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LocSeq: Automated Localization for Compiler
Optimization Sequence Bugs of LLVM

Zhide Zhou , He Jiang , Member, IEEE, Zhilei Ren, Yuting Chen, and Lei Qiao

Abstract—Compiler bugs may be triggered when programs are
optimized with optimization sequences. However, diagnosing com-
piler optimization sequence bugs is difficult due to limited debug-
ging information. Although some techniques (e.g., DiWi and RecBi)
have been proposed to automatically localize compiler bugs, no sys-
tematic work has been conducted to automatically localize compiler
optimization sequence bugs. In this article, we propose LocSeq,
a novel technique to automatically localize compiler optimization
sequence bugs of LLVM. The core insight of LocSeq is based on the
fact that the behaviors of optimizations may be influenced by each
other, and thus, the innocent files may be excluded by constructing
bug-free optimization sequences. First, given a buggy optimization
sequence that triggers a compiler bug, in LocSeq, we transform the
problem of the localization for a compiler optimization sequence
bug to the problem of the construction for bug-free optimization
sequences, which are helpful to localize buggy compiler files. Then,
a constrained genetic algorithm is presented in LocSeq to generate
a set of bug-free optimization sequences that share similar compiler
execution traces with the buggy optimization sequence. Finally,
LocSeq leverages a spectrum-based bug localization technique to
localize the compiler optimization sequence bug by comparing
the execution traces between bug-free optimization sequences and
the buggy optimization sequence. To evaluate the effectiveness
of LocSeq, we build a benchmark, including 60 optimization se-
quence bugs of LLVM, and compare LocSeq with the state-of-the-
art techniques DiWi and RecBi. The experimental results show
that LocSeq significantly outperforms DiWi and RecBi by up to
366.66%/72.27% and 250.00%/56.00% for localizing optimization
sequence bugs within Top-1/5 files, respectively.

Index Terms—Compiler bug, fault localization, genetic
algorithm, LLVM, optimization sequences.
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I. INTRODUCTION

O PTIMIZATION sequences (i.e., a set of compiler op-
timizations in a certain order) are often employed in

compilers (e.g., GCC and Clang) to achieve satisfactory perfor-
mance for programs, e.g., running time, code size, and through-
put. Especially, options O1, O2, and O3 in two widely used
compilers GCC and Clang are some optimization sequences
designed by compiler developers. However, potential compiler
bugs (e.g., crashes and wrong code) may be triggered when
optimizing programs with some optimization sequences (here-
after, we call these compiler bugs as compiler optimization
sequence bugs), which may decrease the usability of compilers
and introduce unintended application behavior and disasters.
Many studies [1]–[4] for compiler autotuning have shown that
optimization sequences may lead compilers to crash or produce
incorrect program execution. Besides, Jiang et al. [5] conducted
a study to detect compiler optimization sequence bugs for
LLVM. In their study, they have reported more than 100 LLVM
bugs caused by optimization sequences. Nevertheless, locating
and fixing compiler optimization sequence bugs may be very
time-consuming due to the extremely large-scale and compli-
cated codebases of compilers [6]–[10]. Therefore, it is critical
to develop automated techniques to help compiler developers
localize and fix optimization sequence bugs.

Although the consequence of failures introduced by software
bugs has been analyzed [11] and many techniques [12]–[19]
have been proposed for the bug localization of common software
systems, these existing approaches can hardly localize compiler
bugs due to either extremely high costs or poor effectiveness [8],
[9]. For example, Holmes and Groce [19] presented a mutation-
based method that could be used to localize compiler bugs.
However, this method may take a long time to execute only
a limited set of compiler mutants [8]. Hence, to facilitate the
localization of compiler bugs, Chen et al. proposed two tech-
niques based on mutation, namely, DiWi [8] and RecBi [9].
In DiWi and RecBi, Chen et al. transformed the problem of
locating compiler bugs to the problem of generating passing
test programs that cannot trigger the corresponding compiler
bug. Then, the generated passing test programs are compiled
by compilers with or without the default options (e.g., O1, O2,
and O3). Hence, compiler bugs are localized by comparing the
execution traces between the passing test programs and the given
failing test program. The main differences between DiWi and
RecBi are the mutation operators and the strategy to select these
mutation operators. However, no systematic investigation has
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been conducted to automatically localize compiler optimization
sequence bugs.

For a compiler optimization sequence bug, the inputs of com-
pilers are the failing test program and the buggy optimization
sequence. Although both DiWi and RecBi can be adjusted and
then applied to localize compiler optimization sequence bugs
by treating the buggy optimization sequence as a fixed option
of compilers, they still suffer from the effectiveness issue. To
localize compiler optimization sequence bugs, we may need
many bug-free execution traces of compilers due to the complex-
ity of compiler optimizations and the interaction among them.
However, in our experiments, DiWi and RecBi can only generate
a few passing test programs in a fixed time. For example,
DiWi/RecBi only generates about 7/15 passing test programs
on average in 1 h. Particularly, in some worst cases, they fail
to generate any passing test programs in our experiments. This
may affect the effectiveness to localize compiler optimization
sequence bugs.

In this article, we aim to investigate the problem of localizing
compiler optimization sequence bugs of LLVM [20]. LLVM is a
mature and widely used compiler infrastructure, which includes
hundreds of analysis and transformation optimizations [21].
Moreover, many tools (e.g., Klee [22] and Phasar [23]) and
compilers (e.g., Clang [24] and NVCC for CUDA [25]) of
different programming languages have been implemented based
on LLVM. In contrast to DiWi and RecBi that aim to ob-
tain bug-free compiler execution traces by generating a set
of passing test programs using mutation operators, we aim to
obtain bug-free compiler execution traces by constructing a
set of bug-free compiler optimization sequences in our study.
The key insight of our idea is that the behavior of a compiler
optimization may be influenced by other compiler optimizations.
Moreover, compiler optimizations with different orders may
lead to different behaviors. Thus, based on this observation,
we transform the problem of the localization for a compiler
optimization sequence bug to the problem of the construction
for bug-free optimization sequences. These bug-free sequences
cannot trigger the corresponding compiler bug, but share similar
execution traces with the buggy optimization sequence. Hence,
we may localize the buggy compiler files by comparing the
execution traces between bug-free optimization sequences and
the buggy optimization sequence.

Based on the above analysis, in this study, we present
LocSeq, a novel technique to automatically localize compiler
optimization sequence bugs of LLVM. First, in LocSeq, we
treat the problem of constructing a set of bug-free compiler
optimization sequences as a search problem. That is, LocSeq
utilizes a search algorithm to seek a set of bug-free compiler
optimization sequences such that the corresponding compiler
execution traces are similar to that of the buggy compiler opti-
mization sequence. To this end, we develop a novel constrained
genetic algorithm (CGA). Specifically, in the search process,
we constrain that each individual in CGA must contain all the
optimizations in the buggy optimization sequence. Under this
constraint, the CGA randomly builds an initial population of
optimization sequences. Then, the CGA utilizes a signal-point

crossover and four mutation operators to mutate each individual
in the population. After the search process, we can obtain a
set of compiler execution traces that are produced by compilers
under the bug-free optimization sequences. Finally, similar to
DiWi and RecBi, LocSeq measures the suspicious score for
each file covered by the buggy optimization sequence based on
the spectrum-based software bug localization techniques [26],
[27]. The larger the suspicious score of a file, the buggier
the file.

To evaluate the effectiveness of LocSeq, we first construct
a benchmark that includes 60 real-world reproducible com-
piler optimization sequence bugs of LLVM. Then, LocSeq is
compared with two start-of-the-art techniques, i.e., DiWi and
RecBi. The experimental results demonstrate that LocSeq signif-
icantly outperforms DiWi and RecBi by up to 366.66%/72.27%
and 250.00%/56.00% in terms of Top-1/5 results, respectively.
Specifically, LocSeq can generate about 945 bug-free optimiza-
tion sequences on average in 1 h and successfully localize
23.33%/65.00% bugs within Top-1/5 files of LLVM. Besides,
we also investigate the contribution of CGA by comparing
LocSeq with LocSeqr. LocSeqr is a variant of LocSeq that
utilizes a random strategy to generate bug-free optimization
sequences that still satisfy the aforementioned constraint. To
investigate the contribution of the constraint in CGA, we remove
the constraint in LocSeq and LocSeqr, resulting in LocSeqrwc

and LocSeqwc, respectively. The results show that LocSeq also
outperforms LocSeqr, LocSeqrwc, and LocSeqwc. For instance,
LocSeq localizes 75.00%, 133.33%, and 27.27% more bugs
than LocSeqr, LocSeqrwc, and LocSeqwc at the Top-1 position,
respectively.

This article makes the following contributions.
1) To the best of our knowledge, this article is the first

work to investigate the problem of localizing compiler
optimization sequence bugs.

2) We propose LocSeq, a novel technique to automatically
localize compiler optimization sequence bugs of LLVM.
In LocSeq, we present a novel CGA to seek a set of
bug-free compiler optimization sequences, such that the
corresponding compiler execution traces are as similar
as possible to that of the buggy compiler optimization
sequence.

3) We construct a benchmark including 60 real-world repro-
ducible compiler optimization sequence bugs of LLVM for
future research on the localization and fixing of compiler
optimization sequence bugs.

4) The experimental results based on the constructed
benchmark show that LocSeq successfully localizes
23.33%/65.00% bugs within Top-1/5 files of LLVM,
which significantly outperforms DiWi and RecBi by up
to 366.66%/72.27 and 250.00%/56.00%, respectively.

