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Abstract—The emergence of numerous fork-based development
platforms facilitates the development of Open-Source Software
(OSS) projects. Developers across the world can fork software
projects and submit their Pull Requests (PRs) to the projects.
However, as the number of forks increases, numerous duplicate
PRs might be submitted. These duplicate PRs may cause extra code
review workload and frustrate developers working on the projects.
To detect duplicate PRs, many approaches have been proposed,
which analyze the similarity of different elements in PRs. However,
previous approaches still suffer from unsatisfied detection accuracy
due to two challenges. That is, they ignore the syntactic structural
information of text elements in PRs and lack the joint reasoning
between different elements of two PRs. In this study, we propose
an automated duplicate PRs detector named DupHunter (Duplicate
PRs Hunter), which includes a graph embedding component and a
duplicate PRs detection component to address the above challenges.
The graph embedding component uses a feature graph to represent
a PR. It encodes the syntactic structure and semantics of text
elements (e.g., the title and the description), as well as the knowl-
edge of non-text elements (e.g., the submission time), to address
the syntactic structural information challenge. The duplicate PRs
detection component tackles the joint reasoning challenge using a
graph matching network, which enables the information exchange
and matching across different elements of two feature graphs with
an attention coefficient mechanism. Experiments on 26 open-source
projects show that DupHunter achieves an average F1-score@1
value of 0.650, significantly outperforming the state-of-the-art ap-
proaches by 3.2% to 48.1%. DupHunter can accurately detect
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duplicate PRs, with an average Precision@1 value of 0.922 and an
average Recall@1 value of 0.502.

Index Terms—Duplicate pull requests detection, fork-based
development, open source, graph embeddings, text processing.

I. INTRODUCTION

THE widespread use of fork-based development [1] fa-
cilitates the development and evolution of Open-Source

Software (OSS) projects, which enables developers around the
world to collaborate online [2], [3], [4], [5], [6], [7]. In the
collaborative coding process, developers can clone any software
repository to make their desired modifications [8], [9], [10],
[11]. These modifications can be integrated into the software
repository once they are accepted. Since fork-based develop-
ment helps developers collaborate efficiently, the number of
OSS projects using the fork-based mechanism is increasing.
Many collaborative coding platforms (such as GitHub [12] and
GitLab [13]) also start to support this mechanism, which in turn
attracts more developers to make contributions to OSS projects
on these platforms productively [14], [15], [16].

The manifestation of a contribution in fork-based develop-
ment is called a Pull-Request (PR), which contains the title,
the description, and the patch content modified by a developer.
These PRs mainly aim to fix bugs or implement new features in
the project. For example, the OSS project Rails1 has received
more than 23,000 PRs during software development [17]. Al-
though fork-based development is widely used [14], it also intro-
duces new problems to the software development process. Since
fork-based development is essentially an inconsistent distributed
process, duplicate PRs can be submitted as the number of forks
increases in projects [18], [19]. Gousios et al. [1] summarize
the reasons of rejected PRs in 291 projects on GitHub. They
report that 23% of the rejections are due to duplicate PRs. The
large number of rejections caused by duplicate PRs can have the
following negative effects on the projects.
� Duplicate PRs increase the workload of project maintainers

to review code changes [1], [18], [20], [21]. Especially
for some popular projects, maintainers have to manually
review PRs from thousands of developers [22], [23]. Yu
et al. [24] study PRs from 26 popular projects on GitHub.
They find that an average of 2.5 reviewers participate in
the discussion of a duplicate PR and 5.2 review comments
are generated before a duplicate PR is identified.

� Duplicate PRs may lead contributors to be more frustrated,
and get doubtful about the project maintainers if duplicate
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PRs are improperly managed [24]. Contributors can be
frustrated and even conflict with project maintainers if
contributors spend a lot of time and effort to discuss a
PR with project maintainers (i.e., 5.2 review comments
on average), which is later considered to be duplicate.
Huang et al. [25] investigate 170 online software projects
with open-end survey questions. They find that when con-
flicts are mismanaged, developers tend to depart from the
projects. Also, negative emotions such as frustration and
anger may cause contributors to leave.

Several approaches have been proposed to detect duplicate
PRs [26], [27], [28]. These approaches either calculate the
similarity between different elements of two PRs (e.g., the title or
the description of PRs) or construct features (e.g., the number of
overlapping in changed files) to build discriminative prediction
models to analyze duplicate PRs. Although these approaches can
provide a list of potentially duplicate PR pairs to developers, to
accurately detect duplicate PRs, two challenges are still required
to address.

Challenge 1. Ignoring Syntactic Structural Information: Pre-
vious works [26], [27], [28] consider the title and the description
of PRs as text features to detect duplicate PRs. They represent the
text features as a series of word tokens to calculate the similarity
of two PRs. Such approaches only focus on the frequency of
words but overlook the syntactic structural information of text,
namely the long-distance and non-consecutive word interac-
tions. Since the title and description written by different de-
velopers vary significantly, the frequency of words cannot fully
capture the underlying relationships of the syntactic structure of
text features.

Challenge 2. Lacking joint reasoning between PRs: Previous
works separately measure the similarity of each element (e.g.,
title) between two PRs [26], [27], [28]. They then train a clas-
sifier with these separate similarity values to predict duplicate
PR pairs. These approaches lack the joint reasoning on two PRs,
namely the ability to measure the similarity between different
elements of two PRs. Since PRs are written by different devel-
opers, it is common that the description or other elements of a
PR are incomplete. In this case, the similarity of such elements
between two duplicate PRs is low, thus misleading the classifier
trained by the existing approaches. Hence, it is important to
take different PR elements as a whole and fully consider the
information exchange and similarity across PR elements.

To solve these challenges, we propose an automated dupli-
cate PRs detector named DupHunter (Duplicate PRs Hunter).
DupHunter includes two main components, namely the graph
embedding component and the duplicate PRs detection compo-
nent. In the graph embedding component, we summarize the
text features (e.g., the title and the description) and non-text
features (e.g., the time interval of two PR submissions) that
characterize the content of a PR. We use a graph structure to
capture these features from PRs. For the text features, we use
a sliding window co-occurrence mechanism to construct a text
feature graph, where graph embedding and word embedding are
used to reflect both the structure and the syntax of the text. For
the non-text features, the value of each feature is considered as
a separate node, which is then aggregated into the text feature

graph to form a final feature graph to solve Challenge 1. Based
on the feature graphs of two PRs, the duplicate PRs detection
component applies a graph matching network to detect duplicate
PRs. We calculate the cross-graph attention coefficients between
two graphs to consider the joint reasoning of two PRs, allowing
us to solve Challenge 2. This component then maps each feature
graph into an embedding vector. We calculate the similarity of
two PRs in the vector space and recommend a list of duplicate
PRs to project maintainers and developers based on the similarity
of PRs.

We conduct comprehensive experiments on a public
dataset [24], containing 26 projects on GitHub with 2,323 pairs
of duplicate PRs, to evaluate the effectiveness of DupHunter. We
compare DupHunter against three state-of-the-art duplicate PRs
detection approaches [26], [27], [28]. Experimental results show
that DupHunter achieves an average F1-score@1 value of 0.650,
outperforming the comparative approaches by 3.2 pp to 48.1
pp (with pp = percentage points). DupHunter can accurately
detect duplicate PRs, with an average Precision@1 value of
0.922 and an average Recall@1 value of 0.502. We also analyze
the factors affecting the effectiveness of DupHunter. We find
title, description, and the time interval of two PR submissions
are important for duplicate PRs detection.

