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Abstract
celerating the software development, and expected to be trust-

Compilers are widely-used infrastructures in ac-

worthy. In the literature, various testing technologies have
been proposed to guarantee the quality of compilers. Howev-
er, there remains an obstacle to comprehensively characterize
and understand compiler testing. To overcome this obstacle,
we propose a literature analysis framework to gain insights
into the compiler testing area. First, we perform an extensive
search to construct a dataset related to compiler testing pa-
pers. Then, we conduct a bibliometric analysis to analyze the
productive authors, the influential papers, and the frequent-
ly tested compilers based on our dataset. Finally, we utilize
association rules and collaboration networks to mine the au-
thorships and the communities of interests among researchers
and keywords. Some valuable results are reported. We find
that the USA is the leading country that contains the most
influential researchers and institutions. The most active key-
word is “random testing”. We also find that most researchers
have broad interests within small-scale collaborators in the
compiler testing area.

Keywords software engineering, compiler-theory and
techniques, literature analysis, collaboration network, biblio-

metric analysis

1 Introduction

Compilers are important infrastructure tools in software de-
velopment, which provide syntax and semantics analysis for
programs, as well as code optimization to accelerate software
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upgrades. For example, the Security Engineering group at
Microsoft utilizes compilers to prioritize code review [1]; the
maintenance engineers at Hewlett-Packard improve the qual-
ity of code by removing compiler diagnostics in software sys-
tems [2].

However, compilers may also contain bugs, and in fact
quite many bugs are reported for widely-used compilers such
as GCC and LLVM [3]. Buggy compilers make a source pro-
gram optimized or translated into a wrong executable mod-
ule, which may behave differently from the expected behav-
ior determined by the semantics of the source program. Once
this happens, it can result in disastrous software failures es-
pecially in safety-critical domains. For instance, a bug in the
compiler of HAL/S had even caused the failure of the NASA
Shuttle software!. Even worse, developers with little knowl-
edge about compiler bugs customarily debug the software
they are developing rather than the compilers they are using,
which makes compiler bugs more difficult to be found [4, 5].
Therefore, guaranteeing the quality of compilers is a critical
issue.

Compiler testing is one of the most important ways to
guarantee the quality of compilers. According to the previ-
ous studies, there are three issues to be addressed: how to
generate adequate test cases to test compilers, how to find the
test oracles to determine whether a test case triggers bugs,
and how to reduce these test cases. Furthermore, two chal-
lenges are to be addressed. First, since the inputs of compil-
ers are complex programs with furcated syntax structures and
rigorous content constraints, undefined behaviors of language
specification make the first issue and the third issue be a chal-
lenge [9]. Second, since compiler testing lacks test oracles to
determine whether the outputs of compilers are semantic e-
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quivalent with the programs before they are compiled [6], the
test oracle problem makes the second issue be a challenge.
During the past decades, a great number of researchers
have proposed different approaches for addressing the above
issues. Some successful random test case generators have
been implemented to facilitate compiler testing [16, 20, 21],
such as Orion [5], Csmith [9, 10, 28], Quest [11, 12], rand-
prog [13], and JTT [15].
generate abundant test programs for compilers without un-

All of them can automatically
defined behaviors. Simultaneously, various compiler test-
ing techniques have been proposed to mitigate the test ora-
cle problem, such as differential testing [4,22], random test-
ing [21,25], Equivalence Modulo Inputs (EMI) [5], mutation
testing [26], and metamorphic testing [27,30]. By employing
the above testing techniques, a large number of compiler bugs
can be detected. In addition, several reducers have been de-
veloped to minimize the test cases, such as Berkeley Delta?,
C-Reduce [28], and CL-Reduce [31]. Thus, a set of small and
valid test cases that trigger the same bugs as original ones can
be reported to developers.

However, as the number of related papers increases, there
are few efforts to systematically identify, analyze, and clas-
sify the influential researchers, the state-of-the-art testing
technologies, the collaborations among authors, and the co-
occurrence of keywords, which results in an obstacle to char-
acterize and understand compiler testing. In this study, we
employ a systematic and comprehensive literature analysis
framework to overcome the obstacle. First, we perform an ex-
tensive search to identify papers related to compiler testing,
and extract the most important information from papers for
the consequent analysis, such as the title, the keywords, and
the author(s). Then, we conduct a bibliometric analysis to i-
dentify the most influential authors and papers, as well as the
widely-used compiler testing technologies, so as to present
an external overview of the compiler testing area. Last, we
construct three collaboration networks to analyze the com-
munities of authors and keywords, which can present internal
evidence on the influential authors and hot topics in this area.

The major contributions of this paper are summarized as
follows:

e We conduct a bibliometric analysis for compiler testing
literature. The results show that the USA is the most
influential country with a large number of excellent re-
searchers and institutions in the compiler testing area. In
addition, various types of compilers are tested, ranging
from C++, Java to Pascal, whereas C compilers draw

2) http://delta.tigris.org/
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much attention from academia.

e We combine association rule mining and collaboration
analysis to construct three networks, including the co-
authorship network, the author co-keyword network,
and the keyword co-occurrence network. The results
show that most researchers have broad interests in the
compiler testing area. These researchers distribute in
several scattered communities. The keywords “test case

9

generation”, “automated testing”, and “random testing”

frequently co-occur in compiler testing.

The paper is structured as follows. Section 2 illustrates the
challenges and the corresponding solutions in compiler test-
ing. We demonstrate the components of literature analysis
framework in section 3. Then, Section 4 shows the findings
from bibliographic and collaboration analyses. Section 5 pro-
vides an overview of related work. Section 6 concludes our
paper and discusses the future direction.

2 Background of compiler testing

In this section, we briefly introduce the challenges and solu-
tions to the three issues in compiler testing.

2.1 General compiler testing process

Compilers can transform the source program written in high-
level language into language-independent machine code, and
different compilers can transform the source program into
distinct binaries under various build environments [8]. The
process of transformation is called compilation which can be
divided into three parts, i.e., frond end, middle end, and back
end. In the frond end, the program can be transformed into in-
termediate code after the lexical analysis, syntactic analysis,
and semantic analysis, in which the structure and the static se-
mantic correctness of the program are verified. Then, in the
middle end, the quality of intermediate code can be improved
by machine-independent optimizers. Last, the code generator
creates an executable file for the target machine according to
the optimized intermediate code in the back end.

