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Abstract Recent studies have applied different approaches

for summarizing software artifacts, and yet very few efforts

have been made in summarizing the source code fragments

available on web. This paper investigates the feasibility of

generating code fragment summaries by using supervised

learning algorithms. We hire a crowd of ten individuals from

the same work place to extract source code features on a cor-

pus of 127 code fragments retrieved from Eclipse and Net-

Beans Official frequently asked questions (FAQs). Human an-

notators suggest summary lines. Our machine learning algo-

rithms produce better results with the precision of 82% and

perform statistically better than existing code fragment classi-

fiers. Evaluation of algorithms on several statistical measures

endorses our result. This result is promising when employing

mechanisms such as data-driven crowd enlistment improve

the efficacy of existing code fragment classifiers.

Keywords summarizing code fragments, supervised learn-

ing, crowdsourcing

1 Introduction

During software maintenance, software developers correct

faults in the source codes to improve the performance of the

system. While doing so, they either skim the code to find the

relevant parts or read the related documentation. In Ref. [1]
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the authors indicated that the developers often read the header

of a class or a method, leading comments (when available),

and parameters to understand the source code. However, in

most instances such leading comments are either missing (or

incomplete), or headers that contain the irrelevant words that

make it difficult for a developer to understand the source code

clearly. Thus, for understanding the source code, developers

have no other choice except to read the implementation of the

source code or documentation, which in-turn requires signif-

icant time and effort [1]. Automatic summary generation of a

source code overcomes this problem, leading to better under-

standing of a source code.

According to one estimate [2], developers spend 40% of

time on web for searching relevant source code examples

from source code documentations or code manuals or on-

line resources. Current research in software engineering has

mostly focused on the retrieval accuracy aspect but little on

the presentation aspect of code examples, e.g., how code ex-

amples are presented in a result page or in a documenta-

tion [3]. Code examples or more formally code fragments are

partial programs that serve the purpose of demonstrating the

usage of an application programming interface (API) [3].

In recent years, researchers have proposed a wide vari-

ety of studies, ranging from simple text retrieval (TR) tech-

niques (e.g., [1, 4–6]) to complex heuristic based techniques

(e.g., [7]), for generating source code summaries. On the ba-

sis of available literature, we can classify these studies into

four different categories. The first category includes studies
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based on text retrieval methods [1, 4–6] that generates 5–10

words summaries, while the second contains natural language

processing studies such as Refs. [8–10]. The third and the

fourth categories deal with code concern summaries gener-

ated through program analysis such as Ref. [7] and source

to source summaries of code examples, e.g., Ref. [3] respec-

tively.

Being new, unique, and promising, we select the fourth cat-

egory, i.e., source to source summaries of code examples as

our research direction. Figure 1 illustrates one code fragment

taken from the NetBeans FAQ “how can I add support for

Lookups on nodes representing my file type?”1) — the gen-

erated summary for this FAQ is marked in a bold text. This

code example describes the simplest way to create a muta-

ble lookup by using InstanceContent and AbstractLookup el-

ements of Netbeans project.

Fig. 1 A code fragment summary (in bold)

In this paper, we investigate the feasibility of summarizing

code fragments for better presenting a code example using

supervised machine learning algorithms [11]. Our approach

consists of following steps. First, we collect a corpus of code

fragments, containing 127 code fragments, extracted directly

from the Eclipse2) and NetBeans3) Official FAQs (Section

3). Second, we hire human annotators to suggest summary

lines, i.e., gold summary lines (annotation). Third, we in-

troduce crowdsourcing (data-driven) as a problem solving

model in software artifact summarization paradigm, as it has

not been employed before for software artifact summariza-

tion, for extracting code features. Fourth, we train two classi-

fiers namely support vector machines (SVM) and naive bayes

(NB) on code fragments (Section 5). Next, we evaluate the

effectiveness of these classifiers on different statistical mea-

sures such as Accuracy, Precision, Recall, F-Measure, True

Positive Rate (TPR), False Positive Rate (FPR), Receiver Op-

erator Characteristic (ROC), and Area under Curve (AUC)

curves (Section 6). In the end, we perform feature selection

analysis to rank and determine the importance of selected fea-

tures.

Our SVM classifier outperforms the NB classifier and

achieves the precision of 82%. This result is promising as

summaries with this level of precision achieve the same level

of agreement as human annotators with each other [3]. Fur-

thermore, our classifiers improve the performance of the ex-

isting classifiers [3] with higher precision and accuracy.

This paper makes the following contributions:

• It reports on the creation of 127 code fragments from

two well-known open source projects.

• It introduces data-driven crowd enlistment (small-scale

crowdsourcing) for extracting source code features

manually.

• It shows that our classifiers trained on code fragments

can generate good summaries.

• It demonstrates that our classifiers outperform the state-

of-the-art code fragment classifiers.

• It shows that our classifiers can improve the perfor-

mance of existing code fragment classifiers.

The remainder of this paper is organized as follows. Sec-

tion 2 provides overview of related work in summarizing

software artifacts and how our work differs from the exist-

ing work. Section 3 provides a complete detail about corpus

construction and annotation, while Section 4 discusses fea-

tures extraction through crowdsourcing. Sections 5 and 6 pro-

vide details about our classifiers i.e., SVM and NB, and their

statistical comparison and evaluation respectively. Section 7

concludes our paper and discusses future directions.