The main contributions of this work are as follows.
� We propose a novel approach named DupHunter for detect-

ing duplicate PRs in fork-based development. DupHunter
utilizes a graph embedding component and a duplicate PRs
detection component to address the challenges in duplicate
PRs detection.

� Extensive experiments are conducted to evaluate the effec-
tiveness of DupHunter. DupHunter can accurately detect
duplicate PRs, significantly outperforming the baselines,
in terms of multiple evaluation metrics.

� We release DupHunter as a replication package for im-
proving the efficiency of fork-based development [29].
Developers can take DupHunter as a tool to reduce their
time and effort, which are wasted on analyzing duplicate
PRs in practice.

The remainder of this paper is organized as follows. Our
motivation is discussed in Section II. The main components of
DupHunter are introduced in Section III. Experimental setups
and experimental results are presented in Sections IV and V,
respectively. We discuss practical implications in Section VI.
Related works are shown in Section VII. Finally, Section VIII
concludes this work and introduces future work.

II BACKGROUND AND MOTIVATION

In this section, we first introduce the fork-based development
process used by OSS platforms such as GitHub. Then we use
two examples to justify our motivation.

A. Fork-Based Development

As the latest distributed development paradigm [1], fork-
based development is a lightweight model that allows developers
to easily collaborate with or without explicit coordination. De-
velopers can start development from an existing code repository
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Fig. 1. Overview of forked-based development.

by cloning it to their local repository. They can independently
make any necessary modification to the local repository and
submit the modification to the original repository through the
PR mechanism [30]. Fig. 1 shows the main steps of fork-based
development [19]:

a) Fork: the developer forks a repository of a project to get a
forked repository that contains all files and commit history
of the original repository.

b) Clone: the developer clones the forked repository as a local
repository on a local computer.

c) Edit: modifications are made in the local repository to fix
bugs or add new functionalities in the code.

d) Sync: the developer synchronizes the latest original repos-
itory to the local repository to fix any conflict.

e) Push: the local changes are pushed to the forked repository
by the developer.

f) Submit: the developer creates PRs in the original reposi-
tory to submit his/her changes.

g) Evaluation: project maintainers review the PRs and merge
the changes to the original repository if the PRs are ac-
cepted.

The above process separates the participants of a project
into two teams: the external developers and the internal project
maintainers [19]. Fork-based development first requires external
developers to fork and clone the original repository of a project.
External developers can independently modify the cloned lo-
cal repository in parallel and submit the changes as PRs. The
internal project maintainers are responsible for evaluating and
integrating the PRs into the original repository.

B. Motivating Examples

Although fork-based development is widely used, it also intro-
duces new problems to the software development process. Since
external developers work independently, the number of forked
repositories could increase significantly. The large number of
forked repositories makes it costly to keep tracking a particular
fork [31], thus causing many duplicate PRs. Gousios et al. [1]
analyze the reasons of rejected PRs in 290 projects on GitHub
and find that 23% of all the rejections are caused by duplicate

Fig. 2. Duplicate PR#357451 and PR#327902 in kubernetes/kubernetes.

PRs. However, duplicate PRs are difficult to detect due to two
challenges.

Fig. 2 shows a motivating example that demonstrates Chal-
lenge 1 for duplicate PRs detection in previous works, i.e., ig-
noring syntactic structural information. Previous works take the
vector representation of features with the one-hot approach [26],
[27], [28]. They only focus on the frequency of words in text,
but lack the analysis of the long-distance and non-consecutive
word interactions. Hence, these approaches cannot fully cap-
ture the underlying relationships of the syntactic structure of
text [32]. As shown in Fig. 2, the keywords in the title are ‘add’,
‘home’, ‘environment’, and ‘windows’, but these words are not
present sequentially. Therefore, the long-distance relationships
of discontinuous words and the context of words can not be
effectively learned, thus leading to the inaccurate calculation of
the similarity of the two titles. Moreover, the length of the text
in the description is usually longer than that in the title, which
makes this challenge more serious.

Fig. 3 explains Challenge 2 for duplicate PRs detection, i.e.,
lacking joint reasoning between PRs. Although the two PRs
in Fig. 3 are duplicate, their titles do not have the same words,
thus leading to the poor performance of calculating the similarity
between the two titles. However, the title of PR#28978 shown
in Fig. 3 has similar semantics with the description of PR#28996,
and vice versa. Therefore, compared to calculating the similarity
of each element of two PRs separately, it is critical to consider
and represent a PR as a whole and conduct joint reasoning on
different elements (e.g., the title, the description, the submission
time) of two PRs to infer duplicate PRs.

Although traditional similarity calculation approaches such
as TF-IDF (term frequency – inverted document frequency) can
capture the occurrence of words regardless of their order or
distance, it is not enough to detect duplicate PRs by only using
TF-IDF. First, in a PR, we can have semantically related words.

1[Online]. Available: https://github.com/kubernetes/kubernetes/pull/35745
2[Online]. Available: https://github.com/kubernetes/kubernetes/pull/32790
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Fig. 3. Duplicate PR#289783 and PR#289964 in kubernetes/kubernetes.

For example, words ‘support’ and ‘option’ have similar seman-
tics in Fig. 2, which cannot be captured by TF-IDF. Second,
TF-IDF typically calculates similarity by matching on single
words, which overlooks the importance of word sequences or
groups. Third, joint reasoning cannot be done by the typical
TF-IDF approach.

There, we propose DupHunter for effectively detecting dupli-
cate PRs with the graph embedding component and the duplicate
PRs detection component to address these challenges. The graph
embedding component uses a sliding window co-occurrence
mechanism to construct a feature graph for each PR. This graph
reflects both the structure and the syntax of the text to solve
Challenge 1. For example, using a sliding window, the long-
distance relationship between the words “add” and “windows”
in Fig. 2 can be identified through the context word “home”. The
duplicate PRs detection component applies a graph matching
network to connect all the elements in two PRs together. In the
network, a cross-graph attention coefficient is applied, which
enables the matching of different PR elements to solve Chal-
lenge 2. For example, the title of PR#28978 and the description
of PR#28996 can be matched through the common words in the
text (such as “instruction” and “provision”).

Multiple stakeholders can benefit from DupHunter. On the one
hand, DupHunter automatically detects duplicate PRs, which
can decrease the workload of project maintainers to review
redundant code changes. On the other hand, DupHunter can be
used to notify developers when potentially duplicate PRs occur
in other forks, and encourage developers to collaborate as early
as possible. Specifically, DupHunter can send warnings when
duplicate PRs are detected, which could assist project maintain-
ers and developers in the fork-based development process.

III. THE DUPHUNTER MODEL

In this section, we first present an overview of the framework
of DupHunter in Section III-A. Then, we detail the components
included in DupHunter in Sections III-C and III-D.