In most cases, each part of transformation may contain
bugs, thus comprehensive tests should be conducted to guar-
antee the quality of compilers [9]. The general process of
compiler testing is illustrated in Fig. 1, including three main
issues. The first issue is the test case generation. The gram-
mar of language is guided to generate test cases and the ex-
pected outputs. Several useful tools such as Quest and Csmith
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can randomly generate abundant test cases for testing compil-
ers. In the second issue, test cases as inputs of the compiler
under test are executed, and the actual outputs are obtained.
By employing different testing methods, such as differential
testing, random testing, and metamorphic testing, the actu-
al outputs are compared against the expected outputs. For
example, in differential testing, a test case can be compiled
under a golden reference compiler and a test compiler. The
expected output is the behavior of the golden compiler, and
the actual output is generated by the test compiler with the
same test case input. If there is any difference, a bug man-
ifests in the compiler under test. The last issue is to reduce
test cases which can trigger compiler bugs. Several reduc-
ers can be applied to minimize test cases, such as Berkeley
Delta and C-Reduce. Once the size of a test case is small e-
nough, the bug can be reported to developers for analyzing
the test alarms and further fixing [72]. However, each issue
remains challenges that should be addressed. We present the
challenges and some solutions to these challenges in the fol-
lowing subsections.

GCC/LLVM / Open64 / OpenCL ...
)

Compiler Oracle data

Tools : Csmith / Quest / randprog ... [ under test
)

4

Test case
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Fig. 1 General process of compiler testing

2.2 Test case generation issue

We illustrate the challenge in the test case generation issue
and the solutions in this subsection.

There are several commercial test suites to test the quality
of compilers, such as PlumHall®, SuperTest4), GNU Com-
piler Collection”, and AC-TEST?. Other test suites such as
ACVC test suite, CppTestCase, Pascal Validation Suite, and
COBOL validation tests are also employed by researchers for
testing compilers. However, it is theoretically impossible to

3 http://www.plumhall.com/suites.html

R http://www.ace.nl/compiler/supertest.html
5) http://gcc.gnu.org/install/test.html

6) http://www.actest.co.uk/

guarantee the correctness of compilers within a finite test suit-
e. Actually, there are still many bugs in widely-used compil-
ers, such as GCC and LLVM.

Random test case generation is an effective way to gener-
ate abundant test cases. Due to the reason that different lan-
guages are based on distinct language specifications, gener-
ating valid test cases that satisfy the corresponding language
grammars is a much more difficult issue. In the case of C
language, undefined behaviors make this issue a challenge.
Undefined behaviors, such as zero division, signed overflow,
and invalid pointer, may result in false positives. In other
words, bugs are triggered by erroneous test case structures
or erroneous data, rather than the compiler under test. Since
possible undefined behaviors of C language may cause unex-
pected results and terminating execution, test cases must are
free from these undefined behaviors.

The Purdom’ algorithm [60] is an early prominent algo-
rithm to generate test cases based on grammar rules, and
has been extended to other test case generation approach-
es [61,62]. Then, gaussian elimination [14] is applied to an
industry example to test Fortran90D compiler. In addition,
an ASM-based montages framework is proposed to generate
test cases for mpC parallel programming language compil-
er [68], and find a lot of inconsistent places in the Montages
specifications, as well as bugs in the compiler. After that, a
tool named Quest can randomly generate test cases without
undefined behaviors focusing on testing the consistency of C
compilers. Randprog, another random C program generator,
aims at detecting bugs in compiling accesses to volatile ob-
jects. JTT, an integrated tool, is driven by test specification to
automatically generate test cases for UniPhier compiler. Sub-
sequently, Csmith extends and adapts Randprog to find bugs
in C compilers, utilizing random C programs with complex
control flow and data structures, such as pointers, arrays, and
structs. Furthermore, CLsmith [16] has been proposed for
many core compiler testing based on Csmith. However, nei-
ther Csmith nor CLsmith generates test programs for floating
point test, which remains a challenge in the further test case
generation.

More recently, Epiphron tools [4] targeted compiler warn-
ing bugs support nearly all the language structures of the C
language. Other semantics and skeleton equivalent test cas-
es are generated based on metamorphic testing and Skeletal
Program Enumeration (SPE) [65] respectively, to accelerate
compiler testing. As so far, abundant test cases have been
prepared to feed into compilers. Simultaneously, the expect-
ed outputs of these test cases should be collected.



2.3 Test oracle issue

In this subsection, we illustrate the challenge in the test oracle
issue and the solutions to the challenge.

Given a test case to a compiler under test and a test in-
put to the test case, the task to distinguish the expected and
correct behavior of the test case from the potential incorrect
behavior is called the “test oracle problem” [29]. However,
the challenge is that it is difficult to determine whether the
observed behavior is correct, because the expected behavior
is difficult to be accurately described. In the literature, sever-
al approaches have been proposed to mitigate this issue. We
categorize these approaches into two groups, namely the dif-
ferential testing and the metamorphic testing.

Differential testing needs two or more compilers under the
same specification to determine whether there is a bug by
comparing the behaviors of these compilers given the same
test cases as inputs. There are three strategies to implement
differential testing, i.e., cross-compiler strategy [20], cross-
optimization strategy [25], and cross-version strategy [4].
Cross-compiler strategy detects bugs by comparing the be-
haviors produced by different compilers; cross-optimization
strategy compares the behaviors of different optimizations
implemented in a single compiler, whereas cross-version s-
trategy uses different versions of a single compiler to deter-
mine whether there is a bug. However, to the best of our
knowledge, there are only a few formal verification compil-
ers that can be used as a golden reference compiler for test-
ing compilers, because of the difficulty of formal verification
problem [23,24]. As aresult, differential testing has its weak-
ness when new programming languages are involved.