The rest of this article is organized as follows. We present
the motivation of our study in Section II-B. Then, the proposed
technique is shown in Section III. Next, we present the evaluation
results in Section IV. The threats to validity and related work are
described in Sections V and VI. Finally, Section VII concludes
this article.
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II. BACKGROUND AND MOTIVATION

A. LLVM and Optimization Sequence

In this article, we study the localization of compiler optimiza-
tion sequence bugs of LLVM. Originally, LLVM represents the
low-level virtual machine that is a statically typed intermediate
representation developed by Lattner [28]. However, LLVM now
is a mature and widely used compiler infrastructure,1 which
provides a collection of modular and reusable compiler and
toolchain technologies for arbitrary programming languages.
Currently, LLVM has been used in a wide variety of commercial
and open-source projects2 and as well as being widely used
in academic research.3 With a common infrastructure, a broad
variety of statically and runtime compiled languages (e.g., C,
C++, Rust, Swift, Ruby, Haskell, and WebAssembly) have been
implemented based on LLVM.

To improve program performance, many analysis and trans-
formation optimization techniques have been developed in
LLVM, such as the dead code elimination4 and the loop invariant
code motion.5 Generally, for a given program, we need to use a
set of optimizations in a certain order to achieve satisfactory
performance [5]. Here, this set of optimizations in a certain
order is called an optimization sequence. Especially, the default
optimization levels (e.g., O1, O2, and O3) in compilers are
predefined optimization sequences, which usually contain more
than 100 optimizations. These default optimization levels could
guarantee that programs achieve acceptable performance in most
cases. However, many studies (see, e.g., [29] and [30]) have
shown that selecting good optimization sequences for a given
program could further improve the performance of the program.

B. Motivation

To illustrate the motivation of our study, we present two
concrete compiler optimization sequence bugs of LLVM.

Fig. 1 shows the programs that trigger LLVM Bug#47557
and LLVM Bug#31199. In Fig. 1(a), when LLVM op-
timizes the program using the buggy optimization se-
quence “-simplifycfg -instcombine -early-cse-memssa -loop-
unroll -loop-unswitch -loop-reduce -loop-simplifycfg,” the as-
sertion “Assertion MA → use_empty() && “Try-
ing to remove memory access that still has
uses”” in the source file “MemorySSA.cpp6” is violated. The
reason for this bug is that the optimization “-loop-reduce” claims
to preserve the information provided by “MemorySSA.cpp,” but
it is broken when splitting critical edges.7 The second program
in Fig. 1(b) incurs a wrong code bug of LLVM when LLVM
optimizes this program using the buggy optimization sequence
“-mem2reg -loop-rotate -licm -loop-unroll.” The result of the
program in Fig. 1(b) should be 0, while it is 1 after applying

1http://llvm.org/.
2https://llvm.org/Users.html.
3https://llvm.org/pubs/.
4http://en.wikipedia.org/wiki/Dead_code_elimination.
5http://en.wikipedia.org/wiki/Loop-invariant_code_motion.
6https://github.com/llvm/llvm-project/blob/main/llvm/lib/Analysis/

MemorySSA.cpp.
7https://reviews.llvm.org/rG57ae9bb93235.

Fig. 1. Programs in crash bug 47557 and wrong code bug 31199 of LLVM.
(a) LLVM Bug#47557 (https://bugs.llvm.org/show_bug.cgi?id=47557).
(b) LLVM Bug#31199 (https://bugs.llvm.org/show_bug.cgi?id=31199).

the buggy optimization sequence. This is because of the wrong
computing of the alias sets for a subloop implemented in the
optimization “-licm.”8 Note that the optimization sequences of
these two LLVM bugs are minimized, which means that we
cannot reproduce the corresponding bugs when we remove any
optimization in the optimization sequences or change the order
of them. In practice, when LLVM developers debug optimization
sequence bugs, they always blame the last optimization in the
sequence [5]. However, the root causes of optimization sequence
bugs may occur in any optimization in the sequence. For exam-
ple, the root cause of LLVM Bug#31199 in Fig. 1(b) occurs
in “-licm” rather than the last optimization “-loop-unroll” in
the sequence. In addition, although we can know the location
of the violated assertion as for LLVM Bug#47557, the root
causes of bugs are not always introduced by the component that
contains the assertion. For LLVM Bug#47557, the root cause
is introduced by “-loop-reduce” rather than “MemorySSA.cpp.”
Hence, efficient and automated techniques should be developed
to help developers analyze and localize compiler optimization
sequence bugs.

For the above two LLVM bugs, even if we only consider
the source files (i.e., the file ends with “.cpp”) executed by
LLVM when we apply the optimization sequences, the compiler
execution traces of these two bugs still cover 1008 and 713
suspect source files. In the worst case, the root causes of the
corresponding bugs may be localized at any one of these files.
This may make developers take a long time to find the root causes
and fix bugs. However, in practice, the developers of LLVM
only need to modify no more than two files on average to fix an
optimization bug [10]. This indicates that most files covered by
the execution traces of buggy optimization sequences are inno-
cent files. In our study, we find that the behavior of a compiler
optimization may be influenced by other compiler optimizations.
Moreover, compiler optimizations with different orders may lead
to different behaviors [5]. For example, if the positions of the last

8https://reviews.llvm.org/rGfd2d7c72fcfd.
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Fig. 2. Framework of LocSeq for localizing optimization sequence bugs of LLVM.

two optimizations in the buggy optimization sequence for LLVM
Bug#47557 are swapped, we can obtain a bug-free optimiza-
tion sequence “-simplifycfg -instcombine -early-cse-memssa -
loop-unroll -loop-unswitch -loop-simplifycfg -loop-reduce.” In
this case, the similarity is 0.96 (calculated by formula (2) in
Section III-C) for the execution traces between the bug-free
optimization sequence and the buggy optimization sequence.
Hence, by comparing the execution traces between bug-free
optimization sequences and the buggy optimization sequence,
we may eliminate innocent files from suspects and localize the
buggy files.

Therefore, in our study, we transform the problem of the lo-
calization for a compiler optimization sequence bug to the prob-
lem of the construction for bug-free optimization sequences.
Intuitively, a bug-free optimization sequence that shares more
similar compiler execution traces with the buggy optimization
sequence tends to be more helpful to eliminate innocent files
from suspects. Thus, the problem of the construction for bug-free
optimization sequences can be modeled as a search problem. The
object of the search problem is to maximize the similarities of the
execution traces between the bug-free optimization sequences
and the buggy optimization sequence. For instance, by using the
proposed CGA in our study, we construct 687 bug-free optimiza-
tion sequences in 1 h for LLVM Bug#47557, and the buggy file is
successfully ranked at the second position. Similarly, the buggy
file of LLVM Bug#31199 can be ranked at the first position using
the proposed technique.

In the next section, we present LocSeq, a novel technique to
automatically localize compiler optimization sequence bugs of
LLVM. A CGA is developed to seek a set of bug-free optimiza-
tion sequences, such that the corresponding compiler execution
traces are as similar as possible to that of the buggy optimization
sequence.

III. APPROACH

In this section, we first introduce the framework of LocSeq to
automatically localize compiler optimization sequence bugs of
LLVM in Section III-A. Then, we present the proposed CGA to
construct a set of bug-free optimization sequences, including the
solution representation (see Section III-B), the fitness function
(see Section III-C), and the details of CGA (see Section III-D).

Finally, to make our article self-contained, we also introduce
the traditional fault localization technique used in our article in
Section III-E.

A. Overview of LocSeq

Fig. 2 shows the framework of LocSeq. The core insight of
LocSeq is to construct bug-free optimization sequences that
share similar compiler execution traces with the buggy opti-
mization sequence. Thus, we may exclude the innocent files by
comparing the execution traces between bug-free optimization
sequences and the buggy optimization sequence and then local-
ize the buggy files. Generally, LocSeq consists of three compo-
nents, namely, “Inputs,” “Construction of Bug-free Optimization
Sequences,” and “Bug Localization.” In the left of Fig. 2, the
component “Inputs” indicates the information of an optimization
sequence bug and the optimizations of LLVM. For a given opti-
mization sequence bug of LLVM, we basically need to know the
test program and the buggy optimization sequence to localize the
buggy files. Besides, to construct a set of bug-free optimization
sequences, we also need a set of candidate optimizations. This
is because in some cases, only a few optimizations exist in the
buggy optimization sequence, which is not sufficient to construct
bug-free optimization sequences.

The middle component in Fig. 2 is the proposed CGA to
construct a set of bug-free optimization sequences. In our study,
we select the genetic algorithm as the search algorithm. The
reason is that the genetic algorithm is easy to be implemented and
has been widely and successfully used in software engineering
problems (see, e.g., [31]–[36]). In general, the process of CGA
is identical to the traditional genetic algorithm, including Ini-
tialize Population, Evaluate Fitness, Selection, Crossover, and
Mutation. The main difference between CGA and the traditional
genetic algorithm is that a constraint is applied in CGA. That
is, when we initialize the population and apply the crossover
operator or the mutation operators to each individual, all the
optimizations into the buggy optimization sequence must be
included in each individual. This is because the files covered by
the execution trace are directly influenced by the optimizations
in the optimization sequence. By applying this constraint, we
can improve the possibility to include the files covered by
the execution trace of the buggy optimization sequence into
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TABLE I
CANDIDATE OPTIMIZATIONS OF LLVM

the execution trace of bug-free optimization sequences. This is
beneficial to obtain more accurate information to calculate the
suspicious values of the files covered by the execution trace of
the buggy optimization sequence.