3[Online]. Available: https://github.com/kubernetes/kubernetes/pull/28978
4[Online]. Available: https://github.com/kubernetes/kubernetes/pull/28996

A. Overview

The framework of DupHunter is presented in Fig. 4. Du-
pHunter consists of two components, i.e., the graph embed-
ding component and the duplicate PRs detection component.
DupHunter takes two PRs as input. It constructs two categories
of features from the PRs, including text features (from title and
description) and non-text features (based on the patch content,
changed files, etc.). To conduct a comprehensive analysis of the
text features, the graph embedding component is used to encode
the text features into a text feature graph, which captures the lex-
ical, syntactic, and keywords information of the text (Fig. 4(a))
to address the first challenge, i.e., ignoring syntactic structural
information. For non-text features, we compute the similarity of
two PRs in terms of each feature. We use the similarity value of
each non-text feature as a separate node and aggregate it with
the text feature graph in order to make full use of all the features.
The output of the graph embedding component is a feature
graph consisting of both text and non-text features of a PR. In
the duplicate PRs detection component, DupHunter introduces
the cross-graph calculation attention coefficient mechanism to
enable information exchange and joint reasoning between the
feature graphs of two PRs to address the second challenge, i.e.,
lacking joint reasoning between PRs (Fig. 4(b)). This component
encodes a feature graph as a feature vector. We finally detect
duplicate PRs by computing the euclidean similarity of the
feature vectors of two PRs.

B. Preprocessing

We apply a preprocessing step to preprocess PRs before
analyzing duplicate PRs with DupHunter. We use GitHub API5

to obtain the information of PRs to be analyzed. For each PR, we
use the ‘word_tokenize’ function in the nltk toolkit6 to divide
the original sentence in the title and description into words,
and separate a word by a list of predefined separators (e.g.,
’cluster/centos’ becomes ’cluster’ and ’centos’). We then use
regular expressions to filter out punctuation, and convert all
words into lowercase. Next, we remove stop words (e.g., ‘to’,
‘the’, ‘on’) based on an English stop words list.7 Finally, Porter
stemming is used to convert words into their root forms (e.g.,
‘files’ becomes ‘file’). Since a PR is usually used to modify and
improve source code, we use thegit diff command to obtain
the modified code snippets (i.e., the patch content) in a PR. We
preprocess the patch content with the preprocessing step used
for the title and description. Based on the patch content, we can
get the changed lines and files of a PR.

C. Graph Embedding Component

This component characterizes a PR with both text features and
non-text features. Specifically, text features of a PR describe
the goal and the summary of the code modification by devel-
opers, while non-text features show the activity and operations

5[Online]. Available: https://docs.github.com/en/rest
6[Online]. Available: https://www.nltk.org/
7[Online]. Available: https://www.ranks.nl/stopwords
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Fig. 4. The framework of Dup-Hunter.

TABLE I
FEATURES AND THEIR PROCESSING METHODS

conducted by developers when making the code modification.
Table I presents the features and their processing methods. We
capture these features from each PR. For text features (i.e.,
title and description), we process them with graph embedding
to identify the syntactic structural information of the text. For
non-text features, we mainly calculate their similarity between
two PRs.

1) Text-Feature-Based Graph: We encode each text feature
into a text feature graph that can represent lexical and syntactic
information of the text. The text feature graph is denoted as
G = {V,E}, where V is the words in the text and E represents
the edges connecting the words. We use natural language graph
embedding to obtain the initial weights of edges E. For each
word in V , we use word embedding to represent it as a vector
for further analysis.

Natural Language Graph Embedding. Graph embedding en-
codes texts with a graph structure. The graph structure can
preserve the syntactic structural information of sentences by
considering the word co-occurrence. To capture the global word
co-occurrence, we apply a sliding window [33] on the text of
a PR for processing text features. For example, Fig. 5 shows
the title of a PR8 from the kubernetes/kubernetes repository.
For this title “temporarily point to older bootstrap script”, let’s
assume that the size of the sliding window is set to three.

8[Online]. Available: https://github.com/kubernetes/kubernetes/pull/661

Fig. 5. An example of sliding window.

Therefore each time the sliding window captures three words
in this sentence. Starting from the beginning of the sentence,
the first three words in the sliding window are “temporarily”,
“point”, and “to”. We process the words in each sliding window
as follows. We consider each word as a node. We count the
number of co-occurrences between node i and node j in the
current sliding window Wn. The initial weight xij of the edge
between i and j is the total number of co-occurrences of the two
words in all the sliding windows. Here we use co-occurrence
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to analyze syntactic structural information instead of grammars,
because the natural language used by developers to write PRs
is relatively arbitrary and messy. Many incorrect analyses of
the grammatical structure of sentences can be produced by a
grammar parser (e.g., Stanford NLP Parser).

We construct a text-feature graph with the above process for
two reasons. On the one hand, since the edge weights of the graph
are computed based on the sliding windows, they can capture
the local information (in a window) of the text features. On the
other hand, during the construction of the text-feature graph, the
relationship of words can be propagated and aggregated as the
window slides. It also helps capture the global syntactic structure
of text features.

Word Embedding. We use the word embedding scheme to
distribute an initial value for each word (i.e., nodes in the
graph). We first obtain the root form of each word with Porter
stemming [26] (e.g., “works” becomes “work”). We then apply
a word embedding dictionary trained using Glove9 to obtain
the embedding vector for each word. Next, We use the default
setting of Glove, where the length of the embedding vector is
300. For words that are not in the dictionary, we randomly assign
an initialized vector, where the value of each dimension is in the
range between −0.01 and 0.01 [34].

2) Non-Text-Feature-Based Graph: We follow previous
studies [27], [28] to calculate the values of non-text features.
These non-text features are proven to be effective in detecting
duplicate PRs. We use the same set of features as previous studies
to show the effectiveness of the core components of DupHunter,
i.e., the analysis of syntactic structural information and joint
reasoning.

Time Interval (TIME): We use the time interval of two PR
submissions as a feature. Two PRs are more likely to be duplicate
when their created time is close to each other.

Reference (REF): Each PR can link to the issues that it
addresses. If two PRs link to the same issue, they are more
likely to be duplicate. We define three values for the “Reference”
feature [27]: (a) the value of “Reference” is 1 if two PRs link
to the same issue; (b) the value is -1 if two PRs link to different
issues; (c) otherwise, the value is 0.

Ratio of Overlapping in Changed Files (ROCF): Duplicate
PRs are more likely to change the same files. For this feature,
we first put the files changed by two PRs into two sets A and
B. We use the Jaccard similarity coefficient J(A,B) = |A∩B|

|A∪B|
to calculate the ratio of overlapping between the changed files
by the two PRs [27].

Number of Overlapping in Changed Files (NOCF): We count
the number of files changed by both PRs as a feature.

Patch Content Similarity on All Changed Files (PC): We
define “patch content” as the code snippets that are different
between two source code versions in one PR. We extract the
patch content by comparing the original source code files and
the modified source code files. According to the study by Wang
et al. [28], we use the Term-Frequency Inverse Document Fre-
quency (TF-IDF) to calculate the score of tokens in the patch
content and embed all scores into a vector to represent the patch

9[Online]. Available: https://nlp.stanford.edu/projects/glove/

Fig. 6. Feature graph of a PR.

content of a PR. We consider the cosine similarity between the
patch content vectors of two PRs as a feature.

Patch Content Similarity on Overlapping Changed Files
(PCOCF): Since two PRs may change the same source code
files, we extract the code difference only in the changed files
that overlap in the two PRs and calculate the similarity.

Ratio of Overlapping in Changed Lines (ROCL): Duplicate
PRs are more likely to change the same lines of code. We
calculate the ratio of lines of code that are changed in both PRs
with the Jaccard similarity coefficient presented in Feature#5,
where A and B in the formulae represent the lines of code
changed by the PRs.

Number of Overlapping in Changed Lines (NOCL): We count
the number of lines of code changed in both PRs as a feature.