2 Related work

Summarizing software artifacts is a well researched area and

wide varieties of techniques are applied to software artifacts

such as bug reports and source codes. Other emerging phe-

nomenon, such as crowdsourcing, has been effectively used

in text summarization. Some of the related efforts to our work

are given below.

• Summarizing source code fragments To the best of

our knowledge, Ying et al. [3] first conducted a feasibility

study, using supervised learning approach for summarizing

code fragments, and focusing on presentation aspect of code

1) http://wiki.netbeans.org/DevFaqLookupForDataNode, verified 29-07-2014
2) http://wiki.eclipse.org/index.php/Eclipse, verified 24-09-2014
3) http://wiki.netbeans.org, verified 29-07-2014
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examples. They defined code fragments as partial programs

that served the purpose of demonstrating the usage of an API.

Any line in the summary is more important in the context of a

query and a syntax than any other line in a code fragment, and

thus a code fragment summary is shorter in size. As an initial

investigation, they exploited syntactic and query features of a

code fragment by applying machine learning techniques and

trained SVM and NB classifiers. Using these classifiers, they

achieved the precision of 71%.

Our work differs in following ways:

• We employ data-driven crowd enlistment for feature ex-

traction in an ad-hoc way by enrolling participants from

the same institution. As Ying et al. did not select fea-

tures by enlisting individuals in their work, our selected

features are substantially different and unique in this as-

pect.

• Our corpus size contains 127 code fragments extracted

from Eclipse and Netbeans Official FAQs. This corpus

size is larger than the corpus size in Ref. [3].

• We utilize the feature selection analysis to determine

the discriminability of the selected features. It also

helps us find important features and their effect on gen-

erating summary lines.

• Our SVM and NB classifiers trained on code fragments

attain the precision of 82%, which outperforms the ex-

isting classifiers.

Table 1 provides a summary of differences between ours

and the existing study in code fragments.

Table 1 Summary of difference between ours and the existing work

Our work Existing work

Corpus size: 127 code fragments Corpus size: 70 code fragments

Subjects: Eclipse and NetBeans Of-
ficial FAQs

Subjects: Eclipse Official FAQs

Feature extraction method: data-
driven small-scale crowdsourcing

Feature extraction method: un-
known

Precision: 82% Precision: 71%

Total features: 21 Total features: 49 claimed, 17 de-
scribed in study

• Summarizing bug reports Other efforts in software

artifact summarization have used bug reports as a reposi-

tory. Rastkar et al. [12, 13] proposed supervised machine

learning methods for summarizing bug report conversations.

They built an extractive summary by selecting some sen-

tences from the original bug report. Their approach employed

a logistic regression classifier trained on a corpus of 36 bug

reports extracted from Mozilla, Eclipse, Gnome and KDE

opensource projects. They achieved the precision of more

than 62% for the BRC classifier trained for bug reports.

In contrast, Mani et al. [14] employed unsupervised meth-

ods on the same set of bug reports used by Ref. [12]. They

proposed a heuristic based noise reducer that automatically

classify sentences into investigative, question, or a code snip-

pet for generating better summaries. They applied four gen-

eral purpose well-known unsupervised algorithms namely:

Centroid [15], Maximum Marginal Relevance (MMR) [16],

Grasshopper [17], and DivRank [18]. With this noise reducer,

they found that the summaries generated using four unsuper-

vised algorithms produced at least the same quality of sum-

maries as by supervised approach. In other efforts, Lotufo et

al. [19] proposed a page ranking algorithm for generating bug

report summaries considering the evaluation links, titles and

description similarity as important factors, on the same set of

corpus used by Ref. [12].

As bug repositories contain substantial knowledge about a
software development, there has been recent interest in im-
proving the use and management of this information. For Ex-
ample, correctly assigning a developer in a new bug and ad-
dressing a problem of data reduction in bug triage [20], and
extracting instances from bug reports [21].
•Crowdsourcing in text summarization Recently, there

is an increasing trend of using crowdsourcing as a model to

solve issues and challenges in different domains of software

engineering. However, in text summarization corwdsourcing

has not been applied much. Lloret et al. [22] first utilized

crowdsourcing to retrieve relevant information about place

or an object in the form of sentence to create short sum-

maries for a tourist — in the context of tourism industry.

Hong et al. [23] developed a model of extracting key con-

textual terms from unstructured data, especially from docu-

ments, with crowdsourcing — using term selection by fre-

quency and sentence building. In the same way, Mizuyama et

al. [24] applied crowdsourcing as a mean to generate abstrac-

tive summary of a document. This clearly shows that very few

efforts in text summarization have employed crowdsourcing

as a problem solving model.

We are the first to explore crowdsourcing in a data-driven

manner as a problem solving model on a smaller scale em-

ploying ten participants, specifically for summarizing source

code, and more specifically for code fragments, consequently,

which makes our study unique and innovative.