After obtaining a set of bug-free optimization sequences, we
adopt the spectrum-based bug localization (also called spectrum-
based fault localization—SBFL) technique [26], [27], [37]–[39]
to localize the buggy files that include the bug caused by the
buggy optimization sequence. SBFL first calculates the sus-
picious values of each file according to the execution traces
between bug-free optimization sequences and the buggy opti-
mization sequence. Then, the files are ranked according to their
suspicious values. The larger the suspicious value, the buggier
the file. Finally, we obtain a ranking file list, and developers may
quickly localize the bug by checking this file list.

From Fig. 2, the second component (i.e., CGA) clearly is the
foundation of LocSeq. Thus, to present CGA, we first introduce
the solution representation and fitness function in Sections III-B
and III-C, respectively. Then, the details of CGA are presented
in Section III-D.

B. Solution Representation

In our study, a solution indicates the individual in the popula-
tion of CGA. An optimization sequence is constituted by some
optimizations in a certain order [5]. Besides, an optimization
can appear multiple times in an optimization sequence. Hence,
we utilize a list to represent a solution in this study. That
is, the list contains all the optimizations in an optimization
sequence, and the indexes of these optimizations are identical
to those of them in the optimization sequence. For example, the
buggy optimization sequence of LLVM Bug#47557 in Fig. 1
can be represented as [“-simplifycfg,” “-instcombine,” “-early-
cse-memssa,” “-loop-unroll,” “-loop-unswitch,” “-loop-reduce,”
“-loop-simplifycfg”].

However, as mentioned in Section III-A, we may not construct
many bug-free optimization sequences when we only use the
optimizations in the buggy optimization sequence. Thus, besides
the optimizations in the buggy optimization sequence, we also
need to include some candidate optimizations that do not belong
to the buggy optimization sequence into a solution. In our study,
we collect a set of candidate optimizations of LLVM, as shown
in Table I. These candidate optimizations have existed for a long
time in LLVM and are also contained in the default optimization
levels (e.g., O3) of LLVM. This may help to avoid extra LLVM
bugs in the search process of CGA and construct more bug-free
optimization sequences. Therefore, assume that Ob and Oc are

the sets of the optimizations in the buggy optimization sequence
and the candidate optimizations, respectively; a solution Sol is
defined as

Sol = [O1, O2, . . . , On] (1)

where Oi ∈ Ob ∪Oc and Ob ⊆ Sol. n is the length of Sol and
the value of n can be any positive integer that is greater than
the length of the buggy optimization sequence. In practice, to
save memory, each Oi can be represented as an integer index
that points to the corresponding optimization in Ob ∪Oc.

C. Fitness Function

In this subsection, we present the fitness function of CGA.
The object of CGA is to seek a set of bug-free optimization se-
quences, such that the corresponding compiler execution traces
are as similar as possible to that of the buggy optimization se-
quence. In our study, to determine whether a generated optimiza-
tion sequence is bug-free, we use it to optimize the test program
of the corresponding bug. If the bug cannot be reproduced or
other bugs (e.g., crash) cannot be introduced by the generated
optimization sequence, we say that the generated optimization
sequence is bug-free. Thus, the fitness function of CGA can be
defined as the similarity of execution traces between the bug-free
optimization sequence and the buggy optimization sequence.
Similar to DiWi and RecBi, we also measure the similarity
between two execution traces utilizing the Jaccard similarity
coefficient,9 which is defined as the size of the intersection
divided by the size of the union of two sample sets A and B,
i.e., J(A,B) = |A ∩B|/|A ∪B|. Assume that Cova and Covb
are the set of statements covered by the execution traces of the
bug-free optimization sequence a and the buggy optimization
sequence b; then, the similarity between a and b is as follows:

Sim(a, b) =
|Cova ∩ Covb|
|Cova ∪ Covb| . (2)

However, in our study, we only need to measure the similarity
between the execution traces of a and b. Hence, if a includes
many optimizations that are not in b, Cova may be much
larger than Covb since many files may be covered by these
optimizations. This may result in a small similarity between a
and b even if Cova contains a subset of the execution trace that
is similar to Covb. Besides, if we only consider the files covered
by b and calculate Cova according to these files, Cova may be
not accurate. This is because many common files are dependent
on many optimizations in LLVM. Meanwhile, if a covers too
many files, we will need more time and resources to process
these files. Therefore, we redefined the similarity between the
execution traces of a and b as follows:

Sim′(a, b) =
Sims(a, b)

1− Simf (a, b)
(3)

Sims(a, b) =
|Cov′a ∩ Covb|
|Cov′a ∪ Covb| (4)

Simf (a, b) =
|Covfa ∩ Covfb|
|Covfa ∪ Covfb| (5)

9https://en.wikipedia.org/wiki/Jaccard_index.
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TABLE II
DEFINITIONS OF Cova, Covb, Cov′a, Covfa, AND Covfb

where Sims(a, b) (or Simf (a, b)) is the similarity between the
execution traces (or the files) of a and b; Covfa and Covfb
represent the files in compiler covered by the execution traces
of a and b, respectively. Cov′a is the set of statements in the file
f ∈ (Covfa ∩ Covfb) covered by the execution traces of a. By
this way, if a covers many files that are not covered by b, i.e.,
Simf (a, b) tends to be small, Sim′(a, b) will be also small. In
the best case, if a and b cover the same files (i.e., Simf (a, b) =
1), Sim′(a, b) = Sims(a, b), which is rarely occurred in our
experiments. Notably, if the bug is still occurred when applying
a, the fitness of a is set to 0. Table II lists the definitions ofCova,
Covb,Cov′a,Covfa, andCovfb to clearly understand the fitness
function.

D. Constrained Genetic Algorithm

In Sections III-B and III-C, we have introduced the solu-
tion representation and the fitness function in CGA. In this
subsection, we will present the details of CGA. Algorithm 1
shows the main steps of CGA, which are the same as those of a
standard genetic algorithm. First, CGA starts with the creation
of an initial population of random optimization sequences (line
2). Then, the population is evolved using the crossover and
mutation operators (lines 8–15). Finally, CGA selects the fittest
individuals according to the fitness function (lines 18 and 19).
As indicated by the name of CGA, a constraint must be satisfied
in the process of CGA. That is, all the optimizations in the buggy
optimization sequence must be contained in each individual of
CGA, which is applied in steps of the population initialization,
crossover, and mutation. This is the main difference between
CGA and the standard genetic algorithm. In Algorithm 1, the
fitness of each individual in the population is evaluated by the
function Evaluate(·). Specifically, each individual is transformed
into the corresponding optimization sequence. Next, the test
program is compiled using this optimization sequence, and
the fitness is calculated by the fitness function, as described
in Section III-C. Since only the initialization, crossover, and
mutation are customized in our study, we introduce them as
follows.

1) Initialize Population: The routine utilized to generate the
initial population is shown in Algorithm 2. Algorithm 2 aims
to randomly generate a set of individuals (i.e., optimization
sequences) and takes the optimizations Ob in the buggy opti-
mization sequence and the candidate optimizationsOc as inputs.
The output of Algorithm 2 is an initial population P0.

First, to guarantee that each individual in the population
contains Ob (i.e., satisfy the constraint mentioned above), in
Algorithm 2, we include Ob into the initial sequence s (line

4). Then, a random number is selected to determine how many
candidate optimizations can be included in s (line 5). In lines 6
and 7, we select optimizations from Oc one by one and include
them into s. After obtaining the initial sequence s, we shuffle it
to make the optimizations inOb have different orders in different
optimization sequences (line 8). Finally, we add the generated
optimization sequence s into the initial population P0 (line 9).

2) Crossover: In this study, we adopt the single-point
crossover as the crossover operator of CGA. The single-point
crossover generates two offsprings by randomly exchanging
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optimizations between two parent individuals (i.e., optimization
sequences) p1 and p2. Given a random cut-point δ, the first off-
spring o1 contains the first δ optimizations from p1, and the last
|p2| − δ optimizations from p2 are appended to o1. On the other
hand, the second offspring o2 inherits the first δ optimizations
from p2 and the last |p1| − δ optimizations from p1. However,
the standard single-point crossover may cause the generated
offspring to lose some optimizations of the buggy optimization
sequence, which may make the corresponding execution traces
not helpful to localize optimization sequence bugs. Hence, in our
study, we present a constrained single-point crossover operator
for CGA, which can guarantee that the generated offspring con-
tains all the optimizations of the buggy optimization sequence.

Algorithm 3 shows the proposed constrained single-point
crossover operator. The main steps of the proposed crossover
are identical to the standard single-point crossover. First, we
obtain the minimal size of the two parent individuals p1 and p2
(lines 1–3). Then, a random cut-point δ is selected from 1 to this
minimal size (line 4). Next, we recombine the optimizations
from two parent individuals around the cut-point (lines 5, 6,
9, and 10). After this recombination, we verify whether the
generated offspring o1 and o2 contain all the optimizations of the
buggy optimization sequence. If an optimization of the buggy
optimization sequence is lost in o1 (or o2), we redefine o1 (or
o2) as a pure copy of its parent p1 (or p2) (lines 7, 8, 11, and 12).

