDatabaseGen is presented in Algorithm 1. The workflow is
similar withmost existingmany-objective algorithms. In Lines 1–3, a set of solutions are
initialized. More specifically, each solution is encoded as a set of tables, each of which
corresponds to a schema involved in the targets. We extract the constant values in the
targets, and assign the constant values to the fields in initial solutions with probability
ps. Otherwise, the value for the field is initialized by a random value with probability
(1 − ps) [12].

Then, in the main loop (Lines 4–15), the evolution process consists of the evaluation,
sorting, selection, and reproduction procedures. For the evaluation procedure, we apply
Eq. 2 over each solution, to calculate the objective values. In particular, we adopt a
dynamic objective strategy [13], i.e., if there exists any new target that can be covered
by a solution, we keep the solution and remove the target from the objective evaluation.
With this strategy, we are able to deal with a relatively large number of objectives.
For the sorting and the selection procedures, we consider the many-objective sorting
mechanismused inMOSA [6, 14], awell-knownmany-objective algorithm in the search-
based software engineering community. The sorting mechanism features the multi-level
prioritization of the solutions.Within the sorting procedure, the population is categorized
the into levels. For the first level, we consider the best solutions (corner solutions) with
respect to each objective. Then, the next level comprises the non-dominated solutions
for the rest solutions. This process continues, until all the solutions are iterated. With
this mechanism, the search could be guided towards covering more targets. During the

234 Z. Ren et al.

selection, the elitism strategy is considered, i.e., only when one level is selected, we
consider the solutions in the next level. In the same level, the tournament selection [15]
is applied, so that both intensification and diversification are considered.

As for the reproduction operators, we directly adopt the crossover and the mutation
operators of EvoSQL for simplicity, and no special modifications regarding many-
objective algorithms are made in these operators. However, in our preliminary exper-
iment, we find these operators are effective in general. When the stopping criterion is
met, the evolution terminates. Finally, the archived solutions are regarded as the set of
test databases.

To summarize, we compare TestDatabaseGen with the genetic algorithm used in
EvoSQL. The approach proposed in this study features the following characteristics:

(1) Many-objectivemodel: unlike the existing approaches in which test database gener-
ation is modeled as a single-objective problem, TestDatabaseGen adopts a many-
objective sorting mechanism, so that the solutions in the population could take
all the targets into consideration during the selection. Furthermore, in contrast to
EvoSQL in which the objective values have to be calculated for all the targets sepa-
rately, TestDatabaseGen could handle all the targets in a single evaluation. Hence,
redundant computation could be prevented to some extents.

(2) Dynamic objective strategy: instead of applying static objective function along the
evolution process, TestDatabaseGen dynamically removes targets that have been
covered. With this strategy, the number of targets decreases along the evolution
process, and the search could be focused on the uncovered targets. Consequently,
the algorithm scales up well to a relatively large number of targets.

Many-Objective Test Database Generation for SQL 235

3.2 Sub-problem Decomposition Based Reduction

In the second stage, we focus on the test database bloating barrier. To reduce the size
of the test database obtained by TestDatabaseGen, we develop a decomposition based
local search strategy.

The idea is intuitive, i.e., when a candidate database covers one or more targets, it
means that there are a series of data rows in the database that can satisfy the predicates
in the SQL queries. However, it is possible that not all the data rows are contributive to
the coverage. In other words, only a part of the data rows leads to the satisfaction of the
predicates. Hence, we need to filter out the values with no contribution, and generate
more compact test databases. To realize the reduction effect, we consider the following
problem:

Problem 3.2: Let D = {t1, . . . , tm} be a set of test databases. For each database ti,
f (ti) = {ri1, . . . , rin} ⊆ R represents the targets covered by ti. Find a subset of databases
T ′ = {

t′1, . . . , t′c
}
that minimizes the following function:

min
∑c

i=1
size

(
t′i
)
, (3)

s.t.
⋃c

i=1
f
(
t′i
) =

⋃m

i=1
f (ti),

where size
(
t′i
)
indicates the number of data rows in the test database t′i .