Notably, metamorphic testing introduces an alternative
view on differential testing. If the behaviors of a set of se-
mantically equivalent test cases dissatisfy the metamorphic
relations, there is a bug manifests in the compiler under test.
The advantages of metamorphic testing are that the approach
can not only mitigate the test oracle problem, but also can
be regarded as an effective complement to differential test-
ing, especially when there are no available reference compil-
ers. Furthermore, Equivalence Modulo Input (EMI) which
is derived from metamorphic testing adopts the equivalence
relation under a set of oracle data as the metamorphic re-
lation. The key insight behind EMI is to compare the re-
sults of source test case and its equivalent variants under
the same oracle data to determine whether there is a bug
in a compiler. Any detected deviant behavior on the same
oracle data indicates a bug in the compiler. In fact, EMI
has three instantiations, i.e., Orion, Athena [58], and Her-
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mes [59]. Orion stochastically prunes program statements
in dead regions. Athena utilizes Markov Chain Monte Car-
lo optimization to guide both code deletions and insertions
in dead regions, and Hermes allows mutations in both live
and dead regions to help more thoroughly stress test com-
pilers. An empirical study [6] shows that different testing
approaches are effective at detecting distinct types of compil-
er bugs. Cross-optimization strategy is more effective at de-
tecting optimization-related bugs, and cross-compiler strate-
gy can substitute EMI and Cross-optimization strategy in de-
tecting optimization-irrelevant bugs. It is time consuming to
test software, test case prioritization is a challenging task to
accelerate software testing [7], especially in compiler test-
ing [67].

2.4 Test case reduction issue

We present the challenge in the test case reduction issue and
the corresponding solutions in this subsection.

To report a compiler bug, a test case that triggers the bug
must be as small as possible because it is more difficult to
reproduce due to the lengthy bug reports with diverse sen-
tences and large size of test case [17]. In most cases, test
cases are manually reduced which is laborious and time-
consuming. Automatic test case reduction is required to help
minimize test cases before reporting them to compiler devel-
opers. However, in the case of C language, undefined behav-
iors make this issue a challenge, because the test case should
be free from undefined behaviors during the reduction pro-
cess, and the reduced test case must trigger the same bug as
the original one.

There are several reducers to automatically reduce test
cases, including Berkeley Delta, C-Reduce, and CL-reduce.
Berkeley Delta is based on delta debugging algorithm which
reduces test cases at line granularity. C-Reduce is a state-of-
the-art tool for reducing C programs which refers to abundan-
t static and dynamic analyses to avoid undefined behaviors.
Subsequently, C-Reduce is extended to CL-reduce which
Anoth-
er approach adopts top-down minimization and bottom-up

provides test case reduction for OpenCL kernels.

minimization algorithms alternately to reduce a tree structure
constructed by arithmetic expressions until there is no space
to minimize any more [18]. As a result, a test case with thou-
sands of lines of code can be reduced to a few lines. How-
ever, all these reduction approaches only support single-file
program reduction, whereas multiple-file programs reduction
and real-world projects reduction still require further efforts.

Conclusion. The compiler testing area includes three cru-
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cial issues, i.e., the test case generation issue, the test oracle
issue, and the test case reduction issue. In order to address
these three issues, two challenges need to be avoided, i.e., the
undefined behaviors in test cases and the test oracle problem.
In the literature, several approaches and tools are proposed
to address these challenges. In order to investigate which
approaches and tools are frequently employed when testing
compilers, we conduct a bibliometric analysis, and present
the results in Section 4.

3 Framework

The whole framework consists of three components, i.e., the
dataset, the bibliometric analysis, and the collaboration anal-
ysis, as shown in Fig. 2. First, we construct a dataset con-
taining the most important information of papers related to
compiler testing in the dataset component. Then, the biblio-
metric analysis component provides three modules to present
an overview of compiler testing. Last, we constructs three
networks in the collaboration analysis component to present
the internal evidence on collaborations between researchers
and their interests. We detail each component of the frame-
work in the following subsections.

3.1 Dataset

To construct the dataset, we refer to the processes of re-
view study to find relevant published papers in journals and
conference proceedings. We search three major online aca-
demic search engines, i.e., IEEE Xplore7), ISI Web of Sci-
ence (WoS)®, and Scopus”. These search engines are wide-
ly accepted in review studies [45,46], and support advanced
search. Then, we define a search string “compiler AND (test
OR bug)”, and limit the search within titles, abstracts, and
keywords for paper selection. We do not limit a specific
published time or journal/conference when conducting the
searching. Therefore, the papers in our initial dataset are pub-
lished before February 2018.

Since the focus of this paper is on compiler testing, many
papers that target compiler verification and other software
testing are included in our searching results. Thus, it is nec-
essary to define comprehensive inclusion/exclusion criteria to
select only the papers that provide evidence supporting for
compiler testing.

For the inclusion criteria, we include the:

7) http://ieeexplore.ieee.org
8) http://apps.webofknowledge.com
%) https://www.scopus.com

e Research papers that describe at least one compiler test-
ing technology.

o Cases studies and surveys of compiler testing experi-
ences.

e Papers of reference lists that are relevant to compiler
testing.

For the exclusion criteria, we exclude the:

Papers that are not published in English.
e Resources of papers that are not available online.

Short papers that are less than four pages.

Papers that are duplications.

Papers that are not related to compiler testing.

With the above search string, we find 6,731 papers in our
initial dataset. We conduct the paper selection process, and
present the collection of the number of papers after perform-
ing each criterion in parentheses as shown in Fig. 3. First,
we check their titles to remove duplicates, and obtain 4,776
papers. Second, we excluded those papers that are less than
four pages, and are not written in English. After applying this
step, 711 papers are filtered. Then, we check the titles, key-
words, and abstracts to eliminate irrelevant papers. In other
words, only a paper describing the solutions to at least one is-
sue in the compiler testing area is included in our dataset. We
find that most papers are filtered out in this step because these
papers are related to compiler verification or other software
testing process. It is time-consuming and laborious work to
exclude irrelevant papers. Nonetheless, we design and con-
duct such a concise search string to describe the compiler
testing area and include many more papers that may be re-
lated to this area in the initial dataset. Manually checking
on the papers can ensure that most papers related to compiler
testing are included in our dataset, and filter out those papers
that do not focus on compiler testing issues. Thus, only 51
papers are left in our dataset after this step. Last, we apply
the same selection criteria to the reference lists of the selected
51 papers to find additional papers. Nine papers that are not
retrieved by the search keywords are included. Finally, we
obtain 60 papers related to compiler testing for the following
procedures.

We design a data extraction form to collect needed infor-
mation to support the bibliometric analysis and the collabo-
ration analysis, as shown in Table 1. In addition to the bib-
liographic information of title, keywords, abstract, author(s),
institution(s), country, and published year, the data form also
includes the citation number of each paper which is collect-
ed from Google Scholar'?, the identified subject of compiler

1) http://scholar.google.com
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under test, the tools and the methods used for test case gener-
ation, and the types of compiler testing technologies.