3) Mutation: After the crossover, the next step of a genetic
algorithm is to mutate the generated offspring. In our study, four
mutation operators are applied to mutate the offsprings, namely
Delete, Replace, Swap, and Insert.

1) Delete: This mutation indicates that an optimization in an
individual is randomly deleted.

2) Replace: In this mutation, we randomly utilize an opti-
mization to replace the one in an individual.

3) Swap: By using this mutation, we randomly swap the
positions of two optimizations in an individual.

4) Insert: In contrast to Delete, this mutation aims to ran-
domly insert an optimization into an individual.

Similar to the crossover, the above mutation operators also
need to guarantee that all the optimizations of the buggy op-
timization sequence are included in the mutated individuals.
Hence, after each mutation, we verify whether the mutated indi-
viduals contain all the optimizations of the buggy optimization
sequence. If the constraint is not satisfied, we reverse the changes
and abandon the mutated individuals. Notably, in practice, we
only need to verify the above constraint in the Delete and Replace
operators since only these two operators may dissatisfy the
constraint.

Algorithm 4 presents the main steps of the proposed con-
strained mutation for CGA. For an individual p, we iteratively
mutate each optimization o with the probability 1/size (lines
2–21), where size is the number of optimizations in p. In our
study, the four mutation operators are randomly selected to
mutate the current optimization o (line 4). We utilize 1, 2, 3,
and 4 to represent Delete, Replace, Swap, and Insert operators,
respectively. Hence, if the integer 1 (or 2, 3, 4) is selected, we
conduct the Delete (or Replace, Swap, and Insert) operator for o.
For the Replace operator, an optimization c is randomly selected
from the candidate optimizations set Oc and we replace o with
c (lines 8 and 9). To insert an optimization into the individual,
we can place it at the left or right of o. Thus, we randomly
generate a number from 0 to 1. If this number is less than 0.5,
we place the candidate optimization at the left of o (lines 16
and 17); otherwise, the candidate optimization is placed at the
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right of o (line 19). After the mutation of o, we verify whether
the current individual contains all the optimizations in the buggy
optimization sequence in line 20. If the constraint is not satisfied,
we reverse changes for the individual in this iteration (line 21).

E. Buggy File Localization

After obtaining a set of bug-free optimization sequences
by CGA, LocSeq localizes optimization sequence bugs by
comparing the execution traces between bug-free optimization
sequences and the buggy optimization sequence. Similar to
DiWi [8] and RecBi [9], we also adopt the idea of SBFL in
LocSeq to localize optimization bugs. Specifically, the Ochiai
formula [13], [26], [27], a state-of-the-art SBFL formula, is
leveraged to calculate the suspicious score of each statement
in the execution trace under the buggy optimization sequence.
The definition of the Ochiai formula is as follows:

score(s) =
efs√

(efs + nfs)(efs + eps)
(6)

where efs and nfs indicate the number of the buggy opti-
mization sequences that make the compiler execute and do
not execute statement s, and eps represents the number of
bug-free optimization sequences that make the compiler execute
statement s. Following the previous studies [8], [9], we also
only consider the statements executed by the compiler under the
buggy optimization sequence; thus, nfs is 0. Moreover, efs is 1
since there is only on buggy optimization sequence. Hence, we
can simplify the Ochiai formula as:

score(s) =
1√

1 + eps
. (7)

As mentioned in Section I, LocSeq aims to localize the files
that contain the corresponding bug. Hence, following the prior
work [8], [9], we also aggregate the suspicious score of each
statement in a file as the suspicious score of this file. For a given
file, its suspicious score is defined as follows:

SCORE(f) =

∑nf

i=1 score(si)

nf
(8)

where nf is the number of executed statements in the file f .
After obtaining the suspicious score of each file covered by the
execution trace of the buggy optimization sequence, LocSeq
ranks all these files according to their suspicious scores in
descending order. The larger the suspicious score of a file, the
buggier the file. Therefore, developers may quickly localize the
optimization sequence bug by analyzing the files in the ranking
list.

IV. EVALUATION

The goal of this study is to automatically localize compiler
optimization sequence bugs of LLVM. Hence, we conduct ex-
periments on LLVM to evaluate the effectiveness of LocSeq.
Specifically, our evaluation aims at addressing the following
three research questions (RQs).

RQ1: How does LocSeq perform on localizing compiler op-
timization sequence bugs of LLVM?

This RQ investigates the effectiveness of LocSeq to localize
compiler optimization sequence bugs of LLVM. In our experi-
ments, we compare LocSeq with two state-of-the-art techniques,
namely DiWi and RecBi.

RQ2: How does CGA contribute to LocSeq?
In this RQ, we investigate whether CGA is helpful for localiz-

ing compiler optimization sequence bugs of LLVM. We compare
LocSeq with LocSeqr (i.e., LocSeq that uses a random method
to generate bug-free optimization sequences). In addition, we
also discuss the impact of the constraint for the effectiveness of
LocSeq and LocSeqr.

RQ3: How do the parameters of CGA impact the effectiveness
of LocSeq?

To investigate the impact of the parameters of CGA for the
effectiveness of LocSeq, we discuss the crossover probability
and the mutation probability of CGA in this RQ.

A. Implementation

We implemented LocSeq using Python based on DEAP [40].
DEAP is a novel evolutionary computation framework and has
been widely used in research work [40]. Similar to DiWi and
RecBi, we also leverage Gcov [41] to collect compiler test
coverage. Gcov is a widely used test coverage program from
the GNU Compiler Collection [42]. For the parameters of CGA,
the default values of the crossover probability PBcx and the mu-
tation probability PBmut are set to be 0.5 and 0.3, respectively.
Notably, we discussed the impact of PBcx and PBmut for the
effectiveness of LocSeq in RQ3. Besides, we set the population
sizeN to 50 as in the studies [32], [34], since the experiments are
time-consuming and our computation resources are limited. For
example, even though we only consider three candidate values
for each of PBcx and PBmut, we take about 25 days to finish
all experiments to investigate the impact of PBcx and PBmut.
Regarding the parameter MAX_SIZE in Algorithm 2, we set
it to be 15 since the maximal length of the buggy optimization
sequence is 13 and the average length is 5.6 in our benchmark. In
addition, the terminating condition is set to be 1 h limit, and each
experiment is repeatedly run five times to reduce the influence
of randomness as in prior work [8], [9]. In addition, we take the
median results as the final results as in DiWi and RecBi.

B. Benchmark

In our study, we only use LLVM to evaluate the proposed tech-
nique LocSeq. This is because, as to our knowledge, only LLVM
can allow developers to compile programs with arbitrary opti-
mization sequences. For other mature and widely used compilers
in both industry and academia, such as GCC and CompCert, the
orders of optimizations are fixed.10 Although the fixed order of
optimizations may improve the development productivity and
safety of compilers, it limits the capabilities of compilers to
improve program performance for different requirements using
different optimization sequences [5]. In contrast, LLVM has
been widely used to implement many compilers and tools, since

10https://stackoverflow.com/questions/33117294/order-of-gcc-
optimization-flags, https://github.com/AbsInt/CompCert/issues/287.
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many optimizations have been implemented in LLVM and the or-
ders of them are flexible. Our study may help developers quickly
localize compiler bugs caused by optimization sequences, which
may be beneficial for improving the reliability of optimizations
with arbitrary orders for LLVM. This may also help to improve
the correctness of different LLVM-based compilers and tools.

Specifically, we manually collected 60 LLVM bugs (the same
scale as in [9]) that are caused by optimization sequences from
LLVM bug repository.11 These bugs are selected according to
the following conditions: 1) the test program and the buggy
optimization sequence are contained in the bug report; 2) the
bug has been fixed and the fix revision has been pointed out by
developers in the bug report; and 3) we can reproduce the bug in
our experimental environment. These 60 optimization sequence
bugs cover 31 versions of LLVM from 2016 to 2020. Although
developers have provided the fix revisions for each bug in the bug
reports, we also manually checked whether these revisions really
fix the corresponding bugs and localized the buggy locations for
each bug. In addition, the optimization sequence of each bug
is minimized. That is, if we remove any optimization in the
sequence, we cannot reproduce the corresponding bug. This is
because the optimization sequences of many bugs have been
minimized when the reporter reports those bugs [5]. To this
end, we manually verified whether the optimization sequence
is minimized by removing optimizations in the sequence one by
one [5].

Note that, although the default optimization levels (e.g., O3)
of compilers are also a kind of optimization sequences, we
do not select bugs caused by these default optimization levels
in this article. The reason is that many bugs caused by the
default optimization levels are hard to be reproduced when we
utilize the same optimizations as in these optimization levels,
since many parameters of optimizations are specified for these
default optimization levels in the source code.12 To facilitate
future research on compiler optimization sequence bugs, we
open this benchmark13 to the public. Specifically, each bug
in the benchmark contains the following information: 1) the
LLVM version for the optimization sequence bug; 2) the test
program; 3) the buggy optimization sequence; and 4) the buggy
location. In addition, although LLVM can process intermediate
representations (i.e., IR) converted from programs written by
many high-level programming languages (e.g., C, C++, and
Rust), we only consider bugs that their test programs are written
by C programming language in this study. This is because
we hope to compare LocSeq with the prior work DiWi [8]
and RecBi [9], which mainly focus on compilers for the C
programming language.