For features ROCF & NOCF, PC & PCOCF, and ROCL
& NOCL, they measure the same PR elements in different
ways (e.g., ratio versus number, the complete set of files versus
overlapping files). These feature pairs are constructed because
Ren et al. [27], [27] found that there are 28.5% of PR pairs
where one PR is five times larger than another PR in terms of
the number of changed files. When this is the case, we could have
a small ratio of overlapping in changed files. Hence, the ratio or
similarity on the complete set of files could be small (i.e., features
ROCF, PC, and ROCL). Features NOCF, PCOCF, and NOCL
are designed to solve this problem by analyzing the number or
similarity of overlapping files only. A detailed analysis on the
importance of these features is presented in Section V-C.

After calculating the non-text features, we expand each fea-
ture value to 300 dimensions by adding 299 zeros to make it
align with the length of the word embedding vectors. As shown
in Fig. 6, we take each non-text feature as a separate node and
connect the eight non-text feature nodes in sequence with edges.
The weights of these edges are initialized as xij (e.g., x89 is 1
is our work). Finally, we create a feature graph by adding a
root node to connect text feature graphs and the non-text feature
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Fig. 7. The framework of duplicate PRs detection component.

graph. Since the input of DupHunter is a pair of PRs for analysis,
we only append the non-text feature graph to one of the PR pairs.
For the other PR, we append it with a “baseline” non-text feature
graph, which also has eight nodes connected in sequence. Each
“baseline” node vector has 300 dimensions, where the value of
the first dimension is 1 and other dimensions are set to zero. In
this way, we enforce DupHunter to learn the difference between
two PRs regarding non-text features by comparing the non-text
feature graph with the “baseline” graph.

3) Duplicate PRs Detection Component

In this stage, our goal is to obtain the similarity value between
feature graphs constructed from two PRs. As shown in Fig. 7,
we use a graph matching network [34] to connect two feature
graphs. This network enables the information exchange between
two feature graphs by calculating the attention coefficient of
any two nodes in different feature graphs. The graph matching
network adjusts the vector representations of two feature graphs
to make them more easily distinguished when two PRs are not
duplicate.

A graph matching network has three parts, including encoder,
propagation layers, and aggregator.

Encoder maps the initial values of nodes and edges in a feature
graph to initial vectors using multilayer perceptron (MLP) [34]:

h
(0)
i = MLPnode(xi), ∀i ∈ V, (1)

eij = MLPedge(xij), ∀(i, j) ∈ E, (2)

where xi represents the initial value of node i in the feature
graph, h(0)

i is the node vector after mapping xi with MLP , xij

is the initial value of the edge between two adjacent nodes i
and j, and eij represents the edge vector after mapping xij with
MLP .

Propagation layers map the old node vectors {h(t)
i }∀i∈V (that

are composed of both text features and non-text features) into
new node vectors {h(t+1)

i }∀i∈V to update nodes state. Thus, the
representation of each node vector can accumulate knowledge
from its local neighborhood by multiple layers of propagation.

First, the graph matching network calculates the attention
coefficient mj→i of neighboring nodes in the same feature
graph. This coefficient reflects the importance of the relationship
between text features and non-text features

mj→i = fmessage(h
(t)
i , h

(t)
j , eij), ∀(i, j) ∈ E, (3)

where fmessage is the multilayer perceptron applied to the con-
catenated input.

Second, the graph matching network calculates the attention
coefficients μj′→i of nodes between two feature graphs. This
step considers the joint reasoning between two PRs

μj′→i = fmatch(h
(t)
i , h

(t)
j′ )(h

(t)
i − h

(t)
j′ ),

∀i ∈ V1, j
′ ∈ V2 or ∀i ∈ V2, j

′ ∈ V1, (4)

where fmatch(h
(t)
i , h

(t)
j′ ) is a function that conveys the informa-

tion across feature graphs, which can be calculated by follow:

fmatch(h
(t)
i , h

(t)
j′ ) =

exp(sh(h
(t)
i , h

(t)
j′ ))∑

j′ exp(sh(h
(t)
i , h

(t)
j′ ))

, (5)

where sh is the similarity of two PRs in the vector space.
Then, we calculate the cumulative matching value between

the two PRs by substituting formula (5) into formula (4), as
follows:∑

j′
μj′→i =

∑
j′

fmatch(h
(t)
i , h

(t)
j′ )(h

(t)
i − h

(t)
j′ )

= h
(t)
i −

∑
j′

fmatch(h
(t)
i , h

(t)
j′ )h

(t)
j′ , (6)

where
∑

j′ μj′→i intuitively measures the total difference be-
tween node i and each of its neighbor node j ′ in another feature
graph.

In this manner, the vector of a node, its attention coefficients
with neighboring nodes in the same feature graph, and its atten-
tion coefficients with nodes in another feature graph can be used
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TABLE II
PROJECT REPOSITORIES AND DUPLICATE PR PAIRS

together for updating the state of the node. We update the node
vector with the following formula:

h
(t+1)
i = fnode

⎛
⎝h

(t)
i ,
∑
j

mj→i,
∑
j′

μj′→i

⎞
⎠ ,

∀i, j ∈ V1, j
′ ∈ V2 or ∀i, j ∈ V2, j

′ ∈ V1, (7)

where fnode stands for a multilayer perceptron.
Aggregator takes the node vector sets as input to generate

a graph-level representation vector hG. We use the following
propagation module [35]:

hG = MLPG

(∑
i∈V

σ(MLPgate(h
(T )
i ))�MLP(h

(T )
i )

)
.

(8)
The formula (8) uses a weighted sum with gated vectors

MLPgate to perform aggregation across nodes. MLPG rep-
resents the set of all MLPgate . This weighted sum can filter
irrelevant information of PRs. If two PRs are similar, their
graph-level representation vectors tend to be more similar.

We obtain a graph-level representation vector for each of the
feature graphs (i.e., hG1 and hG2) and calculate the euclidean
similarity between the two vectors to obtain the similarity
between two PRs. Finally, DupHunter recommends a list of
duplicate PRs to project maintainers and developers based on
the similarity values to improve the development efficiency.

IV. EXPERIMENTAL SETTING

A. Dataset

We conduct our experiments on a public dataset from the
replication package10 published by the work of Ren et al. [27].

10[Online]. Available: https://github.com/luyaor/INTRUDE

This dataset contains 2323 duplicate PRs from 26 open-source
repositories on GitHub, involving 12 programming languages
and various application domains (e.g., web, machine learning,
and operating system). In this dataset, all the duplicate PR pairs
have been verified in the previous study by manually reading
the title, description, and comments of PRs [24]. Following the
existing study [24],1174pairs of duplicate PRs from repositories
#1–#12 in Table II are selected for training and 1149 pairs from
repositories #13–#26 are used for testing. In this dataset, there
are in total 100000 non-duplicate PR pairs, including 50000 PR
pairs for training (in repositories #1-#12) and 50000 PR pairs for
testing (in repositories #13–#26)11. These PR pairs are created
by randomly paring two merged PRs in a repository, since two
merged PRs are usually non-duplicate [27]. Columns 3 and 4 in
Table II show the number of PR pairs in each repository in the
dataset.

In machine learning, to better use of available data, another
way for data partition is to use 80%–90% of data for training, and
the remaining data for testing. We do not use this setting to make
the setting be consistent with that of existing studies in duplicate
PRs detection [27], [28]. Besides, when using 80%–90% of data
for training, it assumes that we can get a lot of labeled duplicate
PR pairs in different repositories. In the experiments, we do not
make this assumption. When training a model with 50% of data
(which is a more difficult training scenario than training with
90% of data), it can save some human cost on labeling.