Table1 Extraction data item and description

Data Item Description

Title Title of paper

Author Authors’name of paper

Abstract Abstract of paper

Keywords Keywords presented on paper
Institution Institution of author

Country Country of author

Published year Year that the paper was published
Citation Citation number of paper

Subject Types of compiler under test

Data generation Tools/methods proposed to generate test
case

Compiler testing technology ~ Types of testing method used

When we collect the bibliographic information from pa-
pers, we find that not all of the selected papers contain key-
words due to the different formatting template of differen-
t journals/conferences. To accurately analyze the keyword-
s, we furnish keywords information of these papers by ex-
tracting three keywords from the abstract information using
the TextRank [47] algorithm, which is a graph-based ranking
model for text processing, and has been successfully used in
natural language applications for term identification [48,49].
We select at least three keywords by the TextRank algorithm

for each paper in the following analyses.

However, the items of subject, data generation, and com-
piler testing technology cannot be directly extracted from pa-
pers. For these pieces of information, we employ three post-
graduates of Dalian University of Technology to manually
identify the relevant items. Each of them needs to scan each
paper to answer the following questions:

e What types of compilers are tested in the paper?

e How the test cases are generated for compiler testing?

e Which testing technology is employed when testing
compilers?

We adopt the most consistent answers for each question.
If there are no consistent answers to a question, we invite
another three postgraduates to answer the question until there
is a consistent agreement.

All the needed information of selected papers in the data
extraction form is constructed into our dataset. Subsequently,
we conduct bibliometric analysis and collaboration analysis
based on this dataset, and detail these analyses in the follow-
ing subsections.

3.2 Bibliometric analysis

The bibliometric analysis consists of three modules, i.e., the
productivity analysis, the impact analysis, and the content
analysis. We show the details of each module in the following
subsections.

3.2.1 Productivity analysis

The productivity analysis is mainly used to identify the most
productive authors, institutions, countries, and popular topics
in the compiler testing area. Thus, we calculate the number
of papers for each author, institution, and country to identify
the most productive ones. In order to avoid the ambiguity of
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the authors with the same name, we calculate the published
number of each author with the institution when the paper is
published. Once there are authors with the same name but
different institutions, we check the homepage of authors to
distinguish them. In addition, if the authors of a paper are
from different institutions and counties, we calculate the dis-
tinct institution and country for once.

Then, we count the frequencies of keywords to identify
the most popular topic and the trends of several popular top-
ics. Notably, we delete the keywords “compiler testing” and
“compiler bugs” when calculating the frequency of keyword-
s, since the keywords are our search strings and the focus of
this study.

3.2.2 Impact Analysis

The impact analysis is used to identify the influential authors
and papers in the compiler testing area. We detail the mea-
surement of the impact of papers and authors as follows.

1) Impact of papers: The motivation behind this indicator
is that, the higher the citation number is, the higher impact
of a paper receives. We use Google Scholar to find all pa-
pers’ citation number before February 3", 2018. However,
the newly published papers tend to have a smaller citation
number compared with the previous ones. Therefore, we use
Normalized Citation Impact Index (NCII) [50] which consid-
ers the impact of a publication’s longevity to solve this issue.
The score of NCII can be calculated as follows:

Total citation per referenced publication )

NCII = Publication Longevity(inyears)

Publication longevity indicates the number of years that a
paper has been in print. With respect to this paper, the year
2018 is considered as the end point of the period.

2) Impact of authors: We utilize individual contributions
of papers to measure the impact of authors. Specifically, we
employ Adjusted Citation Score (ACS) [51], to calculate the
individual contributions based on both papers’ number of the
author and the citation number of each paper.

Given a set of papers P={pj,...p,} and a set of published
numbers N={ny, ...n,,}, each paper p; in P has been published
by the corresponding n; authors in N in our dataset. Then, the
score of ACS is defined as follow:

ACs =) Nl )

pEP

We modify the calculation of ACS, and replace the citation
number of each paper with the score of NCII. Thus, equa-

tion 2 evaluates a paper’s quality by the corresponding NCII
value.

3.2.3 Content analysis

The content analysis is used to identify the frequently used
compilers, popular test case generators, and testing technolo-
gies. Thus, we analyze the frequency of each compiler under
test, the widely-used test case generator and the test suite, the
compiler testing technology, and the approach based on the
manual extraction data items in our dataset.

3.3 Collaboration Analysis

The collaboration analysis is mainly used to reveal the co-
operative relationships between authors and their interests.
Thus, we generate three collaboration networks, i.e., the co-
authorship network, the author co-keyword network, and the
keyword co-occurrence network, to realize this analysis. We
construct these networks because the collaborations between
authors can be directly reflected in the co-authorship network,
the common interests among authors can be found in the au-
thor co-keyword network, and the core topics in compiler
testing can be detected by similar keywords in the keyword
co-occurrence network. We also employ community detect-
ing algorithm [53] to find different communities in networks.
In addition, all networks are visualized as undirect graphs,
because the collaborations among authors and keywords can
be undisputedly viewed as parallel.

3.3.1 Collaboration networks associations

The information of authors and keywords are needed to con-
struct the networks. In the co-authorship network and the au-
thor co-keyword network, the nodes stand for authors, while
the nodes in the keyword co-occurrence network stand for
keywords. Specifically, we use association rule mining [52]
to help mine useful collaboration associations.

As we are interested in constructing collaboration net-
works, we need to identify the frequent pairs of collabora-
tions between authors and keywords. In the co-authorship
network, a pair of authors is a frequent item if the proportion
of the number of papers that are co-authored by this pair of
authors is above the minimal support threshold #;. Similar-
ly, in the author co-keyword network, if the proportion of the
number of papers that are organized using the same keywords
by a pair of authors is above the minimal support threshold,
we incorporate this pair of authors into frequent items. In
the keyword co-occurrence network, a pair of keywords is a



frequent item if the proportion of the number of papers that
are organized with this pair of keywords is above the mini-
mal support threshold. An association rule is generated from
such pair if the confidence of this rule is above the minimal
confidence threshold z.. The confidence threshold is calculat-
ed as the proportion of the number of papers that contain the
frequent pair of collaborations compared with the number of
papers that contain only the first one in the frequent pair.

Given the mined association rules, we can construct three
collaboration networks. Each network is an undirected graph
N = {A/K, E, W}, where the node set A/ K contains authors or
keywords that appear in the association rules. The link set £
contains undirect links that connect two authors or two key-
words, and the weight set W represents the confident attribute
indicating the strength of association rules.