C. Experiment Setup

1) Hardware: Our evaluation is conducted on an x86_64
computer running Ubuntu 18.04 Linux operating system with
an Intel Core i7-6900 K CPU @ 3.20GHZ × 16 processor and
64 GB of memory.

11https://bugs.llvm.org/index.cgi.
12https://lists.llvm.org/pipermail/llvm-dev/2019-May/132308.html.
13https://gitee.com/teazhou/loc-seq.

2) Comparative Approach: In RQ1, we compared LocSeq
with two state-of-the-art compiler bug localization approaches
DiWi [8] and RecBi [9] to show the effectiveness of LocSeq.
DiWi and RecBi localize compiler bugs by constructing a set of
witness test programs. These witness test programs are generated
by mutating the test program of the corresponding compiler
bug. The differences between DiWi and RecBi are the mutation
operators and the strategy to select them [9]. All the codes of
DiWi and RecBi are obtained from their websites.14 We only
modified the steps in the code for compiling test programs and
collecting code coverages according to our scenario. That is,
we need to first compile the test program of an optimization
sequence bug to the corresponding intermediate representations
using Clang15 and utilize the optimizer16 of LLVM to optimize
it. Besides, we only collect the coverage information of the
optimizer.

To investigate whether CGA is helpful for localizing compiler
optimization sequence bugs of LLVM, in RQ2, we designed
three variants of LocSeq, namely, LocSeqr, LocSeqrwc, and
LocSeqwc. LocSeqr is a variant of LocSeq that randomly gen-
erates optimization sequences but still satisfies the constraint
that all the optimizations in the buggy optimization sequence are
included in the generated optimization sequences. LocSeqwc and
LocSeqrwc are the same as LocSeq and LocSeqr respectively,
but they do not always satisfy the above constraint. That is,
in LocSeqwc and LocSeqrwc, the optimizations in the buggy
optimization sequence and the candidate optimizations are com-
bined into a set, and they are randomly selected from this set to
construct optimization sequences. By comparing LocSeq with
LocSeqwc and LocSeqrwc, we investigate the contribution of the
constraint for LocSeq.

3) Metrics: The output of LocSeq is a ranking list of sus-
picious files for LLVM. Similar to prior work [8], [9], we also
evaluate the effectiveness of each technique in our experiments
by measuring the position of each buggy file in the ranking list.
For the files that have the same suspicious scores, we use the
worst ranking as the final results as in the existing work [8], [9].
Specifically, in our experiments, we utilize the following three
metrics as in [8], [9], [43], and [44] to evaluate the effectiveness
of each approach.

1) Top-n: By using this metric, we calculate the number
of bugs that are successfully localized within the Top-n
positions in the ranking list. In our study, n has four
candidate values, namely, 1, 5, 10, and 20. Ideally, we
hope all bugs can be located in the first file in the ranking
list. Hence, a higher value of Top-n indicates a better
performance.

2) Mean first ranking (MFR): This metric measures the mean
of the position that the first buggy file occurs in the ranking
list for each bug. A smaller value of MFR indicates that
developers may localize the corresponding bug as quickly
as possible.

14https://github.com/JunjieChen/DiWi, https://github.com/hao-yang9804/
RecBi.

15https://clang.llvm.org/.
16https://llvm.org/docs/CommandGuide/opt.html.
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TABLE III
TOP-N, MFR, AND MAR RESULTS OF COMPARISON EXPERIMENTS BETWEEN LOCSEQ AND COMPARATIVE APPROACHES

Columns “⇑ ∗” indicate the improvement rate (%) of LocSeq over the comparative approaches in terms of “*” metric.

3) Mean average ranking (MAR): This metric measures the
mean of the positions that all buggy files occur in the
ranking list for each bug. Different from MFR, MAR
evaluates the effectiveness of each approach to localize
all buggy files precisely. Similar to MFR, a smaller value
of MAR is better.

D. Answer to RQ1

To evaluate the effectiveness of the proposed technique Loc-
Seq, in this RQ, we compare it with two state-of-the-art ap-
proaches, i.e., DiWi and RecBi. Table III shows the compari-
son results between LocSeq and the comparative approaches.
Columns 2–9 are the results of Top-n metrics that are calculated
based on the median of the results within five iterations for each
approach; columns 10–13 are the results of MFR and MAR
metrics. From Table III, it is obvious that LocSeq can local-
ize more bugs within Top-1/5/10/20 files than the comparative
approaches. Specifically, LocSeq localizes 14, 39, 49, and 54
bugs within Top-1, Top-5, Top-10, and Top-20 files, account for
23.33%, 65.00%, 81.00%, and 90.00% out of the 60 optimization
sequence bugs in the benchmark, respectively. However, only
3/22/29/40 and 4/25/34/42 bugs are localized by DiWi and RecBi
within Top-1/5/10/20 files, respectively. The reason may be that
DiWi and RecBi can only generate a few passing test programs.
In our experiments, only about 7/15 passing test programs can be
generated by DiWi/RecBi on average in 1 h. However, LocSeq
can construct about 945 bug-free optimization sequences in
the same period. The larger number of bug-free optimization
sequences may provide more evidence about an optimization
sequence bug, which, thus, improves the effectiveness of Loc-
Seq. Especially, compared to 14 bugs located by LocSeq within
Top-1 files, DiWi and RecBi only locate three and four bugs
within Top-1 files; LocSeq significantly outperforms DiWi and
RecBi by up to 366.66% and 250.00%, respectively. Notably, in
our experiments, RecBi localizes more bugs than DiWi, which
also proves that RecBi outperforms DiWi as in [9].

For more clearly observing the results in our experiments,
we draw the boxplot of the localized bugs within Top-1/5/10/20
files of LocSeq and the comparative approaches during the five
iterations, as shown in Fig. 3. From Fig. 3, we can obviously see
that LocSeq significantly outperforms DiWi and RecBi. In each
scenario (i.e., Top-1/5/10/20), the number of bugs localized by
LocSeq is completely larger than those of DiWi and RecBi. In
the best case, LocSeq localizes 17 bugs within Top-1 files, while
only four and five for DiWi and RecBi, respectively. Fig. 4 shows

Fig. 3. Comparison of Top-n results between LocSeq and comparative ap-
proaches within five iterations. (a) Top-1. (b) Top-5. (c) Top-10. (d) Top-20.

Fig. 4. Improvements of LocSeq over comparative approaches in terms of
Top-n results.

the improvements of LocSeq over the comparative approaches.
From Fig. 4(f), we can see that the improvements of LocSeq
over four comparative approaches from Top-1 to Top-20 are
decreased on average. For example, the average improvement of
LocSeq over four comparative approaches is 206.25% in terms
of Top-1, while there are only 58.43%, 48.50%, and 30.38% for
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Fig. 5. Improvements of LocSeq over comparative approaches in terms of
MFR/MAR.

Top-5, Top-10, and Top-20, respectively. For the improvements
of LocSeq over DiWi and RecBi, we can observe that the overall
trend is downward from Fig. 4(a) and (b). Besides, from Fig. 4(a)
and (b), we can observe that the overall trend of the improve-
ments of LocSeq over DiWi and RecBi is also downward. For
instance, the improvement of LocSeq over DiWi in terms of
Top-1 is 366.66%, while it is only 250.00% for RecBi. This
is because the effectiveness of RecBi is better than DiWi [9].
Besides, from Top-1 to Top-20, the improvements of LocSeq
over DiWi and RecBi are also decreased. For example, the
improvement of LocSeq over DiWi in terms of Top-5 is 77.27%,
while it is only 25.93% in terms of Top-20. The reason is that over
60% bugs can be localized within Top-20 files by LocSeq, DiWi,
and RecBi. However, in practice, most developers only focus on
localizing buggy elements within Top-5 positions produced by
the automated debugging tools [45]. This further reveals the
advantage of LocSeq to localize optimization sequence bugs of
LLVM.

For the MFR and MAR metrics in Table III, the smaller the
values of MFR/MAR, the better the effectivenesses of LocSeq
and the comparative approaches. From columns 10–13 in Ta-
ble III, we can see that the values of MFR and MAR for LocSeq
are much smaller than those of DiWi and RecBi. For example,
the value of MFR for LocSeq is 7.31, while it is 65.37 for DiWi,
achieving an 88.81% improvement. Fig. 5 further shows the
improvements of LocSeq over comparative approaches in terms
of MFR and MAR. In general, in terms of MFR and MAR, the
effectiveness of LocSeq is at least 76% and 58% higher than
those of DiWi and RecBi, respectively. This also proves that
LocSeq is more effective than DiWi and RecBi from another
perspective.

To investigate the reason why LocSeq is better than DiWi
and RecBi, we compute the mean similarities between all the
bug-free execution traces generated by each approach and the
given buggy execution trace for each bug. Note that, for a fair
comparison between LocSeq and the comparative approaches
(DiWi and RecBi), we use formula (4) to calculate the similarity
since DiWi and RecBi also use the same formula to calculate

Fig. 6. Similarities between all bug-free execution traces generated by each
approach and the given buggy execution trace.

TABLE IV
PEARSON CORRELATION COEFFICIENT BETWEEN THE MEAN SIMILARITIES

AND THE NUMBER OF LOCALIZED BUGS IN TERMS OF TOP-1/5/10/20

the similarity. Fig. 6 shows the boxplot of similarities produced
by LocSeq and the comparative methods. From Fig. 6, we can
see that the similarities of LocSeq are clearly larger than those
of DiWi and RecBi. For example, the median of LocSeq is 0.92,
while it is only 0.71 for DiWi (or 0.72 for RecBi). Especially,
some similarities of DiWi and RecBi are 0 since they fail to
generate any passing test programs in our experiments. This is
coincident with the bug localization capability of each approach.