Unfortunately,with the increase of the targets, the number of data rows in the database
T will increase accordingly, which leads to the search space explosion problem [16].
Therefore, we propose a decomposition strategy to transform the original problem into
a set of sub-problems. Given two databases t1 and t2, we can construct a sub-problem, in
search of a database with more compact size in a small neighborhood. More specifically,
the sub-problem is defined as follows.

Problem 3.3: Let D = {t1, t2} be a set of two test databases. For each database ti,
f (ti) = {ri1, . . . , rin} ⊆ R represents the targets covered by ti. Find a new database t′
that minimizes the following function:

min size
(
t′
)

(4)

s.t. f
(
t′
) = f (t1) ∪ f (t2)

In this way, we can find the solution of the original problem by solving the sub-
problem for each pair of test databases.

The main workflow of the second stage is presented in the pseudo code of Algorithm
2TestDatabaseReduction. In the main loop, we set all the solutions in the population as
unreached, to indicate whether the solution should be involved in the generation of the
next sub-problem. In Lines 3–4, we select two individuals in the population to construct
the sub-problem. Then, the LocalSearch operator is applied, to obtain a solution to the
induced sub-problem. In Lines 6–9, we verify the solution obtained by the local search

236 Z. Ren et al.

operator. If a more compact solution is achieved, the two individuals under examination
will be replaced with the reduced solution returned by LocalSearch. Otherwise, we
continue investigating other pairs of individuals that have not been investigated, until all
the individuals have been reached.

In particular, our method adopts a local search operator to solve the induced sub-
problem. As presented in Algorithm 3, a hill climbing approach is considered.

In Algorithm 3, a first-improvement local search is realized. More specifically, we
construct an incumbent database by merging the two input databases (Line 1). Then, we
iteratively examine each data row of the incumbent database (Lines 2–15). If we observe
that, the deletion of a data row does not deteriorate the coverage metric, we simply

Many-Objective Test Database Generation for SQL 237

delete this data row to generate a new database (Line 5–7). Otherwise, we recover
the deletion, and make a perturbation accordingly (Lines 9–14). Then, we restart the
investigation from the perturbed database. The traversal continues, until all the data
rows have been iterated. By embedding the local search operator in Algorithm 2, we are
able to accomplish the reduction of the test databases.

As a brief summary, in this section, we present the TestDatabaseReduction stage.
The reduction algorithm features a hill climbing based local search operator to explore
the possibility of minimizing the test databases obtained by the first stage. In the next
section, we would conduct extensive experiments to evaluate the proposed approach.

4 Experimental Results

4.1 Research Questions

In this section, we investigate the performance of MoeSQL. Our experiment focuses on
the following three Research Questions (RQs).

RQ1: How does MoeSQL perform in terms of coverage metrics?
RQ2: How does MoeSQL perform in terms of the runtime and the size metrics?
RQ3: How does MoeSQL performs over different instances?

In these RQs, RQ1 is used to verify the feasibility of MoeSQL. RQ2 is adopted to
examine whether our algorithm tackles the existing challenges properly. RQ3 intends
to investigate the trade-off between runtime and size metrics achieved by MoeSQL.

To evaluate MoeSQL, we adopt EvoSQL, the state-of-the-art algorithm as the
baseline of our experiments. Besides, we also propose a variant algorithm (denoted
asMoeSQLv) as a comparative approach. In this variant,MoeSQL will terminate after
the first stage, without further consideration of the scalability issue. In this way, we can
investigate the contribution of both stages.

In the experiments, the parameter settings follow those of EvoSQL. More specif-
ically, we set the population size pop_num to 50. Seeding probability ps is set to 0.5.
Crossover probability pc is set to 0.75.Due to the various operations inmutation operator,
the mutation probability pm is a set of numbers. The mutation probability for inserting,
deleting, and duplicating operation is set to 1/3, the row change mutation probability is
set to 1, and the NULL mutation probability is set to 0.1. Our experiments run under a
PCwith an Intel Core i5 2.3 GHz CPU, 16 GBmemory, andWindows 10. All algorithms
are implemented in Java 1.8. Our experiments use three datasets provided by EvoSQL.
Over the instances, we execute each algorithm five times. There are 1888 SQL queries
and 10338 coverage targets in total. The statistics of these SQL queries are shown in
Table 1. Because SQLFpc may generate some targets that cannot be covered theoreti-
cally, we manually examine and delete these targets to ensure that the rest targets could
be covered, given sufficient runtime.