In the column ’ratio of multi-Dup’, we counted in each
repository the ratio of multiple duplicate PRs, where more than
two PRs are duplicate with each other. For the 26 repositories
in our dataset, 20 repositories have multiple duplicate PRs.
The ratio of multiple duplicate PRs varies from 2.2% (for the

11The number of non-duplicate PR pairs in the repository angular.js is
smaller than that of other repositories. We did not modify the dataset by adding
additional PR pairs, since the dataset is widely used for duplicate PRs detection.
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repository scikit-learn/scikit-learn) to 13.7% (for
the repository twbs/bootstrap).

B. Experiment Process

We use a similar strategy as the study of Ren et al. [27] to
evaluate the effectiveness of our approach in detecting duplicate
PRs. Specifically, in our experiment, we analyze the ability of
DupHunter in distinguishing duplicate and non-duplicate PR
pairs. The basic idea is that the ability of DupHunter to detect
duplicate PRs is high if it can rank all duplicate PR pairs ahead of
non-duplicate PR pairs. We feed every PR pair in each repository
in the testing set to DupHunter. DupHunter sorts all PR pairs
based on their similarity values and ranks potentially duplicate
PR pairs ahead. We check whether duplicate PR pairs are at the
top of the ranking list.

We model the duplicate PRs detection problem in a “cross-
project” setting, i.e., training and testing using different reposi-
tories, for two reasons. First, there are millions of repositories on
open-source software platforms such as GitHub. It is unrealistic
and costly to train a model for each repository. It is also costly
for developers to manually label a subset of duplicate PR pairs
in each project for training a model. The cross-project setting
can alleviate these problems. Second, in open-source software
platforms, the number of duplicate PRs in each repository can
vary significantly. For some new projects, the corresponding
repositories may have few duplicate PR pairs initially. In this
case, a model trained in a “cross-project” setting can work for
these new repositories.

C. Evaluation Metrics

We evaluate DupHunter with three metrics that are used in
the related work [28].

Precision@k: Precision is the proportion of duplicate PRs
pairs in the ranking list

P@k =
Nk

Tk
, (9)

where Tk is the number of PR pairs in the top-k% of the ranking
list and Nk refers to the number of actual duplicate PR pairs in
the top-k% of the ranking list.

Recall@k: Recall is the proportion of duplicate PR pairs that
are correctly classified as duplicates among all duplicate PR
pairs in a repository

R@k =
Nk

Nr
, (10)

where Nr refers to the actual number of duplicate PR pairs in
each repository.

F1-score@k: The F1-score is the harmonic mean of precision
and recall. It evaluates whether an increase in Precision (or
Recall) outweighs a reduction in Recall (or Precision)

F@k =
2× P@k × R@k

P@k + R@k
. (11)

MAP@k: We use MAP@k to measure the position of duplicate
PRs in the top-k% of the ranking list. In our context, MAP@k

is defined as follows:

MAP@k =

Tk∑
t=1

AvgP(t)

Tk
, (12)

where Tk is the number of PR pairs in the top-k% of the ranking
list, AvgP (t) is the average precision for the first t PR pairs in
the top-k% of list.

In this study, we set k = 1, 2, 3, 4, 5. This setting is consistent
with the setting used by the baseline [28]. As a way to measure
a recommender system, we can observe the trends and tradeoff
of different evaluation metrics by varying k. In addition, as the
statistics in Table II, one PR could have multiple duplicates in
a repository. By increasing k, it could be beneficial to project
maintainers to identify all duplicate PR pairs for better under-
standing the overall status of PRs in a project.

D. Training Details

The detailed setting for training DupHunter is as follows. We
set the size of the sliding window to nine according to the influ-
ence analysis of different sliding window sizes in Section V-B.
We use a 300-dimensional vector obtained from glove.6B.300
to represent each node in the feature graph as a vector, which is
the suggested setting in the previous study [32]. The initial edge
weight is obtained by sliding window. Similar to Li et al. [34],
the batch size for training DupHunter is set to 32 and the Adam
optimizer with an initial learning rate of 0.001 is used.

V. EXPERIMENTAL RESULTS

In this section, four experiments are conducted to evaluate the
effectiveness of DupHunter. Our evaluation aims to answer the
following Research Questions (RQs).

RQ1: Is DupHunter effective in detecting duplicate PRs com-
pared to the state-of-the-art approaches?

RQ2: What is the influence of the size of the sliding window
on DupHunter?

RQ3: What features are important for DupHunter to detect
duplicate PRs?

RQ4: What is the influence of the size of the training set on
DupHunter?

RQ1 is used to evaluate the capability of DupHunter on
duplicate PRs detection. RQ2 and RQ3 are employed to evaluate
the effect of different parameters on DupHunter. RQ4 is used to
evaluate the robustness of DupHunter under different scales of
the training data.

A. Answer to RQ1: Comparisons to Baselines

Motivation: DupHunter is the first approach that uses neural
networks to detect duplicate PRs. In this RQ, we analyze the
accuracy of DupHunter in duplicate PRs detection and compare
DupHunter with the state-of-the-art approaches.

Methodology: We compare DupHunter with three categories
of approaches. The first category is the algorithms proposed by
Li et al. [26], Ren et al. [27] (dubbed as Ren), and Wang et al. [28]
(dubbed as Wang). All of them are dedicated duplicate PRs
detection approaches. Li et al. [26] proposed three approaches,
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TABLE III
EFFECTIVENESS OF DUPHUNTER AND BASELINES

which use TF-IDF to detect duplicate PRs by 1) title similarity, 2)
description similarity, and 3) the sum of the two similarities. We
name these approaches as Li-T, Li-D, and Li-TD, respectively.
We reproduce the approach by Ren et al. [27] with the publicly
available source code. For approaches by Li et al. [26] and Wang
et al. [28], we re-implement them according to their papers.

The second category of algorithms is ADA [36] and
BiMPM [37]. ADA is a cross-domain question-question similar-
ity, which trains neural networks for analyzing duplicate ques-
tions in Question & Answer forums such as Stack Exchange.
BiMPM is a bilateral multi-perspective matching approach to
analyze the similarity of sentences, which achieves better ac-
curacy than many typical deep neural networks. We compare
them to investigate whether text similarity analysis approaches
for other tasks can be directly used for duplicate PRs detection.
The inputs of the two approaches are the title and description
of two PRs. The two approaches are reproducible, since their
source code are publicly available.

The third category of algorithm is SentenceBert [38]. Sen-
tenceBert is aim to reduce the computational overhead with the
help of siamese networks. SentenceBert inputs two sentences
into two bert models and obtains the sentence representation
vector of each sentence. The vectors can be used for semantic
similarity calculation. We compare it to investigate whether
graph representation performs better than the sequence repre-
sentation.

For a fair comparison, we use the same training set to train
these approaches and test them on the testing set created in
Section IV-A. We evaluate the accuracy of each approach on
each repository in the testing set with P@k, R@k, F@k, and
MAP@k. The overall effectiveness of an approach is computed
by averaging an evaluation metric on different repositories.