Besides, to further show the relationship between similarity
and the bug localization capability, we calculate the Pearson
correlation coefficient [46] between the mean similarities and the
number of localized bugs in terms of Top-1/5/10/20 for LocSeq
and the comparative methods using SciPy [47]. Table IV shows
the results of the Pearson correlation coefficient. From Table IV,
we can see that the Pearson correlation coefficients from Top1 to
Top-20 are greater than 0.79. Especially, the Pearson correlation
coefficients are 0.980, 0.923, and 0.919 for Top1, Top-5, and
Top-10, respectively. The overall trend of the Pearson correlation
coefficient is downward. This is because most bugs can be
localized by LocSeq and the comparative methods in Top-20
files. Moreover, in Table IV, except for Top-20, the results of
P-value are lower than 0.05. The results of Pearson correlation
coefficients and p-value in Table IV indicate that the relationship
between similarity and the bug localization capability is positive.
That is, the higher similarity between bug-free execution traces
and the buggy execution trace, the better it is to localize the
optimization sequence bug.

Answer to RQ1: The experimental results demonstrate
that LocSeq significantly outperforms the state-of-the-art ap-
proaches DiWi and RecBi. Specifically, LocSeq could lo-
calize 366.66%/77.27%/68.97%25.93% and 250.00%/56.00%/
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44.12%/28.57% more bugs within Top-1/5/10/20 files than DiWi
and RecBi, respectively.

E. Answer to RQ2

In this section, we conduct an experiment to investigate the
contribution of CGA for LocSeq. Specifically, we compare
LocSeq with its three variants, namely, LocSeqr, LocSeqrwc,
and LocSeqwc. By comparing LocSeq with LocSeqr, we could
confirm the contribution of CGA for LocSeq. From Table III and
Figs. 3 and 4, we can see that LocSeq significantly outperforms
LocSeqr, LocSeqrwc, and LocSeqwc. LocSeqr only localizes 8,
27, 37, and 42 bugs within Top-1, Top-5, Top-10, and Top-20
files, respectively, which are obviously less than those of Loc-
Seq. LocSeq achieves a 75.00%/44.44%/32.43%/28.57% im-
provement within Top-1/5/10/20 files compared with LocSeqr.
In addition, from Table III and Fig. 5, we can observe that LocSeq
also outperforms LocSeqr by up to 70.05%/50.16% in terms of
MFR/MAR. These significantly demonstrate the advantage of
CGA in LocSeq to generate bug-free optimization sequences for
localizing optimization sequence bugs of LLVM.

Besides, we investigate the impact of the constraint (i.e., all
the optimizations in the buggy optimization sequence must be
included in the generated optimization sequences) for the effec-
tiveness of LocSeq by comparing LocSeq with LocSeqrwc and
LocSeqwc. Without the constraint, LocSeqrwc and LocSeqwc

clearly localize fewer bugs within Top-1/5/10/20 files than Loc-
Seq. For example, although both LocSeq and LocSeqwc generate
bug-free optimization sequences using the genetic algorithm,
LocSeqwc only localizes 11/33/40/46 bugs within Top-1/5/10/20
files, which is 22.27%/18.18%/22.50%/17.39% less than that of
LocSeq. In Fig. 3, although most results of LocSeq are better
than those of LocSeqr, LocSeqrwc, and LocSeqwc, some Top-1
results of LocSeqwc are better than those of LocSeq. However,
the median of LocSeq is clearly larger than that of LocSeqwc,
which illustrates that LocSeq is still more effective in most
cases. From Fig. 4(c) and (d), we can see that the improvements
of LocSeq over LocSeqrwc are larger than those of LocSeqr.
This is because the constraint has a positively impact to localize
optimization sequence bugs of LLVM. Moreover, from Table III
and Figs. 3–5, it is clear that LocSeqwc is more effective than
LocSeqr. This may be because the genetic algorithm without the
constraint is more helpful than the random strategy to construct
bug-free optimization sequences that share similar execution
traces with the buggy optimization sequence.

From Table III and Fig. 5, we can see that LocSeq (or
LocSeqr) also outperforms LocSeqwc (or LocSeqrwc) in terms
of the MFR and MAR metrics. For instance, the MFR value of
LocSeqwc is 13.42, which is about two times larger than that
of LocSeq. The improvements of LocSeq over LocSeqwc are
45.53% and 32.02% in terms of the MFR and MAR metrics,
respectively. This also demonstrates that the constraint in CGA
is beneficial to improve the effectiveness of LocSeq.

Similar to RQ1, we also analyze the similarities between all
bug-free optimization sequences generated by each approach
(i.e., LocSeqr, LocSeqrwc, LocSeqwc, and LocSeq) and the
given buggy optimization sequence. From Fig. 6, we can see

TABLE V
BUG NUMBER LOCALIZED IN TOP-N FILES UNDER DIFFERENT COMBINATIONS

OF PBCX AND PBMUT FOR LOCSEQ

that LocSeq significantly outperforms LocSeqr , LocSeqrwc, and
LocSeqwc, which indicates that CGA is beneficial to construct
bug-free optimization sequences that are more similar with
the buggy optimization sequence. For example, the median of
LocSeqr is 0.81, which is less than 0.92 for LocSeq. In addition,
we can observe that without the constraint, the similarities of
LocSeqrwc and LocSeqwc are smaller than those of LocSeqr
and LocSeq, respectively. For instance, the median of LocSeqwc

is 0.87, while it is 0.92 for LocSeq. This further illustrates that
CGA has a positive contribution for the effectiveness of LocSeq.

Answer to RQ2: Compared with LocSeqr, LocSeqrwc, and
LocSeqwc, LocSeq can localize more optimization sequence
bugs of within Top-1/5/10/20 files, which significantly reveals
the positive contribution of CGA for LocSeq.

F. Answer to RQ3

In this RQ, we investigate the impact of two main parameters
of CGA for the effectiveness of LocSeq, namely, the crossover
probability PBcx and the mutation probability PBmut of CGA.
Following some studies (see, e.g., [32], [34], and [36]) and
the limitation of our computation resources, we study PBcx

= 0.2, 0.5, and 0.8, respectively; regarding PBmut, we study
PBmut = 0.1, 0.2, and 0.3, respectively. Thus, we totally run 45
experiments (nine different combinations of PBcx and PBmut,
five runs for each experiment), which take in nearly 25 days to
finish all experiments.

Table V shows the number of bugs localized by LocSeq under
different combinations ofPBcx andPBmut in terms of the Top-n
metric. From Table V, we can observe that LocSeq achieves bet-
ter results under the setting PBcx = 0.5 and PBmut = 0.3. For
example, 14/39/49/54 bugs are localized within Top-1/5/10/20
files by LocSeq when PBcx = 0.5 and PBmut = 0.3, while
10/28/38/51 for PBcx = 0.2 and PBmut = 0.1. Although the
absolute differences between the number of bugs localized
by LocSeq with different combinations of PBcx and PBmut

are close, the relative improvement is significant. For exam-
ple, in terms of the Top-1 metric, LocSeq with PBcx = 0.5
and PBmut = 0.3 outperforms LocSeq with PBcx = 0.2 and
PBmut = 0.1by up to 40%. In addition, from Table V, we can see
that the number of bugs localized by LocSeq with PBcx = 0.2
or PBcx = 0.8 are smaller than those when PBcx = 0.5, es-
pecially for the Top-1 and Top-5 results. The reason may be
that a small value (0.2) of PBcx makes it hard to generate new
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individual, while a large value (0.8) of PBcx could cause many
individuals do not satisfied the constraint after the crossover
operation. Besides, the results of Top-1 and Top-5 are affected
more obviously by PBcx and PBmut. For example, LocSeq
with PBcx = 0.5 and PBmut = 0.3 can localized more 11 bugs
than LocSeq with PBcx = 0.2 and PBmut = 0.1 in terms of
the Top-5 results, while the difference is only three bugs for
the Top-20 results. As shown in the existing work [45], Top-1
and Top-5 results are more important in practice. Hence, in our
study, the values of PBcx and PBmut are set to be 0.5 and 0.3,
respectively.

Answer to RQ3: The experimental results present that the
effectiveness of LocSeq is can be slightly affected by PBcx and
PBmut of CGA. When PBcx = 0.5 and PBmut = 0.3, LocSeq
obtains better results than other combinations of PBcx and
PBmut in our experiments.

V. THREATS TO VALIDITY

A. Threats to Internal Validity

The threats to internal validity mainly lie in the implementa-
tions of LocSeq. To reduce this threat, we implement LocSeq
based on DEAP [40], which is a widely used evolutionary
computation framework. In addition, we also refer to the code
of the existing work (i.e., DiWi and RecBi), such as the code for
collecting code coverage of LLVM, to reduce the differences
between LocSeq and the existing work for a fair comparison.
Besides, the efficiency to collect code coverage of LLVM may
influence the effectiveness of LocSeq. In each iteration of CGA,
the most time-consuming process is the collection of code
coverage of LLVM for calculating the fitness function. This
is because we use GCOV to obtain code coverage of each
file. However, many files of LLVM need to be processed. To
reduce this threat, we utilize multiprocess techniques in Python
to accelerate the collection of code coverage of LLVM in our
study.