238 Z. Ren et al.

Table 1. Statistics of the benchmark instances

Feature #Targets

0 1–2 3–4 5–6 7–8 9–10 11–15 16–20 21+

Predicates 57 1278 424 54 27 10 14 21 3

JOINs 1831 41 3 1 11 1 – – –

Subqueries 1851 37 – – – – – – –

Functions 1735 149 2 2 – – – – –

Columns 59 1271 413 85 16 13 14 7 10

Targets – 645 337 370 310 95 55 27 49

4.2 Experimental Results

Investigation of RQ1. We first present the coverage statistics of the comparative
approaches in Table 2. In the table, the first column indicates the number of targets.
Columns 2–3 represent the instance coverage (number of fully covered instances).
Columns 4–5 are the target coverage (number of covered targets). The coverage of
MoeSQLv is the same as MoeSQL, because the second stage of MoeSQL does not
alter the coverage metric. From the table, the following phenomena could be observed:

(1) MoeSQL achieves high coverage over all the instances. Similar as EvoSQL,
MoeSQL can cover all targets over instances with less than 10 coverage targets.
With the increase of the number of targets, the performance of both algorithms
decreases.

(2) In terms of the target coverage, MoeSQL performs slightly better than EvoSQL.
Over all the instances,MoeSQL is able to cover 99.80% of targets. Meanwhile, the
target coverage by EvoSQL is 99.52%.

(3) In terms of instance coverage, the results of EvoSQL andMoeSQL are very close.
However, the performance of the two algorithms is not the same.EvoSQL performs
better over instances with more than 16 but less than 20 coverage targets. Mean-
while, MoeSQL has a higher coverage in instances with more than 20 coverage
targets.

Answer to RQ1: MoeSQL can completely cover 99.63% of all instance, which is
comparable to the state-of-the-art approach.

Investigation of RQ2. In this RQ, we are interested in the efficiency of MoeSQL. We
calculate the runtime and the size of test database (measured by the number of data rows
in the test databases). The statistics are presented in Table 3. The table is organized as
follows. Thefirst column indicates the number of targets of the queries. Columns 2–4 rep-
resent the median runtime statistics in seconds, for EvoSQL,MoeSQLv, andMoeSQL,
respectively. Similarly, columns 5–7 are associated with the size statistics, measured by
the average number of data rows in the test database, for the three approaches. From the
table, we observe that:

Many-Objective Test Database Generation for SQL 239

Table 2. The instance coverage and the target coverage of each algorithm

#Targets Instance Coverage Target Coverage

EvoSQL MoeSQL/MoeSQLv EvoSQL MoeSQL/MoeSQLv

1–2 645/645 645/645 1232/1232 1232/1232

3–4 337/337 337/337 1095/1095 1095/1095

5–6 370/370 370/370 1970/1970 1970/1970

7–8 310/310 310/310 2314/2314 2314/2314

9–10 95/95 95/95 892/892 892/892

11–15 53/55 53/55 679/699 686/699

16–20 26/27 25/27 473/485 481/485

20+ 42/49 46/49 1633/1651 1647/1651

(1) MoeSQLv achieves the minimum runtime over all instances. The time of
MoeSQLv is almost half that of EvoSQL in instances with less than 15 targets.
And over other instances, the runtime of MoeSQLv is also significantly less than
EvoSQL.

(2) MoeSQL performs the best over instances with less than 10 targets. Due to the
second stage, the runtime of the whole algorithm is longer than MoeSQLv. With
the increase of the number of targets, the gap between the twovariants also increases.

(3) When considering all the instances, without the second stage,MoeSQLv is able to
outperform EvoSQL by 22.62%, in terms of the size metric of the test database.
Moreover, with the reductionmechanism,MoeSQL is able to further reduce the test
database size by 17.91%. For the instances with more than 20 coverage targets, the
overall number of data rows is reduced by up to 68.59%, compared with EvoSQL.