3.3.2 Community detection

A network can consist of a large number of authors or key-
words, as well as links between them. In graph theory, a node
would be tightly linked with other relevant nodes, but loosely
linked with irrelevant nodes. A set of highly correlated nodes
is referred to as a community in the network. For example,
in the author co-keyword network, authors with the same in-
terests are most likely to be a community, because most of
them focus on a specific topic in compiler testing. We use
the Louvain method [53] implemented in the Gephi [54] tool
to detect communities in the networks. The Louvain method
partitions each network into a finite number of communities
by using an iterative modularity maximization method, rather
than requiring users to specify the number of communities.
The modularity is defined as follow:

0= > [viy— 5] oei ), 3)

i

where the d-function is 1 if nodes i and j belong to the same
community, otherwise the d-function is 0. Also, the V;; is 1
if the two nodes i and j are linked, otherwise the V;;is 0. m
indicates the number of links in the network, and the d; rep-
resents the degree number of the node i. Each node must be
assigned to a specific community. Intuitively, the links in the
same community will enhance the density of the network, and
perform a positive effect to increase the modularity, whereas
the links across different communities have a negative effect
on modularity.

Compiler Testing: A Systematic Literature Analysis

3.3.3 Visualizing the networks

We use the Gephi [54] tool to visualize the collaboration net-
works. Forceatlas2 layout [63] is used to achieve spatializa-
tion, because this layout is convenient to investigate different
communities. Nodes and links in the same community are
shown in the same color, whereas the nodes and links are
shown with different or similar colors in different communi-
ties. The size of a node (author/keyword) represents the num-
ber of collaborations. The larger a node is, the more authors
or keywords collaborate with the node. The thickness of links
represents the strength of associations rules. The wider a link
is, the more times that the two nodes collaborate with each
other. However, the length of links bears no meaning in this
paper due to the use of Forceatlas2 layout.

4 Results and Analysis

In this section, we present the results of the analyses based on
our framework using the constructing dataset. In particular,
we investigate the following research questions:

RQ1. What are the influential authors, institutions, and the
trends in the area of compiler testing?
RQ1.1 What are the productive authors, institutions or
countries?
RQ1.2 What are the frequent keywords and the trends
of popular topics?
RQ1.3 What are the influential authors and papers in
the area of compiler testing?
RQ2. What are the research situations of compiler testing?
RQ2.1 What compilers are frequently tested?
RQ2.2 What test cases and testing technologies are em-
ployed when testing compilers?
RQ2.3 How to reduce the large test cases before report-
ing?
RQ3. What are the author communities and topic communi-
ties in the compiler testing area?
RQ3.1 What are the relationships among authors of
compiler testing?
RQ3.2 What are the same interests of authors?
RQ3.3 What are the frequent co-occurrence keywords
in the area of compiler testing?

We conduct the bibliometric analysis to help mine infras-
tructural information of compiler testing to address the for-
mer two main questions. Then, we conduct the collabora-
tion analysis to explore the relationships among authors and
keywords to address the last main question. In addition, we
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visualize the collaboration networks to characterize the col-
laborations more clearly.

4.1 Investigation to RQI1

We detect a large number of excellent authors and institution-
s that plays major roles in the development of the compiler
testing area by conducting the productivity analysis and the
impact analysis. In the following subsections, we only list
some top-ranked results due to space restrictions.
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Eric Eide
Andrei Lascu
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Xuejun Yang
Yang Chen
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Dan Hao
Yingfei Xiong
Hongyu Zhang
Bing Xie

A. Kalinov

A. Kossatchev
V. Shishkov
Eriko Nagai

Fig.4 The most productive authors

4.1.1 RQI.1 What are the productive authors, institutions

or countries?

As for the statistical account of authors and institutions, we
list the number of published papers for each author and insti-
tution in Fig. 4 and Fig. 5, respectively. The results show that
several authors, such as Zhendong Su, Vu Le, and Chengni-
an Sun, have published more papers related to compiler test-
ing. In addition, most productive authors have collaborations
with others. For example, top three productive authors have
co-published seven papers in our dataset. Other researchers
also make many contributions to promote the development of
compiler testing. When calculating the number of papers for
each institution, we find that many universities have multiple
campuses which are usually located in different areas, and
have different research contributions. Thus, we distinguish
each campus of a university, and find that the branch campus

Number of paper
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University of California at Davis I

University of Utah

Institute for System Programming
of Russian Academy of Sciences

Imperial College London
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Pusan National University
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Fig. 5 The most productive institutions
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Fig. 6 The number of papers and ratio for countries/regions

of University of California at Davis has published the most
papers in the compiler testing area.

In addition, we present the number of papers and the ra-
tio of per country/region in Fig. 6. The results show that the
USA is the leading country with 30 published papers in our
dataset, which is consistent with the results obtained in pre-
vious studies for ranking analyses of both paper quantity and
quality [55]. We can also notice that Japan, the UK, China,
and France are the most active countries, which indicates that
the researchers in these countries tend to pay more attention
to compiler testing.
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Fig. 8 The trends of top six keywords

4.1.2 RQI1.2 What are the frequent keywords and the trends
of popular topics?

We also investigate the frequencies of keywords, and list
the top-ranked keywords that occur more than three times
in Fig. 7. The top three active keywords are “random test-
ing”,
first keyword and the third keyword focus on mitigating the

test case generation”, and “automated testing”. The

test oracle problem, and the second keyword aims to address
the difficulty in test case generation.

In addition, we analyze the trends of several keywords. As
the papers in our dataset are published from 1976 to 2017, we
split the papers into six periods. We accumulate the frequen-
cies of top six keywords on each period to analyze the trends
of them, as shown in Fig. 8. We can observe that the keyword
“test case generation” has a sharp increase during 1997 and
2003, while presenting a smooth increase after 2003. Indeed,
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test case generation is a difficult task in compiler testing, and
the existing generator tools are only prepared for several lan-
guages. In the future, there would be more generator tools
to improve testing compilers that support various languages.
Notably, the keyword “random testing” attracts much more
attention after 2010, and becomes the most popular keyword
in recent years. Simultaneously, the keyword “automatic test-
ing” also shows a sharp increase during the past decade. The
reason may be that as an automatic test case generation tool,
CSmith, is proposed in 2011, enormous test cases are gener-
ated, making the random testing and automatic testing pos-
sible. Furthermore, as the compiler is generally of complex
structure and the functionality of generating target machine
code is the only concern, randomly automatic testing based
on enormous test cases is critical in comprehensive testing
compilers [56]. Other keywords also show a great increase
after 2010, such as test-case reduction, which is an emerging
topic in recent years.