B. Threats to External Validity

The threats to external validity mainly lie in the benchmark
and compilers in our experiments to evaluate the effectiveness
of LocSeq. On the one hand, the benchmark only includes 60
optimization sequence bugs of LLVM, which may not be suf-
ficient to completely reveal the effectiveness of LocSeq. Thus,
in the future, we will continue to collect optimization sequence
bugs of LLVM to reduce this threat. On the other hand, we
only evaluate LocSeq based on LLVM, since only LLVM cur-
rently supports to compile programs using arbitrary optimization
sequences. However, as a mainstream compiler infrastructure,
LLVM has been widely used to develop compilers and tools in
both industry and academia, which demonstrates that LocSeq
may be beneficial to improve the reliability of these compilers
and tools. We believe that in the future, more compilers will
support flexible optimization sequences; thus, LocSeq may be
also suitable for localizing optimization sequence bugs for these
compilers.

VI. RELATED WORK

A. Compiler Debugging

The most related works for our study are DiWi [8] and
RecBi [9]. In DiWi and RecBi, the problem of localizing com-
piler bugs was transformed into the problem of generating pass-
ing test programs that cannot trigger the corresponding compiler
bug. Specifically, given a test program (i.e., failing test program)
that triggers a compiler bug, DiWi and RecBi first leveraged
mutation operators to generate a set of test programs (i.e.,
passing test program) that are similar to the failing test program
but cannot trigger the compiler bug. Then, the spectrum-based
software bug localization techniques [26], [27] are utilized to
identify the compiler buggy files by comparing the execution
traces between the generated passing test programs and the
given failing test program. The differences between DiWi and
RecBi are the mutation operators and the strategy for selecting
mutation operators. DiWi focused on local mutation operators
that only change minimal program elements (e.g., modifiers and
constants) and leveraged a Markov chain Monte Carlo method to
select mutation operators. However, the local mutation operators
in DiWi may be inefficient since compiler bugs tend to occur
in compiler optimizations that tend to depend on test program
structure [9]. Hence, RecBi augmented the mutation operators
in DiWi to include structural mutation operators that change the
test program structure by inserting some control-flow-alerting
statements (e.g., branch and loop statements) and utilized rein-
forcement learning to select mutation operators. Unlike DiWi
and RecBi, our study aims to localize compiler optimization
sequences bugs of LLVM by constructing a set of bug-free
optimization sequences. Compared with DiWi and RecBi, the
proposed technique is more lightweight and may have better
generalization to the LLVM-based compilers.

Besides, to facilitate the debugging of GCC, Zeller [48] pro-
posed a method to calculate the cause–effect chain by comparing
the program states between a passing run and a failing run. This
method could diagnose compiler bugs at the program-state level.
Holmes and Groce [19], [49] proposed to localize compiler bugs
by comparing a set of compiler mutants. However, these two
methods may suffer from scalability or effectiveness problems
due to the complexity of compilers. In contrast, the proposed
technique in our study localizes compiler optimization sequence
bugs at the source-code level and is easy to be conducted.

For other compiler debugging techniques, many studies [50]–
[54] focused on providing debugging messages or visualization.
For example, Ogata et al. [53] proposed an approach to debug the
just-in-time compiler in a java virtual machine. This approach
used two compilers: one was utilized to record all of the runtime
information when compiling a method into a log file; then,
another compiler was leveraged to replay the recorded informa-
tion when debugging the compiler by developers. Clearly, these
studies could provide useful information to facilitate compiler
debugging, but they are limited to point out the actual location
of a bug. In addition, some work [55]–[59] focused on reducing
the failure-inducing test programs to help developers analyze
compiler bugs. For instance, Regehr et al. [58] proposed C-
Reduce, a tool that aims to automatically reduce a large C,
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C++, or OpenCL files to a much smaller one. Sun et al. [59]
presented a syntax-guided program reduction framework Perses.
In our study, the test programs could be reduced or not since
the proposed technique only needs to change the buggy opti-
mization sequences and does not depend on the reduced test
programs.

B. Compiler Autotuning

Compiler autotuning aims to select better optimizations and
parameters of compilers for improving the performance of target
programs. Our study is related to compiler autotuning since
both studies try to manipulate compiler optimizations for some
tasks. The differences are that our study aims to construct bug-
free optimization sequences to localize compiler optimization
sequence bugs of LLVM. In general, two kinds of techniques
are proposed for compiler autotuning, namely, the search-based
approaches and the machine-learning-based approaches. The
search-based approaches transform the problem of compiler
autotuning as an optimization problem and then resolve it uti-
lizing evolutionary algorithms. For example, a method based
on genetic algorithms was proposed by Kulkarni et al. [60],
[61] for quickly searching effective optimization sequences.
Purini and Jain [3] developed a downsampling technique for the
reduction of the infinitely large optimization sequence space.
Ansel et al.[29] developed OpenTuner, which aims to find opti-
mal optimizations for a program using the ensembles of search
techniques.

Different from the search-based approaches, the machine-
learning-based approaches of compiler autotuning try to use
machine learning techniques to predict better optimizations for
a target program [1], [2], [4]. Ashouri et al. [30] conducted a
survey to summarize and classify the recent advances in using
machine learning for compiler autotuning. Fursin et al. [1] devel-
oped a machine-learning-based compiler Milepost that automat-
ically adapts the internal optimization heuristic to improve the
performance. A method based on the Markov process was pro-
posed by Kulkarni and Cavazos [2] to select good optimization
sequences to improve the performance of a program. Ashouri
et al. [4] built a predictive model for compiler autotuning us-
ing the optimization subsequences and the machine learning
technique.

Recently, researchers focused on integrating the machine
learning techniques into the search-based approaches for com-
piler autotuning. Chen et al. [62] proposed BOCA, a tool based
on Bayesian optimization for efficient compiler autotuning.
In BOCA, a tree-based model was used to approximate the
objective function for improving the scalability of Bayesian
optimization. Similarly, a surrogate-assisted memetic algorithm
SMARTEST was developed by Jiang et al. [63] to select better
compiler optimizations for code size reduction. SMARTEST
utilized a machine-learning-based surrogate model to avoid
expensive fitness evaluation in the genetic algorithm.

However, potential compiler bugs may be introduced by com-
piler autotuning due to the complexity of compilers. Our work
may help developers quickly localize compiler optimization
sequence bugs and then fix them.

VII. CONCLUSION

In this article, we proposed LocSeq, a novel technique to
automatically localize compiler optimization sequence bugs
of LLVM. Unlike the state-of-the-art techniques (i.e., DiWi
and RecBi) that localize compiler bugs by generating a set
of witness test programs via mutation, LocSeq tries to lo-
calize compiler optimization sequence bugs by constructing
a set of bug-free optimization sequences, which significantly
improve the effectiveness for localizing compiler optimization
sequence bugs. To this end, a CGA was presented in LocSeq
to construct bug-free optimization sequences that share similar
compiler execution trace with the buggy optimization sequence.
Our evaluation based on 60 real-world optimization sequence
bugs of LLVM demonstrates that LocSeq successfully localizes
23.33%/65.00% bugs within Top-1/Top-5 files of LLVM, which
significantly outperforms the state-of-the-art techniques DiWi
and RecBi by up to 366.66%/72.27% and 250.00%/56.00%,
respectively.

For future work, we will investigate fine-grained (e.g.,
method-level) localization for compiler optimization sequence
bugs to further improve the efficiency for compiler debugging.

REFERENCES

[1] G. Fursin et al., “Milepost GCC: Machine learning enabled self-tuning
compiler,” Int. J. Parallel Program., vol. 39, no. 3, pp. 296–327, 2011.

[2] S. Kulkarni and J. Cavazos, “Mitigating the compiler optimization phase-
ordering problem using machine learning,” in Proc. ACM Int. Conf. Object
Oriented Program. Syst. Lang. Appl., 2012, pp. 147–162.

[3] S. Purini and L. Jain, “Finding good optimization sequences covering
program space,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp. 1–23,
2013.

[4] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and J.
Cavazos, “MiCOMP: Mitigating the compiler phase-ordering problem
using optimization sub-sequences and machine learning,” ACM Trans.
Archit. Code Optim., vol. 14, no. 3, pp. 1–28, 2017.

[5] H. Jiang, Z. Zhou, Z. Ren, J. Zhang, and X. Li, “CTOS: Compiler testing
for optimization sequences of LLVM,” IEEE Trans. Softw. Eng., to be
published, doi: 10.1109/TSE.2021.3058671.

[6] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs
in C compilers,” ACM SIGPLAN Notices, vol. 46, no. 6, pp. 283–294, 2011.

[7] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler bugs
in GCC and LLVM,” in Proc. 25th Int. Symp. Softw. Testing Anal., 2016,
pp. 294–305.

[8] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler
bug isolation via effective witness test program generation,” in Proc. 27th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019,
pp. 223–234.

[9] J. Chen, H. Ma, and L. Zhang, “Enhanced compiler bug isolation via
memoized search,” in Proc. 35th IEEE/ACM Int. Conf. Autom. Softw. Eng.,
2020, pp. 78–89.

[10] Z. Zhou, Z. Ren, G. Gao, and H. Jiang, “An empirical study of optimization
bugs in GCC and LLVM,” J. Syst. Softw., vol. 174, pp. 1–13, 2021.