Table 3. The runtime and the test database size statistics of each algorithm

#Targets Runtime (s) Size (#data rows)

EvoSQL MoeSQLv MoeSQL EvoSQL MoeSQLv MoeSQL

1–2 0.03 0.02 0.02 2.00 2.00 2.00

3–4 0.04 0.02 0.02 3.00 3.00 3.00

5–6 0.07 0.02 0.04 5.00 5.00 5.00

7–8 0.25 0.13 0.20 8.00 7.00 7.00

9–10 0.62 0.32 0.61 11.00 10.00 9.00

11–15 2.13 1.11 3.87 16.00 13.40 11.00

16–20 10.15 7.76 116.30 40.40 33.40 14.40

20+ 130.32 108.36 1483.15 54.00 40.00 26.00

240 Z. Ren et al.

Answer to RQ2: the advantage of MoeSQL in runtime ismore reflected over instances
with small number of coverage targets. At the same time, MoeSQL can significantly
reduce the size of the test database, especially for complex instances. Although the
second stage of MoeSQL costs extra runtime, the local search operator reduces the size
of the database. For most instances, the time consumption is acceptable.

Investigation of RQ3. To answer RQ3, we classify all instances according to the per-
formance of each algorithm. According to the two performance indicators, i.e., runtime
and size, we categorize all the instances into the following four types:

Type A: MoeSQL outperforms EvoSQL in terms of both indicators.
Type B:MoeSQL outperforms better than EvoSQL in terms of runtime, and the size of
MoeSQL is the same as EvoSQL.
TypeC: The size ofMoeSQL is better thanEvoSQL, but the runtimemetric ofMoeSQL
is inferior to that of EvoSQL.
Type D: MoeSQL fails to outperform EvoSQL in terms of either indicator.

We summarize the number of instances of each type. The statistics of these type are
shown in Fig. 2(a). According to the figure, we observe that:

(1) MoeSQL is more time efficient than EvoSQL over the majority (types A and B,
1523/1888) of instances. Over these instances,MoeSQL can find test databases of
same or more compact size than EvoSQL. In particular, over (370/1888) 19.60%
of instances, MoeSQL outperforms EvoSQL for both performance indicators.

(2) Over (201/1888) 10.65% of instances, MoeSQL consumes more time than
EvoSQL, but is able to achieve more compact solutions. Only over (164/1888)
8.69% of instances, MoeSQL is dominated by EvoSQL.

(a) Statistics of instance types (b) Runtime-size comparison

370

1153

201 164

0

200

400

600

800

1000

1200

1400

type A type B type C type D

1E+0

1E+1

1E+2

1E+3

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4

Si
ze

 (#
da

ta
 ro

w
s)

Runtime (s)

EvoSQL MoeSQL

Fig. 2. Comparison between EvoSQL and MoeSQL

Many-Objective Test Database Generation for SQL 241

To gain more insights, we plot the runtime and the size metrics obtained byEvoSQL
and MoeSQL over all the instances in Fig. 2(b). From the figure, we observe that the
points for MoeSQL are concentrated in the area closer to the origin, which to some
extents demonstrates the ability of MoeSQL to balance the runtime and the size.

Answer to RQ3: MoeSQL performs better than EvoSQL over most instances, and is
able to achieve moderate trade-off between the runtime and the size metrics.

5 Conclusion and Future Work

In this paper, we present a novel two-stage algorithmMoeSQL to solve the test database
generation for SQL queries. The proposed approach features the combination of a many-
objective evolutionary algorithm and a local search based reductionmechanism, to tackle
the inter-objective barrier and the test database bloating barrier. Experimental results over
real-world datasets demonstrate the effectiveness of MoeSQL.

Despite the promising results, there is still room for improvement. For example, the
local search based reduction is time consuming. Tomitigate the limitation, an interesting
direction is to consider very large neighborhood search [17] or surrogate based acceler-
ation mechanisms [18]. If feasible, the efficient reduction mechanisms may enable more
advanced algorithms, such as reduction during evolution.