Results: Experimental results on overall effectiveness are
presented in Table III. DupHunter achieves the best results on all

the metrics. P@k is used to evaluate the proportion of detected
duplicate PRs in the ranking list. DupHunter achieves a P@1
value of 0.922. It means DupHunter can accurately identify
duplicate PRs. R@k is used to evaluate the proportion of detected
duplicate PRs among all duplicate PR pairs. For this metric,
DupHunter can identify more than half of duplicate PR pairs in
the top-1% of the ranking list. Most of duplicate PR pairs can
be found when k = 5 (with a R@5 value of 0.856). As to the
trade-off of precision and recall, F@1 of DupHunter is 0.650
at k = 1. Regarding the position of duplicate PR pairs in the
ranking list, DupHunter ranks duplicate PR pairs higher than
the baselines. DupHunter outperforms the best baselines Wang
and SentenceBert by 2.7 pp to 4.8 pp for MAP@1.

For the baselines, Li, Ren, and Wang are state-of-the-art
duplicate PRs detection approaches. All the three approaches
by Li et al. achieve poor results. It’s not surprising because
Li et al.’s approaches only consider the similarity of title and
description. To improve Li et al.’s approaches, Ren et al. [27]
consider 7 more features (i.e., Feature#4 – Feature#10 in Table I)
to train detection models. The accuracy of Ren et al.’ approach
far exceeds that by Li et al. which means these features are
helpful to detect duplicate PRs. For example, Ren outperforms
Li-T by 21.3 pp in terms of F@1. After that, Wang et al. [28]
further consider the time interval as a new feature (i.e., Feature#3
in Table I), which achieves the best results in terms of the four
evaluation metrics. However, Wang et al. still simply calculate
the similarity of text features to compare PR pairs.

For the baselines related to text similarity analysis ADA and
BiMPM, DupHunter outperforms the two baselines by 9.7 pp to
13.1 pp, 5.4 pp to 7.2 pp, 6.9 pp to 10.2 pp, and 13.3 pp. to 17.5
pp in terms of P@1, R@1, F@1, and MAP@1, respectively.
When we extend the ranking list from k=1 to k=5, we can also
observe an obvious difference between DupHunter and these
two approaches for different sizes of ranking list.

For the baseline SentenceBert, DupHunter outperforms it by
3.9 pp, 2.7 pp, 3.2 pp, 4.8 pp in terms of P@1, R@1, F@1,
and MAP@1, respectively. The result could also indicate that
the graph structure is better than the text sequence to represent
the relations of different features including text and non-text
features [32].

Although DupHunter uses the same features as the baselines,
we extract the syntactic structural information of text features
with feature graphs and complete joint reasoning of all features
with a graph matching network. Therefore, DupHunter captures
more useful information from these features to improve the
accuracy of detecting duplicate PRs.

To present the fine-grained differences between DupHunter
and baselines, we show the evaluation results on each repository
in Table IV. A value in bold is the best result of an evaluation
metric. In general, DupHunter achieves the best results for 11
out of 14 repositories in the testing set in terms of P@1, R@1,
and F@1. We note that some baselines can achieve the same best
results as DupHunter in a subset of repositories. For example,
DupHunter and Wang have achieved the same best results in
6 repositories in terms of P@1, R@1, and F@1. For more
than half of repositories, the P@1 value of DupHunter (for
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TABLE IV
EFFECTIVENESS OF DUPHUNTER AND BASELINES ON EACH REPOSITORY

TABLE V
STATISTICAL TEST (p-VALUES) FOR DUPHUNTER AND BASELINES

ten repositories) is higher than 0.973 and the R@1 value (for
seven repositories) is higher than 0.607. Ren and Wang are
better than the other baselines, which achieve the best results
for 6 and 7 repositories in terms of F@1, respectively. For the
F@1 metric, DupHunter and Wang achieve the same results
in 6 repositories. Wang outperforms DupHunter in 1 reposi-
tory (i.e., django/django). For 4 repositories, DupHunter
slightly outperforms Wang by 1%–2.4%. For 3 repositories,
DupHunter outperforms Wang by a relatively higher margin
from 4% to 34.6%. Regarding MAP@1, DupHunter is higher
than the best baseline Wang in 7 repositories, and on two repos-
itories MAP@1 of Wang is higher than DupHunter. Although
these repositories have different numbers of duplicate PR pairs,
DupHunter generally has better ability to rank duplicate PR pairs
higher than non-duplicate PR pairs compared with the baselines.
Experimental results for setting k as 2 to 5 are available in our
replication package, of which DupHunter also gets to best results
for the majority of repositories.

We conduct statistical test between DupHunter and baselines
according to their effectiveness on each repository in Table IV.
The null hypothesis is that there is no difference between Du-
pHunter and a baseline in detecting duplicate PRs on different
repositories in terms of a metric (i.e., P@k, R@k, F@k, and
MAP@k). We use the Wilcoxon test, since it is a nonparametric
statistical test without the assumption of the distribution of the
data. The results of p-values are shown in Table V. A value in
bold means p ≥ 0.05 (i.e., null hypothesis cannot be rejected).
The p-values show that there is a significant difference between
DupHunter and baselines in detecting duplicate PRs on different
repositories in most cases, which means DupHunter can better
find duplicate PRs for software repositories compared to base-
lines. An exception is that there is no difference in terms of
MAP@1 between Wang, SentenceBert, and DupHunter. With
other k values, ADA and SentenceBert achieve similar results
with DupHunter when k = 4 or 5. However, in other cases,
DupHunter is preferred.
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Fig. 8. A false negative example of DupHunter in the repository elastic/elasticsearch. (a) PR#6124. (b) PR#2326.

Fig. 9. A false positive example of DupHunter in the repository joomla/joomla-cms. (a) PR#12372. (b) PR#13354.

These results have to be interpreted with the usage scenarios of
DupHunter. After submitting a PR, developers need to efficiently
identify duplicate PRs. A high precision is more important in
this scenario, since the ranking list can always contain duplicate
PR pairs. When k is increased, more false negatives are in-
cluded, leading to lower precision. However, as a tradeoff, more
duplicate PR pairs can be identified (i.e., higher recall). We as-
sume that the recall can be interested by project maintainers, who
may have the requirement to understand the overall status of a
project (e.g., all duplicate PRs). Despite the tradeoff, DupHunter
outperforms the baselines with different settings.

Error Analysis: Despite the high accuracy of DupHunter, we
in this part analyzed two cases of which DupHunter does not
perform well. The first case is a false negative that DupHunter
assigns a low similarity for two duplicate PRs. The second case
is a false positive that DupHunter predicts a high similarity for
two non-duplicate PRs.

For the first case, we use PR#612412 and PR#232613 in the
repository elastic/elasticsearch as an example (in

12[Online]. Available: https://github.com/elastic/elasticsearch/pull/6124
13[Online]. Available: https://github.com/elastic/elasticsearch/pull/2326

Fig. 8). The titles of the two PRs are very short. The majority of
information is from the description. However, PR#6124 explains
the PR with natural language, while PR@2326 presents an
example. In the example, there are many example-specific terms,
such as ‘name’, ‘Doc1’, ‘file’, ‘A’, and ‘B’. Since DupHunter
conducts prediction based on the semantics and syntactic
structure of text and source code, these example-specific terms
may increase the difficulty to analyze the semantics and structure
of PRs. Hence, DupHunter did not predict the two PRs as
duplicate. One possible solution to solve this problem is to add
a pre-processing step in DupHunter to remove some sentences
related to examples or test cases before prediction.