3 Code fragment corpus

We need a corpus of code fragments to train and judge the ef-
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fectiveness of our classifiers. Optimally, such a corpus would

have been made available before or created by experts in

the field of code fragment summarization. Previously, Ying

et al. [3] had collected a corpus of code fragments contain-

ing 70 code fragments from Eclipse Official FAQ. Since last

year, additional 8 code fragments have been added to Eclipse

FAQ, making the total number of code fragments to 78. As

the code fragments are increased, we can not decide what 70

code fragments are employed by Ref. [3].

In view of these observations, we decide to build a com-

paratively larger corpus by extracting more code fragments

not only from Eclipse but from NetBeans Official FAQs. Our

corpus, as a whole, contains 78 code examples from Eclipse

FAQ and 49 code fragments from NetBeans FAQ, making

127 code fragments in total. There are 57 additional code

fragments in our corpus from Ref. [3], i.e., 8 code fragments

from Eclipse and remaining 49 from NetBeans.

3.1 Corpus selection

We choose two authors to build a suitable corpus of code frag-

ments. Overall, both authors have two to three years of expe-

rience in software development and working with software

repositories. Besides, one of the authors has a programming

experience in industry and over three years of research expe-

rience in academia.

For selecting a suitable code fragment corpus, we investi-

gate different open source projects about the availability of

code fragments. During this collection process, we become

aware of that some open source projects such as Mozilla4)

have very few code examples available on web at same lo-

cation. Most of these examples are scattered over the devel-

oper’s wiki on different pages which makes it harder for au-

thors to collect. Therefore, as an initial investigation, we fo-

cus more on collecting the examples easily accessible and

available at a single uniform resource locator (URL) over

the web. After the extensive research, we select two projects,

Eclipse and NetBeans, which have code examples available

on FAQ pages, not distributed at different pages over the offi-

cial websites. In addition, we also discard those code frag-

ments which are written in programming languages other

than Java such as extensible markup language (XML) or hy-

pexText markup language (HTML).

Our corpus, in total, contains 2 262 lines of code (LOC).

This corpus size is comparable to the size of corpora in other

domains, for example, the BRC corpus [12] used to train a

classifier to summarize bug reports, and contains 36 bug re-

ports and 2 361 sentences. Our selected code fragments vary

in length: where the longest code fragment consists of 58

LOC while the shortest has 6 LOC. Out of total 127 code

fragments, 79 code fragments (62.2%) have between 6 to 15

LOC; the remaining 48 fragments (37.8%) have more than 15

LOC. Table 2 shows the distribution of code fragments w.r.t.

the number of LOC in our corpus. We employ all 127 code

fragments for the evaluation of summary classifiers.

Table 2 The distribution of code fragments in the corpus

Lines of code Number of code fragments

6 to 15 79

16 to 30 30

31 to 45 12

46 to 58 6

3.2 Code fragments annotation

The main reason of applying the annotation process is to ex-

tract gold summaries from the set of code fragments. For this

purpose, we recruit four postgraduate students from School

of Software in Dalian University of Technology, China.

These annotators have three to four years of software devel-

opment experience on different projects. All four annotators

are currently pursuing postgraduate degrees from the same

institution and possessing extensive domain knowledge in the

areas of software engineering and mining software reposito-

ries (MSR).

Each annotator is assigned the whole set of code fragment

corpus and we ask the annotators to select the prospective

summary lines by assigning “Yes” or “No” against each line

in a code fragment. After collecting the results from anno-

tators, we assign each sentence a value from zero to four,

based on the number of times the lines which have been as-

signed “Yes” by annotators. For each sentence the score is

zero, when it has not been selected by any annotator and is

four when all four annotators have selected it as a potential

candidate line for summary. For each code fragment, the set

of lines with a score two or more (a positive line) is called

the gold summary line (GSL). For our corpus, GSLs contains

601 lines, which are 26.5% of all lines in a code fragment

corpus. On average, each code fragment contains 17.81 lines,

and 4.73 lines per code fragment for gold summaries. The

standard deviation value of total number of lines in a code

fragment is 11.28 whereas, the standard deviation value for

number of lines in a summary is 2.18.

There is a common problem in annotation, i.e., the annota-

tors usually do not agree on the same summary. This reflects

4) mozilla.org verified 15-01-15
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the fact that summarization is a subjective process and there

is no any better summary for a repository [12]. To mitigate

this problem, we perform a Cohen’s kappa test (K-value) [25]

to measure the level of agreement among annotators. For our

corpus, the kappa K-value is 0.434, showing a moderate level

of agreement among annotators [26].

4 Features extraction using data-driven
crowd enlistment

We apply crowdsourcing mechanism to extract features. As

the crowdsourcing is done on a small-scale, involving ten

participants only, we call our crowdsourcing process data-

driven. Crowdsourcing is one of the emerging Web 2.0 based

phenomenon and in recent years has attracted great attention

from both practitioners and researchers [27]. It is used as a

platform for connecting people, organizations, and societies

to increase mutual cooperation among each other. In 2006,

Howe [28]5) first coined the term crowdsourcing and accord-

ing to him crowdsourcing is based on the notion that virtually

everyone can contribute a valuable information or participate

in an activity online through an open call. Academic scholars

from different disciplines have examined various issues and

applied crowdsourcing to resolve different issues and chal-

lenges [29]. A typical crowdsourcing process works in the

following way. An organization identifies tasks and releases

them online to a crowd of outsiders who are interested in per-

forming these tasks. A wide variety of individuals then offer

their services to undertake the tasks individually or collabo-

ratively. Upon completion, the individuals submit their work

to an organization which later evaluates it [28, 30, 31].