Table2 Top scores of ACS

no. author name score
1 John Regehr 23.00
2 Eric Eide 22.07
3 Yang Chen 18.47
4 Xuejun Yang 17.66
5 Zhendong Su 14.14
6 Vu Le 13.81
7 William M. McKeeman 10.40
8 Robert Mandl 9.97

9 Mehrdad Afshari 8.00

10 Chengnian Sun 6.14

4.1.3 RQI1.3 What are the influential authors and papers in

the area of compiler testing?

As for the impact of authors, we calculate each ACS score,
and list the top ten authors in Table 2. We can observe that
John Regehr, Eric Eide, Yang Chen, Xuejun Yang, and Zhen-
dong Su have higher ACS scores, which indicates that they
are excellent researchers in the compiler testing area. Fur-
thermore, we also investigate that most of these authors have
published more than four papers in our dataset, such as Zhen-
dong Su, Ve Le, John Regehr, and Eric Eide, which implies
that authors with more published papers tend to have higher
impact in the compiler testing area.

As for the impact of papers, we calculate the NCII score of
each paper, and list the top ten influential papers in Table 3.
From the table, we can see that the most influential paper fo-
cuses on addressing the difficulty in test case generation, and
creates a tool, Csmith, which can detect many unknown com-
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piler bugs. We can also observe that most papers in top ten
are published in the last decade, whereas only two papers are
published in the period of eighties and nineties. As for the t-
wo early papers, one paper published in 1998 is the first time
to propose differential testing technology to test C compilers,
and emphasize the importance of avoiding undefined behav-
iors when generating C test programs, which attracts many
following researches. The other paper published in 1985 de-
signs an algebraic method for testing Ada compiler, which is
widely-used to generate optimal test cases in software testing.

Answer to RQ1: By conducting the productivity analysis
and the impact analysis, we find that the USA is the most in-
fluential country with a lot of excellent researchers and insti-
tutions in the compiler testing area. The keywords “random
testing” and “automated testing” show a sharp increase in re-
cent years and tend to be the most popular keywords from
academia.

4.2 Investigation to RQ2

We detect the most frequently tested compilers, popular com-
piler testing technologies, and available tools by conducting
the content analysis.

4.2.1 RQ2.1 What compilers are frequently tested?

We calculate the frequencies of tested compilers used by re-
searchers, and list the number of papers of tested compilers in
Fig. 9. Notably, most papers use various types of compilers
that support the same language or one type of compiler with
different optimization levels. The results show that C compil-
ers are frequently tested by most papers, especially GCC and
LLVM/Clang. In fact, GCC [3] is a compiler system support-
ing various languages and target architectures. LLVM [57] is
another popular compiler infrastructure, and has drawn much
attention from academia. Other compilers supporting differ-
ent languages also attract researchers to test their correctness,
ranging from C++, Java to Pascal. As a result, the quality
of compilers is critical for any language, and the compilers
should be comprehensively tested.

4.2.2 RQ2.2 What test cases and testing technologies are
employed when testing compilers?

In order to test compilers, test cases are needed as the in-
puts of compilers (see Section 3.2). To effectively generate
abundant test cases that conform to language standards and
specifications, many approaches and tools are proposed to
generate random test cases without undefined behaviors. We
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identify each test case generator, and list the frequencies of
these generators in Fig. 10. The results show that most test
cases are generated based on the language grammar rules and
the coverage criteria. Several tools are frequently adopted by
researchers, such as Csmith, Quest, CLsmith, Orange4, rand-
prog, Epiphron, and JTT, whereas test suits are rarely em-
ployed because of the limitation of definite test cases. As for
the automatic test case generators, Csmith is the most widely-
used tool for C language test case generation, because Csmith
covers a broad range of syntax of the C language, including
arrays, structs, conditional statements, loop statements, and
function calls, which is more expressive than other tools. In
addition, several approaches can also generate abundant test
cases. For example, Purdom’ algorithm is a popular approach
which generates test cases based on the language specifica-
tions, and has been extended by other test case generation
approaches. Other approaches based on metamorphic testing
and SPE can generate a set of semantic equivalence test cases
as the inputs of compilers.

Number of paper
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Csmith
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CLsmith e
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Tools

Randprog ==
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é Practice collection
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Others

2 ACVC test suite

'UE.) CppTestCase

% Pascal Validation Suite
=

COBOL validation tests
Fig. 10 Test case generation tool/approach

After the test cases are fed into compilers, we need to em-
ploy testing technology to test compilers based on these test
cases (see Section 3.3). Different testing technologies are
proposed to guarantee the quality of compilers as shown in
Fig. 11. Random testing and differential testing are the two
most frequently used technologies. Both of these two tech-
nologies can test compilers using randomly generated test
cases as long as time allows. The view behind the differential
testing is that if more than two compilers under the same test
cases produce different results, there is a bug in at least one
compiler. EMI derived from metamorphic testing attempts
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Fig.9 Compiler under test supporting different languages

to construct equivalence-preservation relations to generate e-
quivalent test cases for testing compilers. In addition, EMI is
simple and widely applicable, which has been employed by
many researchers. Mutation testing, as a trade off between the
efficiency and the effectiveness in compiler testing, detects a
mutant if errors manifest in a mutant, which is adopted by
several researchers. Other testing approaches, such as Opti-
mizer Testing Kit approach [64] and SPE approach, are also
employed by researchers to test different compilers, and show
their own effectiveness on bug detection.
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Others

Fig. 11 Different compiler testing technologies
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Fig. 12 Tools of test case reducer

4.2.3 RQ2.3 How to reduce the large test cases before re-
porting?

Once a test case triggers a bug, the test case should be re-
duced before reporting, because large test cases are tedious
and time-consuming for developers to find the root cause of
the bug (see Section 3.4). Several automatic reducers are de-
veloped to help reduce large test cases, and ensure that the
reduced test cases still trigger the same bug, and do not in-
troduce new undefined behaviors. We identify each reducer
employed by researchers, and list the frequencies of these re-
ducers in Fig. 12. C-reduce is the most popular reducer due
to the high efficiency and effectiveness on reducing test cas-
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es. Berkeley Delta and CL-Reduce are also adopted by re-
searchers when there is a need to reduce the large size of test
cases. Another reduction approach [18] employs top-down
minimization and bottom-up minimization algorithms to re-
duce the arithmetic expressions to a small program.