The second case is PR#1237214 and PR#1335415 in the
joomla/joomla-cms repository. The two PRs in Fig. 9 solve
different bugs in the same component (i.e., TinyMCE). However,
the semantics of the titles are similar, which contain words ‘fix’
and ‘tinyMCE’. Words ‘button’ and ‘editor’ are also semanti-
cally similar. In addition, the two PRs use the same template
to write the description, including summary of changes, testing

14[Online]. Available: https://github.com/joomla/joomla-cms/pull/12372
15[Online]. Available: https://github.com/joomla/joomla-cms/pull/13354
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instructions, and documentation changes required. Therefore,
after pre-processing, DupHunter is misled into taking them as
duplicate. This case shows that DupHunter may wrongly identify
some duplicate PRs when the PRs are in the same component or
implement the same functionality. In such cases, a high threshold
to decide duplicate PRs can be needed.

Conclusion: DupHunter is effective in duplicate PRs detec-
tion, which significantly outperforms the baselines.

B. Answer to RQ2: Influence of the Size of Sliding Window

Motivation: As mentioned in Section III-C, DupHunter uses
a sliding window to extract the syntactic structural information
from the title and description of PRs. The size of the sliding
window affects the edge weights when constructing the text
feature graphs, which may further affect the input of the graph
matching network. In this RQ we analyze the influence of the
size of the sliding window on duplicate PRs detection and try to
identify the optimal sliding window size for DupHunter.

Methodology: We evaluate the effectiveness of DupHunter by
varying the size of the sliding window to 3, 5, 7, 9, 11. We do not
evaluate DupHunter with a larger sliding window size for two
reasons. On the one hand, as the size of the sliding window in-
creases, more words in a window are considered as co-occurred.
This significantly increases the complexity of feature graphs and
the time for constructing the graph matching network. On the
other hand, according to our preliminary analysis, 84.17% of
sentences in the title of a PR are less than 10 words. A sliding
window size of 11 can capture the majority of information in a
sentence.

Results: The results of P@k, R@k, F@k, and MAP@k for
different sliding window sizes are presented in Fig. 10. Exper-
imental results show that a larger sliding window size slightly
improves the effectiveness of DupHunter. For example, the P@1
value is 0.828 when the size of the sliding window is 3. This value
increases to 0.916 when the size of the sliding window is 11. The
reason is that a larger sliding window may take into account
the long-distance dependency of words which helps extract
more syntactic structural information in PRs. However, when
the size of the sliding window is larger than 9, the results of all
evaluation metrics become stable. The differences of DupHunter
with sliding window sizes of 9 and 11 are less than 1 pp in terms
of P@k, R@k, F@k, and MAP@k. Since Fig. 10 shows that
DupHunter with a sliding window size of 9 outperforms the
majority of other settings in terms of the four metrics, we set the
sliding window size as 9 in our experiments.

Conclusion: Within a reasonable range of sliding window
sizes, DupHunter gets the best results when the sliding window
size is set to 9.

C. Answer to RQ3: Importance of Features

Motivation: In our experiment, DupHunter constructs feature
graphs with the information from text features and non-text
features to capture the syntactic structural information of PRs. In
this RQ, we discuss the influence of these features on detecting
duplicate PRs in DupHunter.

Fig. 10. Results on different sliding window sizes. (a) P@k of DupHunter.
(b) R@k of DupHunter. (c) F@k of DupHunter. (d) MAP@k of DupHunter.

Methodology: To eliminate the influence of a feature, we
delete each feature separately. For example, when we delete
the title feature from DupHunter, we only train DupHunter with
the description feature and all non-text features. This variant
model is named as DupHunter rmTitle , which can be used to
analyze the effect of the text feature on DupHunter. Following
this approach, we create ten variants of DupHunter, each of
which is trained without using one of the features in Table I.
In addition, to analyze the importance of all non-text features,
we also create a variant called DupHunter rmNontext , which is
only trained with the text features. Although we try to remove
all text features to create another variant, the trained model
cannot converge because the remaining non-text features are
meaningless for representing PRs. We use P@k, R@k, F@k,
and MAP@k to evaluate the effectiveness of these variants.

Results: The experimental results are presented in Tables VI
and VII. A value in bold is the lowest value for the variants.
We label the lowest value since it means that the corresponding
feature has more influence on the accuracy of DupHunter.

Table VI shows the influence of text features. None of the
two variants perform better than the original DupHunter, which
approves the importance of capturing the syntactic structural
information from text features. Both title and description of
PRs are important to detect duplicate PRs, since the evaluation
metrics drop a lot after removing any of title and description
(especially for precision at k = 1). For example, when k =
1, P@1 and MAP@1 drop 6.5 pp and 11.3 pp respectively,
when removing the description of PRs. When we increase the
ranking list size k to include more PR pairs, the title becomes
more important. P@5, R@5, F@5, and MAP@5 values for
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TABLE VI
THE INFLUENCE OF TEXT FEATURES ON DUPHUNTER

TABLE VII
THE INFLUENCE OF NON-TEXT FEATURES ON DUPHUNTER

DupHunter rmTitle are 0.377, 0.793, 0.511, and 0.349, respec-
tively, which drop more than only removing the description.
We analyze the above results as follows. Both the title and
description are important, since the title of a PR is often a
highly refined and summarized sentence, while the description
provides more details to accurately analyze PRs. However, as
explained in Fig. 8, the description of a PR can also contain
messy texts (e.g., running examples, test cases, and code analy-
sis), which can be useless for analyzing the syntactic structural
information.

Table VII shows the influence of non-text features. We find
that removing any non-text feature can affect the effectiveness of
DupHunter. Non-text features TIME, REF, ROCF, and NOCL
have more influence on the effectiveness of DupHunter, since
the accuracy of DupHunter drops a lot on certain evaluation
metrics after removing one of these features. REF and ROCF
improve the position (i.e., MAP@k) of duplicate PRs, while
TIME and NOCL have more influence on precision and re-
call. For the eight non-text features, NOCF and PC have less
influence on DupHunter compared with other features, since
the changes of evaluation metrics are small after removing
the two features. Moreover, when we remove all non-text fea-
tures (i.e., DupHunter rmNontext ), DupHunter has the lowest
accuracy to detect duplicate PRs, which only obtains 0.307,
0.127, 0.180, and 0.214 in terms of P@1, R@1, F@1, and
MAP@1, respectively. The above results show that we cannot
rely on a single feature to detect duplicate PRs accurately.
It is important to consider a PR as a whole, and conduct
joint reasoning on all elements of two PRs for duplicate PRs
detection.

Conclusion: The syntactic structural information of text
features is helpful to detect duplicate PRs. Features ti-
tle, description, TIME, REF, ROCF, and NOCL are more
important.

D. Answer to RQ4: Influence of the Size of Training Set

Motivation: As mentioned in Section III-D, we use the graph
matching network to train DupHunter. However, when training
a neural network, the size of the training set usually affects the
effectiveness of the model. In this RQ, we analyze the influence
of the size of the training set on DupHunter.

Methodology: To build training sets with different sizes, we
randomly select a subset of 20% (i.e., 10000) to 100% (i.e.,
50000) PR pairs with a step of 20% (i.e., 10000) from the
50000 non-duplicate PR pairs in the original training set. We
then add the 1174 duplicate PR pairs to each selected subset of
non-duplicate PR pairs to form new training sets. For example,
when we select 20% non-duplicate PR pairs, the new training
set contains 500000 ∗ 20% + 1174 = 11174 PR pairs. We run
DupHunter on the new training sets with different sizes and use
P@k, R@k, F@k, and MAP@k to evaluate the effectiveness of
the trained models.