The subsequent subsections explain our application of

data-driven crowdsourcing for extracting source code fea-

tures and also provide brief details of some of the important

features.

4.1 Features extraction

For our study, we organize the crowdsourcing activity on a

small scale in the form of an open call on web (Intranet of

our institution). Altogether, ten individuals respond our call

and express their willingness to participate in performing fea-

ture extraction through crowdsourcing. On average, these in-

dividuals have three to four years of software development

and research experience, which is useful for understanding

the code snippets and extracting the required features from

these code fragments. Further, they have been provided with

a detailed help document explaining the tasks and the require-

ments for feature extraction. We ask participants to read ev-

ery line of code fragment and provide details about the fea-

tures contained in every line. We set aside 50 code fragments

from our corpus to motivate the participants for feature ex-

traction through corwdsourcing. They are requested to reply

back individually in seven days, with a document containing

line numbers, names and reasons for selecting a specific fea-

ture from a line in a code fragment. After a week, nine out

of ten individuals hand in their work (answers) the form of

a document. We evaluate the answers on the basis of avail-

able literature in source code summarization as well as our

experience in software development. In total, they extract 26

features from the given set of code fragments.

Our crowdsourcing platform works in an ad-hoc fashion,

i.e., extracting features through an open call in a manual

way by sharing data with individuals who want to partic-

ipate the selection process. As crowdsourcing requires the

cognitive power, which supplies through an online open call,

our crowdsourcing platform fully follows the true essence of

crowdsourcing.

While evaluating answers, we notice that some features are

repeated i.e., either having different wordings for describing

the same features or interpreted differently by participants.

For instance, “throws” keyword or a “try-catch block” are

selected as separate features by different participants during

features extraction. As both keywords serve the same pur-

pose, we consider these features as a single feature, i.e., “con-

tains an exception”, rather than two separate features. Simi-

larly, “extends” and “implements” keywords deal with inheri-

tance. We consider these keywords as a single feature as well,

i.e., “extends/implements keywords”.

We use the following criteria in selection of features. For

example, if a line contains a “throw” keyword such as “throw

new IllegalArgumentException (command)”, we mark it as a

feature, i.e., “contains an exception”. Similarly, if a line con-

tains “public final class AddActionActions implements Ac-

tionProvider”, and participants mark it as a “public declara-

tion of a class”, we consider it a feature too. After evaluation

and selection, we finalize 21 out of total 26 features provided

by participants.

As stated by [3], if a line contains a certain type of syn-

tactic construct, for instance, a line containing a try-catch

block or throwing keyword is likely to be in a summary of

a code fragment, whereas a line containing an if-else con-

dition tends not to be in a summary. Thus, we compare our

5) archive.wired.com/wired/archive/14.06/crowds_pr.html verified 14-01-15
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resulted features with the features provided by existing re-

search [3] and find some similar features in both studies. We

find that only five features are common in both studies. These

common features are “type is public”, “anonymous declara-

tion”, “instantiation”, “contains a comment”, and “contains

an assignment”.

As Ying et al. [3] did not provide the whole list of features,

we could not compare all features with their. However, we

believe that most of our features are different from the exit-

ing study. Table 3 provides a short description of the features

extracted through crowdsourcing and range of each feature.

Table 3 Feature numbers, names, and range

ID Description Range

1 Contains a class declaration 0 or 1

2 Contains a comment 0 or 1

3 Constructor call 0 or 1

4 Contains a method invocation 0 or 1

5 Contains an exception or a try-catch block 0 or 1

6 Contains instantiation 0 or 1

7 Mutator (setter methods) 0 or 1

8 Accessors (getter methods) 0 or 1

9 Assertion 0 or 1

10 Return statements 0 or 1

11 Annotations 0 or 1

12 Anonymous declaration 0 or 1

13 Part of method signature 0 or 1

14 Method parameters 0,1,2,3,...,n

15 The length of current line of code in a fragment 1,2,3,4,...,n

16 Public type signature of a method or a class 0 or 1

17 Assignment 0 or 1

18 .class literal 0 or 1

19 Array 0 or 1

20 Current location of code in a fragment 0 or 1

21 Extends/implements keywords 0 or 1

4.2 Features quality

Features acquisition is an essential step in training supervised

classifiers. Though manual extraction is considered time con-

suming and expensive, the possibility of extracting features

through internet is an appealing task and typically reduces

the over all cost [32]. However, it requires quality control

as participants could be experts or non-experts. To achieve

quality features we employ the “expert (on site)” feature ac-

quisition strategy partly inspired by Hsueh [32]. First, we

hire experts, belonging to the same institution as expertise

of participants affect the crowdsourcing results [33, 34]. Sec-

ondly, we provide participants with 50 code fragments only

as mentioned in Section 1. This has greatly reduced the par-

ticipants maliciousness, i.e., dishonesty in performing the re-

quired task [34].