Answer to RQ2: By conducting the content analysis, we
find that C compilers are frequently tested by academia, and
random testing is the most popular testing technology. In ad-
dition, several tools for test case generation and reduction are
available for the public, such as Csmith and C-reduce. How-
ever, the number of papers implementing test case reduction
is much smaller than that of test case generation, which also
encourages researchers pay more attention on the large test
case reduction, even for the real world projects.

4.3 Investigation to RQ3

We explore the relationships among authors and their inter-
ests by two collaboration networks using association rules,
i.e., the co-authorship network and the author co-keyword
network. In addition, we analyze the relationships between
the frequent co-occurrence keywords by the keyword co-
occurrence network. In the following subsections, we present
and analyze the collaborations in these networks.

4.3.1 RQ3.1 What are the relationships among authors of
compiler testing?

We present the collaboration relationships among authors in
the co-authorship network. Actually, the number of authors
in this network is affected by the minimal support 7, and the
minimal confidence ¢.. When the minimal #, is set to 0.017,
and the minimal 7. is set to O, all the frequent pairs of authors
will be included in the network. Thus, the co-authorship net-
work has the maximum number of authors in the compiler
testing area.

The co-authorship network is shown in Fig. 13 which con-
tains 119 authors and 229 links, and includes 27 authorship
communities with the modularity of 0.893. In Fig. 13, au-
thors in compiler testing distribute in several scattered com-
munities, which only 32 authors (27% rate) collaborate with
more than five authors, and only one author (0.8% rate) col-
laborates with more than ten authors. The strength of collab-
orations is in a small rang from one to six cooperative times,
and only five pairs of authors (2.18% rate) collaborate with
each other more than three times. These communities are
isolated from each other, among which seven communities
follow an edge structure, six communities follow a triangle
structure, four communities follow a quadrilateral structure,
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while the other ten communities follow a complex network
structure. In the following discussions, we only discuss the
ten complex communities, and use the high degree author or
the productive author to represent a community, such as the
John Regehr community and the Junjie Chen community.

In Fig. 13, the John Regehr community is the most com-
plex community with 14 collaborators and 51 links. In this
community, John Regehr is the central author, and has other
13 collaborators, especially collaborating with Eric Eide for
four times. John Regehr is also a productive author in Fig. 4,
and receives the most highest ACS score in Table 2. Oth-
er productive authors also appear in this community, such as
Yang Chen and Xuejun Yang. All of these authors have broad
collaborations that form the biggest community in the com-
piler testing area. In the Junjie Chen community and the Ish-
tiaque Hussain community, there are eight and seven collabo-
rators respectively. Each pair of the collaborators in these two
communities has co-authored papers in our dataset. Specifi-
cally, there are three co-authored papers related to compiler
testing in the Junjie Chen community as shown in Fig. 4.

The other seven complex communities have more than five
collaborators, and surround with several productive authors,
such as Zhendong Su and Alastair F. Donaldson. Although
there are only five authors in the Zhendong Su community,
all the authors dominate the state-of-the-art technologies on
compiler testing. Another two communities, i.e., the Alastair
F. Donaldson community and the Nagisa Ishiura community,
have several strong associations among collaborators, while
other four complex communities have more collaborators but
weak associations.

We also investigate the determining factors of the co-
authorship phenomenon, and the impact of papers affected
by the collaborations. In our dataset, the authors of more
than half of papers are from the same institution, and of more
than two thirds papers are from the same country. For exam-
ples, all the authors in the Zhendong Su community are from
the University of California at Davis, and all the authors in
the Junjie Chen community are from China. Furthermore,
collaborations can increase the number of papers, as well as
the accepted rate for publication in a conference or journal.
However, the quality of co-authored work is the most critical
factor on the acception for a top conference or journal, which
can greatly improve the influence of a paper. In fact, collabo-
rations can certainly improve the quality of work, especially
collaborating with some productive authors, such as the most
influential papers listed in Table 3, which has received much
more citation numbers from academia.
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4.3.2 RQ3.2 What are the same interests of authors?

In this subsection, we analyze the interests among authors
using the author co-keyword network. Similarly, given the
minimal support 7, of 0.03, if the minimal confidence ¢, is set
to 0.09, authors that published more than two papers using
the same keywords more than three times are included in this
network. We set this pair of parameters in association rules
because it can significantly detect the same interests among

productive authors, and present a clear topological structure
in the network.

The author co-keyword network is shown in Fig. 14. We
can see that there are six communities clustered by 29 authors
and 65 links. Each community is composed of authors with
the same topic because the authors in a community tend to
use the same keywords. Thus, different communities share
different topics in the compiler testing area. As the same in
co-authorship network, we use the high degree author or the
productive author to represent a community, such as the Alas-
tair F. Donaldson community and the Junjie Chen communi-
ty.

In Fig. 14, six communities are isolated from others. A-
mong these communities, the largest community is dominat-
ed by Alastair F. Donaldson, who is interested in graphics
shader compilers and many-core compiler testing, and focus-
es on CLsmith and CL-reduce tools for test case generation
and reduction. Furthermore, this community is composed
of three collaboration communities in co-authorship network,
namely the John Regehr community, the Alastair F. Donald-
son community and the Qiuming Tao community, as shown
in Fig. 13. The Zhendong Su community aims at issues of
test case generation and compiler testing technology, such as
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SPE and EML

The other three isolated communities have the same col-
laboration communities as Fig. 13 shows. The Junjie Chen
community aims to prioritize test cases for compilers to ac-
celerate the process of compiler testing [66,67]. The A. Kali-
nov community focuses on test case generation for mpC com-
piler [68], and the Heung Seok Chae community is interested
in test case reduction for retargeted compilers [62,73].
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Fig. 15 Author co-keyword network

4.3.3 RQ3.3 What are the frequent co-occurrence keywords
in the area of compiler testing?

In this subsection, we present the major topics and the links
between keywords by the keyword co-occurrence network.
‘We analyze the structure of this network mined at the minimal
support ¢, of 0.033. When the minimal confidence ¢, is set to
0, all the keywords that occurred more than two times are in-
cluded in this network. We select these parameters due to two
reasons. First, 33.64% frequent keywords can be included in
this network when the minimal set is 0.033. Second, we can
discover a clear topological structure among these frequent
keywords.