[11] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, and M. F. Siok, “Re-
cent catastrophic accidents: Investigating how software was responsible,”
in Proc. 4th Int. Conf. Secure Softw. Integr. Rel. Improvement, 2010,
pp. 14–22.

[12] A. P. Mathur and W. E. Wong, “Comparing the fault detection effectiveness
of mutation and data flow testing: An empirical study,” Softw. Qual. J.,
vol. 4, pp. 69–83, 1993.

[13] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proc. Testing: Acad. Ind. Conf.
Pract. Res. Techn., 2007, pp. 89–98.

[14] W. E. Wong, Y. Shi, Y. Qi, and R. Golden, “Using an RBF neural network
to locate program bugs,” in Proc. 19th Int. Symp. Softw. Rel. Eng., 2008,
pp. 27–36.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:35:06 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TSE.2021.3058671


910 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

[15] J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
2014, pp. 52–63.

[16] X. Li and L. Zhang, “Transforming programs and tests in tandem for fault
localization,” ACM Program. Lang., vol. 1, pp. 1–30, 2017.

[17] M. Papadakis and Y. Le Traon, “Metallaxis-FL: Mutation-based fault lo-
calization,” Softw. Testing, Verification Rel., vol. 25, nos. 5–7, pp. 605–628,
2015.

[18] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to
localize developer faults for evolving software,” in Proc. ACM SIGPLAN
Int. Conf. Object Oriented Program. Syst. Lang. Appl., 2013, pp. 765–784.

[19] J. Holmes and A. Groce, “Using mutants to help developers distinguish
and debug (compiler) faults,” Soft. Testing Verification Rel., vol. 30, no. 2,
pp. 1–33, 2020.

[20] LLVM Language Reference Manual, LLVM Compiler Community, 2022.
[Online]. Available: https://llvm.org/docs/LangRef.html

[21] LLVM’s Analysis and Transform Passes, LLVM Compiler Community,
2022. [Online]. Available: https://www.llvm.org/docs/Passes.html

[22] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in Proc.
8th USENIX Conf. Oper. Syst. Des. Implementation, 2008, pp. 209–224.

[23] P. D. Schubert, B. Hermann, and E. Bodden, “PHASAR: An inter-
procedural static analysis framework for C/C,” in Proc. Int. Conf. Tools
Algorithms Construction Anal. Syst., 2019, pp. 393–410.

[24] Clang, “Clang: A C language family frontend for LLVM,” 2022. [Online].
Available: http://clang.llvm.org/

[25] Nvidia’s CUDA Compiler, 2022. [Online]. Available: https://developer.
nvidia.com/cuda-llvm-compiler

[26] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software
fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8, pp. 707–740,
Aug. 2016.

[27] H. A. D. Souza, M. L. Chaim, and F. Kon, “Spectrum-based software fault
localization: A survey of techniques, advances, and challenges,” 2016,
arXiv:1607.04347.

[28] C. Lattner, “LLVM: An infrastructure for multi-stage optimization,” M.S.
thesis, Dept. Comput. Sci., University of Illinois at Urbana-Champaign,
Urbana, IL, USA, 2002.

[29] J. Ansel et al., “OpenTuner: An extensible framework for program au-
totuning,” in Proc. 23rd Int. Conf. Parallel Archit. Compilation, 2014,
pp. 303–316.

[30] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” ACM Comput.
Surv., vol. 51, no. 5, pp. 1–42, 2018.

[31] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans. Softw.
Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[32] M. Soltani, A. Panichella, and A. van Deursen, “A guided genetic algo-
rithm for automated crash reproduction,” in Proc. IEEE/ACM 39th Int.
Conf. Softw. Eng., 2017, pp. 209–220.

[33] J. Xuan, Y. Gu, Z. Ren, X. Jia, and Q. Fan, “Genetic configuration
sampling: Learning a sampling strategy for fault detection of config-
urable systems,” in Proc. Genet. Evol. Comput. Conf. Companion, 2018,
pp. 1624–1631.

[34] J. Castelein, M. Aniche, M. Soltani, A. Panichella, and A. van Deursen,
“Search-based test data generation for SQL queries,” in Proc. 40th Int.
Conf. Softw. Eng., 2018, pp. 1220–1230.

[35] B. Chen, X. Peng, Y. Liu, S. Song, J. Zheng, and W. Zhao, “Architecture-
based behavioral adaptation with generated alternatives and relaxed
constraints,” IEEE Trans. Serv. Comput., vol. 12, no. 1, pp. 73–87,
Jan./Feb. 2019.

[36] Y. Yuan and W. Banzhaf, “ARJA: Automated repair of java programs via
multi-objective genetic programming,” IEEE Trans. Softw. Eng., vol. 46,
no. 10, pp. 1040–1067, Oct. 2020.

[37] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based fault
localization,” in Proc. 26th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2011,
pp. 556–559.

[38] M. Wen et al., “Historical spectrum based fault localization,” IEEE Trans.
Softw. Eng., vol. 47, no. 11, pp. 2348–2368, Nov. 2021.

[39] M. Zhanget al., “An empirical study of boosting spectrum-based fault
localization via pagerank,” IEEE Trans. Softw. Eng., vol. 47, no. 6,
pp. 1089–1113, Jun. 2021.

[40] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C.
Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Learn.
Res., vol. 13, pp. 2171–2175, 2012.

[41] GCOV, GNU Compiler Community, 2022. [Online]. Available: https://
gcc.gnu.org/onlinedocs/gcc/Gcov.html

[42] GCC, GNU Compiler Community, 2022. [Online]. Available: https://gcc.
gnu.org/

[43] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proc. 25th
Int. Symp. Softw. Testing Anal., 2016, pp. 177–188.

[44] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to improve
fault localization,” in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Testing
Anal., 2017, pp. 273–283.

[45] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proc. 25th Int. Symp. Softw. Testing Anal.,
2016, pp. 165–176.

[46] Pearson Correlation Coefficient, Wikipedia, 2022. [Online]. Available:
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

[47] Fundamental Algorithms for Scientific Computing in Python, SciPy, 2022.
[Online]. Available: https://scipy.org/

[48] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proc. 10th ACM SIGSOFT Symp. Found. Softw. Eng., 2002, pp. 1–10.

[49] J. Holmes and A. Groce, “Causal distance-metric-based assistance for
debugging after compiler fuzzing,” in Proc. 29th Int. Symp. Softw. Rel.
Eng., 2018, pp. 166–177.

[50] B.-Y. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck, “Type-
based verification of assembly language for compiler debugging,” in Proc.
ACM SIGPLAN Int. Workshop Types Lang. Des. Implementation, 2005,
pp. 91–102.

[51] K. Hemmert, J. Tripp, B. Hutchings, and P. Jackson, “Source level
debugger for the sea cucumber synthesizing compiler,” in Proc. 11th
Annu. IEEE Symp. Field-Program. Custom Comput. Mach., 2003,
pp. 228–237.

[52] N. Krebs and L. Schmitz, “JACCIE: A java-based compiler-compiler
for generating, visualizing and debugging compiler components,” Sci.
Comput. Program., vol. 79, pp. 101–115, 2014.

[53] K. Ogata, T. Onodera, K. Kawachiya, H. Komatsu, and T. Nakatani,
“Replay compilation: Improving debuggability of a just-in-time compiler,”
in Proc. 21st Annu. ACM SIGPLAN Conf. Object-Oriented Program. Syst.,
Lang., Appl., 2006, pp. 241–252.

[54] A. M. Sloane, “Debugging Eli-generated compilers with Noosa,” in Com-
piler Construction. Berlin, Germany: Springer, 1999, pp. 17–31.

[55] J. M. Caron and P. A. Darnell, “Bugfind: A tool for debugging opti-
mizing compilers,” ACM SIGPLAN Notices, vol. 25, no. 1, pp. 17–22,
1990.

[56] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200,
Feb. 2002.

[57] S. Herfert, J. Patra, and M. Pradel, “Automatically reducing tree-structured
test inputs,” in Proc. 32nd IEEE/ACM Int. Conf. Autom. Softw. Eng., 2017,
pp. 861–871.

[58] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for c compiler bugs,” in Proc. 33rd ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2012, pp. 335–346.

[59] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided program
reduction,” in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 361–371.

[60] P. A. Kulkarni, S. Hines, J. Hiser, D. B. Whalley, J. W. Davidson, and D.
L. Jones, “Fast searches for effective optimization phase sequences,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2004,
pp. 171–182.

[61] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W. Davidson, and
D. L. Jones, “Fast and efficient searches for effective optimization-phase
sequences,” ACM Trans. Archit. Code Optim., vol. 2, no. 2, pp. 165–198,
2005.

[62] J. Chen, N. Xu, C. Peiqi, and H. Zhang, “Efficient compiler autotuning
via Bayesian optimization,” in Proc. 43rd Int. Conf. Softw. Eng., 2021,
pp. 1198–1209.

[63] H. Jiang, G. Gao, Z. Ren, X. Chen, and Z. Zhou, “Smartest: A surrogate-
assisted memetic algorithm for code size reduction,” IEEE Trans. Rel.,
vol. 71, no. 1, pp. 190–203, Mar. 2022.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 07,2024 at 13:35:06 UTC from IEEE Xplore.  Restrictions apply. 

https://llvm.org/docs/LangRef.html
https://www.llvm.org/docs/Passes.html
http://clang.llvm.org/
https://developer.nvidia.com/cuda-llvm-compiler
https://developer.nvidia.com/cuda-llvm-compiler
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://scipy.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