4.3 Features detail

We categorize 21 features into four major groups.

• Keyword features are related to the keywords of the

source code in the code fragments. Examples include

keywords such as “extends”, “public”, and “return”

keywords.

• Length features are related to the length and location of

a code in a code fragment. Some examples are “current

location of a code in a fragment”, “the length of the cur-

rent line of a code in a fragment”, and “part of a method

signature”.

• Declaration features are belonged to instances, dec-

larations and assignments. Some of the features in-

cluded are “constructors”, “assignments”, and “anony-

mous declarations”.

• Other features contain features such as comments in a

source code, mutators, and accessors. They further in-

clude the structure and method calls in a code fragment.

Among the selected features, parts of them are similar in

the sense that they are used for referencing current or immedi-

ate objects, for instance, “this & super” keywords. Likewise,

there are two more features, getting and setting keywords,

dealing with accessing and mutating the values of a field.

Some other features such as “public” declaration of a class

or method, “the length of current line of code in a fragment”,

“part of a method signature” and “current location of code

in a fragment” are some of the unique and different features

from the existing research.

One special feature, “annotations”, also becomes a part of

our selected features. We consider annotations as a separate

feature for the reason that annotations are special elements

that provide messages to the Java virtual machine (JVM) and

can be useful for the readers in understanding the source

code. According to one of the individuals who have partic-

ipated in the corwdsourcing mentions that only those annota-

tions are suggested which deal with the reflection mechanism

of JVM. For instance, @ActionID6) taken from the NetBeans

FAQ7) deals with the retention (how long annotations are to

be retained in a system) and target of a code.

6) http://bits.netbeans.org/dev/javadoc/org-openide-awt/org/openide/awt/!ActionID.html, verified 29-07-14
7) http://wiki.netbeans.org/DevFaqActionAddJavaPackage, verified 29-07-14
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Other features such as, the “.class literal” return the in-

stance of a class that represents the type of a class object

while “class keyword” is related to class declarations. We

have also analyzed the comments written in the code frag-

ments. In code fragments, the examples are written by ex-

perts, and thus, the code fragments contain significant and

expedient comments. These comments can assist in extract-

ing extra information of the line in a code example. “Call to

the constructor”, “method invocation”, “anonymous declara-

tion”, “method parameters”, and “arrays” are the remaining

features extracted for our research. Figure 2 shows an exam-

ple of a code fragment taken from the NetBeans FAQ. Some

of the extracted features, shown in the example are marked in

bold.

Fig. 2 Some selected features from a code example (in bold)

The code fragment corpus, list of extracted features, and

the source code for classifiers is publicly available8) .

5 Summarizing code fragments

The code fragment corpus provides a basis for experimenta-

tion, which leads to producing code summary lines in turn.

The 21 source code features we have extracted from code

fragments are discrete variables with a binary value depend-

ing on if a line contains a feature — if a line contains a fea-

ture, we assign a value 1 otherwise 0. We conduct experi-

ments with two separate classifiers, support vector machine

(SVM) and naive bayes (NB).

We plan to investigate following two research questions

(RQs):

1) Can we produce good summaries with our classifier?

2) Can our classifiers outperform the results produced by

existing classifiers?

The answer to the first question will give us valuable in-

formation about the summaries generated by our classifiers

and the learning method for producing these summaries. The

answer to the second question aims at comparing the results

generated from our classifiers with existing classifiers and

baseline classifiers to evaluate the quality of our classifiers.

Generation of summaries with classifiers As we have

only the source code fragment corpus available for both train-

ing and testing the source code fragment classifiers, we use a

leave-one-out cross validation procedure.

In leave-one-out cross validation procedure, the classifier

employed for creating summary lines for a particular code

fragment is trained on the remainder of code fragment cor-

pus. To form the summary, we select one code fragment from

all code fragments and predict it over the classifier trained

with the remaining code fragments i.e., 126 code fragments.

We repeat this procedure until all fragments are trained and

predicted. The SVM classifier we employ is implemented us-

ing LIBSVM toolkit9) [35]. For implementing the NB clas-

sifier, MATLAB toolkit10) (NaiveBayes.fit) is used. Figure 3

illustrates our code fragment summarization process. First,

the corpus is created and 50 code fragments are set aside to

be used for crowdsourcing activity. These 50 code fragments

are passed to crowdsourcing individuals for feature extraction

suggestions. Our classifiers (SVM and NB), are trained using

a training set and a test set is predicted based on the train-

ing set. At the same time the annotators generate the gold

summaries. The summaries generated through classifiers are

evaluated using statistical measures later.

Algorithm 1 Pseudo-code for SVM algorithm

Input: Code fragments {C1,C2,C3, ...,C127}
Output: Classifier model M

1: Initialize Ci: test set, Co (others except Ci): train set

2: for all Ci such that 1 � Ci � 127 do

3: Use method svmTrain.main() and Ci to train the model M

4: Use method svmPredict.main() and Co to train the model M

5: end for

6: return model M

Performance of classifiers The existing code fragment

classifiers we choose to investigate are trained on code frag-

ments and developed by Ying el al. [3]. We compare their

8) http://oscar-lab.org/CFS/, verified 31-01-15
9) http://www.csie.ntu.edu.tw/cjlin/libsvm/, verified 24-07-14
10) http://www.mathworks.com.au/help/stats/naivebayes-class.html, verified 29-07-14
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Fig. 3 Our code fragment summarization process

performance with ours so that we can verify whether the pro-

posed classifiers can work better.