The keyword co-occurrence network is shown in Fig. 15
which consists of 37 keywords and 117 links, and forms five
communities with the modularity of 0.248. We use the high
degree node or the major topic to define a community. Fur-
thermore, to avoid the ambiguity with nodes in a community,

Compiler Testing: A Systematic Literature Analysis

we use the first-word-capitalized name to refer to a commu-
nity, such as the Compiler Test community.

In Fig. 15, most communities have complex links with
each other. We can see that a central keyword ‘“compiler
testing” is linked with most keywords in these communities.
In addition, two keywords “random testing” and “test case
generation” have strong associations with the central key-
word, indicating that these two keywords are the most im-
portant topics related to compiler testing, and attract more
researchers to focus on. Simultaneously, these three core
keywords dominate the largest community in this network
which we define as the Compiler Test community. In this
community, there are 17 keywords, including the issues and
the solutions related to compiler testing, such as “test-case

ELIT3

reduction”,

EEIT3

equivalent program variants”, “random program

generation”, and “differential testing”, which defines a fine-
grained category of compiler testing. Another three keyword-

9

s, namely “efficiency”, “effectiveness”, and “test case priori-

tization”, also surround with a high degree keyword “random
testing”, which form a community aimed at improving the
performance of compiler testing technologies.

The Compiler Validation community is also a relatively
larger community that contains nine keywords which focuses
on test case generation for many core compilers. This com-
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s

munity surrounds with keywords “gpus”, “opengl”, “concur-

CLINY3

rency”,

LLIT3

testing coverage”,

LEINT3

idation”,

ELINT3

static analyzers”, “compiler val-

9 ¢

programming languages”, “compilers”, and “meta-
morphic testing”. However, two other communities are rel-
atively smaller. The keywords in these two communities are
linked with each other which referred as the Program Verifi-
cation community and the Retargeted Compiler community,

respectively.

Answer to RQ3: With the analysis of the co-authorship
network and the author co-keyword network, we find that the
co-authorship in the compiler testing area distributes in sev-
eral scattered communities. Authors in the same institution
and the same country tend to collaborate with each other. In
addition, most productive authors have broad interests, and
the collaborations with the productive authors can improve
the influences of papers to a certain extent. By constructing
the keyword co-occurrence network, we find that the test case
generation and the test oracle problem are the two most criti-
cal issues in compiler testing, which surround with abundant
relevant keywords.
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5 Related work

The most relevant work is literature analysis. In this section,
the majority of related work can be classified into two aspect-
s, i.e, the bibliometric analysis and the collaboration analysis.

5.1 Bibliometric analysis

A large number of bibliometric studies have been published
in software engineering. Wohlin et al. [32-35] analyzed the
highly cited papers in software engineering published from
1999 to 2002. Wong et al. [36-38] identified top-15 re-
searchers and institutions for two five-year periods between
2008 and 2011. The rankings were based on the number
of published papers from seven leading software engineering
journals.

Focusing on the sub-areas of software engineering, Souza
et al. [39] presented a bibliometric analysis for ten years of
search-based software engineering that covered 740 papers
from 2001 to 2010. Jiang et al. [40] constructed a publica-
tion analysis framework to present some important domain
knowledge for mining software repositories. Some recent
systematic mapping studies also included bibliometric analy-
sis of sub-areas of software engineering, e.g., web application
testing [45].

In previous work, Garousi et al. [41] conducted the first
quantitative bibliometric analysis in total about 60% of the
software engineering literature, and reported interesting find-
ings, such as the USA is the clear leader, but the contributions
to software engineering by the American researchers have de-
creased from 71.43% (in 1980) to 14.90% (in 2008). More
recently, Garousi et al. [42] utilized automated topic analysis
to characterize and understand massive software engineering
literature.

5.2 Collaboration analysis

The co-authorship network aims to find the cooperative rela-
tionship among authors. Velden et al. [43] studied patterns
of collaboration in the co-authorship networks with the da-
ta obtained from Web of Science. They identified two types
of coauthor-linking patterns between authorship communities
with the name disambiguation. But they distorted the topo-
logical structure of the co-authorship networks in some cases
because a small set of common surnames are widely used in
some East Asian countries. Madaan et al. [44] found inter-
esting features in the co-authorship network, such as the col-
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laborations between researchers is increasing over time, and
few researchers published a large number of papers in DBLP
Computer Science Bibliographic database.

Su et al. [55] created a three-dimensional research, focus-
ing on a parallel network, i.e., the keyword co-occurrence
network, and a two-dimensional knowledge map to visualize
the knowledge structure using the data of journal papers.

The difference between our work and previous work is that
we employ both bibliometric and collaboration analyses for
compiler testing literature analysis. In the bibliometric anal-
ysis, we not only distinguish the authorsaf names with their
institutions to avoid ambiguities, but also combine the ACS
score and the NCII score to measure the impact of authors.
In the collaboration analysis, we first incorporate the social
network and the data mining technique to construct the co-
authorship network, the author co-keyword network, and the
keyword co-occurrence network to help mine useful collabo-
rations.

6 Conclusion & Future work

In this study, we present a literature analysis framework, to
comprehensively characterize and understand the compiler
testing area. We illustrate how each component works in
the framework and obtain some useful information after con-
ducting each component. The major contributions of this pa-
per include two aspects. In the aspect of bibliometics anal-
ysis, we find that the USA dominates the area of compil-
er testing, having a large number of influential researcher-
s, such as Zhendong Su, Vu Le, and Chengnian Sun. The
keyword “random testing” is the most frequently used key-
word by researchers, and C compilers are the most frequent-
ly tested compilers. In the aspect of collaboration analysis,
we construct three collaboration networks, and find that col-
laborations with productive researchers can improve both the
accepted rate and the quality of papers in the co-authorship
network. In addition, we detect several researchers with the
same interests in the author co-keyword network, and some
fine-grained categories of compiler testing in the keyword co-
occurrence network.

Although the previous work has proposed various solu-
tions to the issues existing in the compiler testing area, there
still remain several interesting challenges that need to be ad-
dressed in the future, such as using the real-world projects to
test compilers, reducing test cases for multiple files, improv-
ing both the effectiveness and efficiency of compiler testing
technologies, etc. In the future, we will focus on these chal-
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lenges to improve test compilers and hope more researchers

devote to compiler testing to boom this area.
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