Acknowledgement. This work is supported in part by the National Key Research and Devel-
opment Program of China under grant no. 2018YFB1003900, and the National Natural Science
Foundation of China under grant no. 61772107, 61722202.

References

1. Fraser, G., Arcuri, A., McMinn, P.: Test suite generation with memetic algorithms. In:
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation,
pp. 1437–1444. ACM, New York (2013)

2. Arcuri, A.: RESTful API automated test case generationwith Evo-Master. ACMTrans. Softw.
Eng. Methodol. 28(1), 1–37 (2019)

3. Castelein, J., Aniche, M., Soltani, M., Panichella, A., van Deursen, A.: Search-based test data
generation for SQL queries. In: Proceedings of the 40th International Conference on Software
Engineering, pp. 1220–1230. ACM, Gothenburg (2018)

4. Suárez-Cabal, M.J., de la Riva, C., Tuya, J., Blanco, R.: Incremental test data generation
for database queries. Autom. Softw. Eng. 24(4), 719–755 (2017). https://doi.org/10.1007/s10
515-017-0212-7

5. Shah, S., Sudarshan, S., Kajbaje, S., Patidar, S., Gupta, B., Vira, D.: Generating test data
for killing SQL mutants: a constraint-based approach. In: 2011 IEEE 27th International
Conference on Data Engineering, pp. 1175–1186. IEEE, Hannover (2011)

6. Panichella, A., Kifetew, F., Tonella, P.: Automated test case generation as a many-objective
optimisation problem with dynamic selection of the targets. IEEE Trans. Softw. Eng. 44(2),
122–158 (2018)

https://doi.org/10.1007/s10515-017-0212-7

242 Z. Ren et al.

7. Tuya, J., de laRiva, C., Suárez-Cabal,M., Blanco, R.: Coverage-aware test database reduction.
IEEE Trans. Softw. Eng. 42(10), 941–959 (2016)

8. Tuya, J., Suárez-Cabal, M., de la Riva, C.: Full predicate coverage for testing SQL database
queries. Softw. Test. Verif. Reliab. 20(3), 237–288 (2010)

9. Chilenski, J., Miller, S.: Applicability of modified condition/decision coverage to software
testing. Softw. Eng. J. 9(5), 193–200 (1994)

10. Garcia-Molina, H., Ullman, J.D.,Widom, J.: Database System Implementation. Prentice Hall,
Upper Saddle River (2000)

11. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16(8), 870–879
(1990)

12. Rojas, J., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test generation. Softw.
Test. Verif. Reliab. 26(5), 366–401 (2016)

13. Rojas, J., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the effectiveness of
whole test suite generation. Empir. Softw. Eng. 22(2), 852–893 (2017). https://doi.org/10.
1007/s10664-015-9424-2

14. Panichella, A., Kifetew, F., Tonella, P.: Reformulating branch coverage as a many-objective
optimization problem. In: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pp. 1–10. IEEE, Graz (2015)

15. Goldberg, D., Deb, K.: A comparative analysis of selection schemes used in genetic algo-
rithms. In: Proceedings of the First Workshop on Foundations of Genetic Algorithms,
pp. 69–93. Elsevier, Indiana (1991)

16. Ramírez,A., Romero, J.,Ventura, S.:A survey ofmany-objective optimisation in search-based
software engineering. J. Syst. Softw. 149, 382–395 (2019)

17. Ghoniem, A., Flamand, T., Haouari, M.: Optimization-based very large-scale neighbor-
hood search for generalized assignment problems with location/allocation considerations.
INFORMS J. Comput. 28(3), 575–588 (2016)

18. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-
assisted evolutionary algorithm for expensivemany-objective optimization. IEEETrans. Evol.
Comput. 23(1), 74–88 (2018)

https://doi.org/10.1007/s10664-015-9424-2

	Many-Objective Test Database Generation for SQL
	1 Introduction
	2 Background and Motivating Example
	2.1 Coverage Criteria
	2.2 Test Database Generation

	3 Our Approach
	3.1 Many-Objective Test Database Generation
	3.2 Sub-problem Decomposition Based Reduction

	4 Experimental Results
	4.1 Research Questions
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