The second classifier that we choose as a baseline is a ran-

dom classifier. In a random classifier, an arbitrary choice in

the form of a coin toss is used to decide the fate of candidate

summary lines. The classifiers are binary classifiers, generat-

ing the values of either 0 and 1 or between 0 and 1, depending

on the parameter(s) passed during experimentation. It classi-

fies the elements of a given set into two groups on the basis

of classification rule.

The results show that our classifiers trained on code frag-

ments produce good summaries with high statistical signifi-

cance. Our classifiers also outperform random classifier and

improve the performance of existing classifiers presented in

Ref. [3]. One of the reasons of producing good summaries

is the feature selection process rather than manual feature

extraction. Feature selection is a major contribution of our

work. The RQs mentioned in this section are further ex-

plained in Section 6.

6 Analytical evaluation

In this section, we perform evaluation of our results including

the research subjects described in the previous section.

6.1 Statistical evaluation

We perform several statistical measures to evaluate the qual-

ity of our classifiers. We achieve this by comparing these

classifiers against the existing as well as random classifiers.

These measures are TPR, FPR, ROC and AUC. Furthermore,

Precision, Recall, and F-Measure measures are applied to an-

alytically evaluate the effectiveness of our classifiers. More

details are given in the subsections below.

6.1.1 Comparing base effectiveness

We perform following comparisons in order to evaluate

the effectiveness of our classifiers. The first comparison is

whether the SVM and NB classifiers produce better sum-

maries than a random classifier. In second comparison we

evaluate the performance of our classifiers by comparing

whether they outperform two baseline classifiers, namely

“the first-N-line classifier” and “the last-N-line classifier”.

The first-N-Line classifier constructs a summary of length N

by selecting the first N lines of a code fragment while, the

last-N-line classifier picks the last N lines for summary con-

struction. We plot the ROC curve and the AUC [36] to per-
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form these comparisons.

As described in Section 5, the output of a classifier for each

sentence is either zero or one. Thus, ROC measure is em-

ployed for determining the performance of a classifier at dif-

ferent probability threshold values of TPR and FPR. It works

in a way that first, we choose a probability threshold. Next,

we generate the summary lines by selecting all sentences with

probability values greater than the probability threshold [13].

For summary lines generated in this manner, FPR and TPR

are computed, which are then plotted as a point in a graph. In

our case, for each summary, TPR measures how many sen-

tences in GSL are actually chosen by a classifier.

The TPR of a code fragment C is computed by Eq. (1)

which is given as by:

TPR =
# lines selected from GSL of C

# lines in GSL of C
. (1)

The FPR of a code fragment C is opposite of TPR and is

computed by Eq. (2):

FPR =
# lines selected not in GSL of C

# lines in C but not in GSL
. (2)

Figure 4 shows the ROC curve of classifiers used in evalu-

ation. Our classifiers, SVM and NB, are depicted with ticker

lines and three baselines, random, first-N, and last-N with

thinner lines on the graph. The AUC is used as a measure

of the quality of a classifier [12]. A perfect classifier has an

AUC value of 1, while a random classifier has an AUC value

of 0.5. Therefore, a classifier should be considered effective

if its AUC value lies between 0.5 and 1. The AUC values

for our classifiers, SVM and NB are equal to 0.828 6 and

0.737 9 respectively. The AUC value of the first N lines is 0.6

while about the last N lines AUC value is 0.394. These values

indicate that our classifiers perform exceptionally well under

Fig. 4 ROC plots for classifiers

the given conditions. In addition, comparing our ROC curve

and AUC values with the existing classifiers [3] for code frag-

ments, it clearly shows that our SVM classifier outperforms

existing ones. The AUC values for existing classifiers are

0.806 and 0.772 respectively. The AUC value of NB is much

closer to the AUC value of an existing NB classifier.

6.1.2 Comparing classifiers

AUC is a measure of the general effectiveness of the classi-

fiers. However, for investigating the quality of SVM and NB,

when summaries are generated using predefined procedures

(Section 5), we need other statistical measures to compare

these classifiers. These measures are Precision, Recall, and

F-Measure. Furthermore, feature selection analysis is per-

formed in order to calculate the discrimination and impor-

tance among features.

Precision measures how often a classifier chooses a sen-

tence from GSL and is computed as shown in Eq. (3):

Precision =
# lines selected from GSL

# selected lines
. (3)

Contrary to Precision, Recall measures how many of the

sentences present in gold summary lines, are actually chosen

by the classifier. For a code fragment summary, the Recall is

the same as the TPR used in plotting ROC curves (Section 1)

and is computed as in Eq. (4).

Recall =
# lines selected from GSL

# lines in GSL
= TPR. (4)

As there is always a quality compromise between Preci-

sion and Recall, being desirable but different features, the F-

Measure is used as a harmonic mean to counter this problem.

F-Measure can be computed by Eq. (5):

F-Measure = 2 × precision ∗ recall
precision + recall

. (5)

Table 4 shows the Precision, Recall, and F-Measure values

for both SVM and NB classifiers averaged over all code frag-

ments. These results confirm that the SVM performs much

better than NB and baseline classifiers in our case study.

These results also demonstrate that both SVM and NB can

generate reasonably good summary lines, while SVM pro-

duce summaries with better statistical significance.

Table 4 Evaluation measures

Classifier Accuracy Precision Recall F-Measure

SVM 76.33 81.75 59.75 65.92

NB 71.21 69.41 43.29 50.33

First N Lines 60.4 53.14 45.23 48.06

Last N Lines 47.13 34.56 29.16 31.05
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Fig. 5 F-Measure plot for SVM and NB classifiers

Similarly, Fig. 5 shows the F-Measure values for SVM and

NB code fragment classifiers. This figure illustrates that the

F-Measure values for SVM are higher than that of the NB.

Table 5 gives the standard deviation values for all four classi-

fiers against every evaluation measure.

Table 5 Standard deviation value for each classifier

Classifier Accuracy Precision Recall F-Measure

SVM 0.127 166 0.216 34 0.213 142 0.180 532

NB 0.155 864 0.364 91 0.279 189 0.284 347

First N Lines 0.131 503 0.224 21 0.154 341 0.172 62

Last N Lines 0.131 714 0.206 691 0.156 31 0.167 354

We believe that the performance of classifiers may be af-

fected due to the different datasets rather than themselves.

For example, Hassan et al. [37] demonstrated that NB classi-

fier performed better than SVM in Wikitology. Therefore, it

is necessary to evaluate the performance of different classi-

fiers in our data sets. According to our experimental results,

SVM shows better performance than NB classifier, and NB

classifier performs better than random classifier.

6.2 Feature selection analysis

In our study, SVM and NB use a set of 21 features to gener-

ate summaries of code examples. The values of these features

for each sentence are used to compute the probability of the

sentence being part of the summary. As described in previous

sections, we compute different statistical measures to investi-

gate the effectiveness of classifiers and quality of summaries

generated by these classifiers. However, these measures do

not inform us of the importance of features or lines in a code

fragments. There, we perform a feature selection analysis to

find which features are more informative than others in gen-

erating summary lines.

6.2.1 Fisher Score for feature selection analysis in SVM

For this analysis, we compute the Fisher Score value for each

of the 21 features, using the approach proposed by Rastkar

et al. [12], which is further inspired by the Jaakkola [38]

work. Fisher Score is a simple filter technique, which com-

putes the discriminability of features in supervised machine

learning [12].

First, we measure the Fisher Score to decide the best sub-

sets for the given features. Next, we apply SVM classifier

to select the final best subset across different features. The

Fisher Score for feature selection analysis can be computed

using Eq. (6).

f (i) =
(x̄(+)

i − x̄i)2 + (x̄(−)
i − x̄i)2

1
n+−1

∑n+
k=1(x(+)

k,i − x̄i)2 + 1
n−−1

∑n−
k=1(x(−)

k,i − x̄i)2
, (6)

where x̄i, x̄(+)
i , and x̄(−)

i are the average of the ith feature of

the whole, positive, and negative data sets, respectively; x(+)
k,i

is the ith feature of the kth positive instance, and x(−)
k,i is the ith

feature of the kth negative instance. The numerator indicates

the discrimination between the positive and negative sets, and

the denominator indicates the one within each of the two

sets. Full details on Fisher-Score are provided in Refs. [39]

and [38].

This score is independent of classifiers. However, it de-

pends on the set of features and the training data [12]. The

larger the Fisher Score is, the more likely this feature is dis-

criminative [12, 39]. Therefore, the features with high Fisher

Score are more informative in determining the lines that

should be included in a summary.

Figure 6 shows the values of Fisher Score computed for

the features. The results show that the “the length of current

line of code in a fragment” and “part of method signature”
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are among the most helpful and frequently used features in

code fragments. Several features such as, “calling a construc-

tor”, “public type signature of a method or a class”, “acces-

sors (getter methods)” and “anonymous declaration” are next

frequently used features. These results suggest that we might

be able to train more efficient classifiers by combining callers

and keyword features of the source code.

Fig. 6 Fisher Score for features in the source code corpus

6.2.2 Feature selection analysis in SVM

After calculating the Fisher Score for each feature, we per-

form feature ranking on the basis of Precision, Recall, Accu-

racy, F-Measure11), and AUC values, using SVM classifier.

We perform this analysis to investigate the effect of features

or subset of features on the summaries of code fragments. To

rank the features, we calculate each measure in four folds and

in each fold the number of features is increased by 5, i.e., N =

5, 10, 15 and all, where N denotes features. We select first 5

features i.e., N = 5 and apply to all statistical measures. This

process is repeated with every fold — N = 5, 10, 15, until N

reaches all, i.e., N = all.

For N = 5, the Accuracy, Precision, Recall, F-Measure,

and AUC values are 75%, 80%, 50%, 62% and 74%, respec-

tively. When N = 10, there is a rise of approximately 6%

in AUC values, while, there is a little rise in other (remain-

ing) statistical measures. However, for N = 15 and all, either

there is no rise for all evaluation measures or the growth is

negligible. From above observations, we deduce that the first

ten features are the most important and distinctive features as

they have a profound influence on generating summary lines.

Figure 7 illustrates the AUC, Precision, Accuracy, Recall

and F-Measure values when different parameters of N are se-

lected (i.e., from N = 5 to all).

In short, the “the length of current line of code in a frag-

ment” and “part of method signature” features are most fre-

quently used features. The results also suggest us that the first

five features have keen effects on the values of statistical fea-

tures than others, and thus, these features are the most impor-

tant ones.

Fig. 7 Feature ranking in the source code corpus for SVM classifier

To further evaluate the effectiveness of each feature, we

calculate AUC, Precision, Accuracy, Recall, and F-Measure

values for every feature without any threshold value. We find

that, in this case, the feature 12 achieves the best results on all

statistical measures while feature 13 is the second best. Fig-

ure 8 illustrates the AUC, Precision, Accuracy, Recall, and

F-Measure values for every feature.

Fig. 8 Feature ranking for each feature (no threshold value) in the source
code corpus for SVM classifier

6.3 Threats to validity

There are four primary threats to our study, namely the size of

code fragment corpus, human annotation, the participants in a

data-drive small scale crowdsourcing activity and the manual

feature extraction.

11) This F-Measure is same as in Section 6.1.2
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While the size of the corpus is sufficient for initial exper-

imentation, we are limited in the size of the training set that

can be used to train our classifiers. We are inaccessible to use

a separate set of code fragments for training and testing. One

reason is that the code fragments are not easily available at

one place, rather that they are scattered over the Web at dif-

ferent URLs, making the collection process hard. Therefore,

there is no choice except to rely on the code fragments cor-

pus we create. We mitigate this problem by performing leave

one out cross validation to maximize the validity of our re-

sults. In future, we plan to construct a corpus containing code

fragments from different projects to produce more accurate

results for wide variety of code fragments.

The second threat to the validity is the annotation of code

fragments corpus by non-experts. Though we recruit four

post-graduate students having over three years experience

of software development for annotation, it might be possi-

ble that they are not experts in the programming language

in which code examples are written, i.e., Java programming

language. This might have distracted their attention to accom-

plish the task properly. Other case could be the possibility of

annotators to please the experimenters. In future, we plan to

reduce this risk by combining and evaluating summary results

from both classifiers and humans.

The third threat could be the participants employment for

crowdsourcing. It can happen that the participants contributed

on our open call for feature extraction might not be the au-

thority in specified field. As mentioned in Section 1, we dis-

card some features which show that some of the participants

are not competent enough or lacking enough knowledge to

understand Java programming language to perform feature

extraction properly. However, we assign fewer code frag-

ments (50) to these participants in order to minimize the risk

and encourage them to put all efforts in extracting features.

In future, we consider checking the expertise of participants

first, before assigning the task to reduce this risk.

As crowdsourcing requires obtaining needed services by

soliciting contributors online, the process could be manual

or automated. In our case, we employ individuals from the

same institute for extracting features from the set of code

fragments. As these individuals reside at one place, in gen-

eral, they extract features manually. Though manual feature

extraction is considered to be time consuming, error prone,

and in some cases infeasible due to the complexity of anal-

ysis, manual effort in crowdsourcing minimizes these draw-

backs. The reason is that participants have substantial expe-

rience and deep knowledge about software engineering, pro-

gramming, and research. Therefore, feature selection through

crowdsourcing has reduced the disadvantage of manual fea-

ture extraction considerably. In future, as an extension to this

study, we are developing an automatic tool to extract features

and corpus.

7 Conclusions and future work

Developers rely on better summaries to understand the tasks

at hand in a greater depth. Software developers often depend

on Web-searches looking for the source code required to un-

derstand the problem and resolve it. Code fragments are one

of the most effective and frequently desired documentations,

and searched on web, to assist developers in accomplishing

their tasks. Generally, these code fragments are not presented

well on the Web. Developer consumes a lot of time in find-

ing and understanding required fragments on Web — gen-

erating automatic summary lines for such fragments pacifies

the problem.

In this paper, we investigate the automatic generation of

code fragment summary lines using data-driven small-scale

crowdsourcing and supervised machine learning classifiers

(SVM and NB). We find that the existing code fragment clas-

sifiers generate summaries better than random classifier with

the precision of 71%. We also find that our classifiers out-

perform the existing classifiers with higher accuracy (76%)

and precision (82%). We introduce crowdsourcing on a lim-

ited scale in the field of summarizing source code repositories

and employ it as a phenomenon for extracting code fragment

features. With this level of precision, our summaries achieve

a high level of agreement as human annotators to each other.

This work creates new directions to improve the effec-

tiveness of the existing systems in summarizing software

artifacts, in particular code fragments, to enable developers

make better use of technologies and techniques. In our future

research, we plan to generate summaries through crowd-

sourcing on a large scale. We further plan to evaluate these

summaries using different classifiers trained on code frag-

ments.
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