In this RQ, we only change the number of non-duplicate PR
pairs for the following reason. Since we test DupHunter in a
cross-project setting, we expect it is not a challenge to get the
number of duplicate PR pairs required for training (e.g., 1174
in this study) from different projects. In this case, the number
of non-duplicate PR pairs is more important, since one can
easily generate millions of non-duplicate PR pairs by paring
two merged PRs.

Results: The experimental results are presented in Fig. 11.
Clearly, the effectiveness of DupHunter improves as the size
of the training set increases. When the size of the training
set is small (e.g., with 11,174 PR pairs), DupHunter performs
poorly. The P@1, R@1, F@1, and MAP@1 values of Du-
pHunter are all less than 0.300. The reason is that a small
training set can lead to incomplete learning of the neural network
used by DupHunter. However, the effectiveness of DupHunter
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Fig. 11. Results on different training set sizes. (a) P@k of DupHunter.
(b) R@k of DupHunter. (c) F@k of DupHunter. (d) MAP@k of DupHunter.

significantly improves, when the size of the training set increases
from 11174 to 21174. With 21174 PR pairs in the training set,
the effectiveness of DupHunter increases to 0.867, 0.459, 0.600,
and 0.838 in terms of the four metrics. This improvement is
mainly caused by the increase of precision of DupHunter. As
more PR pairs are added to the training set, DupHunter can better
learn to distinguish duplicate PR pairs from non-duplicate ones.
Meanwhile, the differences of the distribution between duplicate
and non-duplicate PR pairs also become smaller for the training
and testing sets. The evaluation metrics become stable as we
continue to increase the size of the training set. For example, the
difference of F@1 is less than 1% when training DupHunter with
31174 and 51174 PR pairs. It means when the size of the training
set reaches a certain scale, the accuracy of DupHunter will keep
relatively stable. According to the trends in Fig. 11, DupHunter
can obtain high accuracy with a training set containing 21174PR
pairs. Since DupHunter can be used in the cross-project setting,
and non-duplicate PR pairs are relatively easy to generate, the
size of the training set is not a burden for training DupHunter.

Conclusion: The effectiveness of DupHunter improves when
the size of the training set increases. When the size of the training

TABLE VIII
TIME FOR DUPLICATE PR DETECTION OF EACH APPROACH

set reaches a certain number, the effectiveness of DupHunter is
basically stable.

VI. DISCUSSION

A. Complexity Overhead

DupHunter has the complexity overhead for achieving ac-
curate detection results. When using DupHunter in practice, we
need to compare a submitted PR with all PRs or a subset of recent
PRs in a repository, which can take several minutes. DupHunter
has two phases, i.e., the training phase and the prediction phase.
In our context, the prediction time complexity is more important.
In the prediction phase, since attention weights are required to
compute for every pair of nodes across two graphs, DupHunter
has a computation cost of O(|V1||V2|), where |V1| and |V2| rep-
resent the number of nodes in each graph. This time complexity
is higher than non neural-network-based baselines (such as Ren
and Wang), which cost is O(N ∗ log(n)), where N represents
the number of weaker classifiers for Adaboost and n represents
the number of features.

Table VIII shows the time spent in different stages for Du-
pHunter and all baselines, including the preprocessing, training,
testing, and inference time. The pre-processing time is to process
all the raw data (i.e., PRs) in the dataset. It includes the time to
transform PR pairs into the format that can be fed into each
approach for duplicate PR detection. For the training time, the
three baselines Li-T, Li-D, Li-TD do not need training, since they
directly compute the similarity of PR pairs. For the baselines
Ren and Wang, we use the default parameters set in Ren’s
replication package to compute the training time. For ADA,
BiMPM, SentenceBert, and Dup-Hunter, all these models need
to train iteratively. We train these models until the minimum loss
defined in each model unchanged. It takes around 20 epochs. For
testing time, we counted the time required to process all PR pairs
in the test set, i.e., from feeding these PR pairs into a model to
returning the ranking list.

We define the inference time as the time to infer duplicate PRs
for a newly submitted PR. It measures how long an approach can
return a list of potentially duplicate PRs for a new PR. Given
a new PR, we need to first preprocess this PR. For baselines
Li-T, Li-D, and Li-TD, they can directly compute the similarity
between this PR and all the preprocessed PRs in a repository
to return the ranking list. For the other approaches, they need
to take the new PR and each PR in the repository as a pair
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to compute some features or networks. These models take the
features or networks as inputs to compute the ranking list. The
inference time is the average time to process one new PR. Since
there are on average 3800 PRs in each testing repositories (i.e.,
repositories #13-#16), the inference time can show the time to
return a duplicate PR list for a newly submitted PR in a repository
in this scale.

For the preprocessing time, all approaches take less than 1
hour. The training time and testing time for Li-T, Li-D, Li-TD,
Ren, and Wang are short, which take at most 6.1 s. All neural
network based approaches are slow. They spend 5–6 hours on
training and 510–986 seconds on testing. Regarding the infer-
ence time, all approaches (excluding approaches of Li’s family)
take at least 1 minutes to return a ranking list for a submitted
PR.

In our experiment, DupHunter took 143 s to process all PR
pairs in a repository for a newly submitted PR. However, this
overhead can be acceptable in our application scenario. Tra-
ditionally, after submitting a PR, developers need to wait for
hours or days to receive the feedback from project maintainers.
With the help of DupHunter, developers can get some accurate
feedback in a few minutes to further decide whether or not to
confirm the submission. In addition, the recommendation list
by DupHunter is helpful for project maintainers, since as a
supplementary of project maintainers’ experience, the list can
narrow down the number of historical PRs to be analyzed. For
these reasons, more accurate solutions could be preferred by
different stakeholders.

Overhead Versus Benefit: To interpret the additional benefit
improved by DupHunter, we analyze the number of PR pairs
developers have to read to find all duplicate PR pairs in the test
set, since all approaches rank potentially duplicate PR pairs in
the test set of each repository. We assume that developers check
PR pairs in the list from top to bottom [39]. If in our test set,
an approach can rank all duplicate PRs to the top, developers
require the minimum effort to find all duplicate PRs. We define
the effort as follows: given a ranked list, the effort to find a
duplicate PR pair equals with the position of this PR pair in the
list. If a duplicate PR pair is not present in the list, the effort is the
size of the list (as developers have to check the entire list). The
effort to find all duplicate PR pairs is the sum of effort to find each
duplicate PR pair in the test set. We define the additional benefit
gained by DupHunter as effortbaseline − effortDupHunter; it
shows the number of PR pairs that developers can save time to
check by using DupHunter.

As shown in Table IX, each cell represents the benefit ob-
tained after replacing the baseline with DupHunter. When k=1,
DupHunter can help developers read 147 to 5672 fewer PR pairs.
When k=5, DupHunter can reduce the reading effort by at least
6424 PR pairs in the test set. This benefit is gained because
DupHunter can rank duplicate PR pairs in the test set in a higher
position compared to the baselines.

Regarding the overhead (i.e., the efficiency in our context),
as shown in Table VIII, all approaches allow their models to
conduct daily updates, empowered with the information derived
from new PRs. Daily updates are a common setting for machine
learning tools [40]. For the test time, neural network based

TABLE IX
ADDITIONAL BENEFIT OBTAINED BY USING DUPHUNTER

TABLE X
THE INFLUENCE OF DISTANCE MEASUREMENT FUNCTIONS

approaches are slow, which take 510 s to 742 s (i.e., several
minutes) for testing. For the inference time, only Li’s approaches
can suggest a list of duplicate PRs instantaneously given a newly
submitted PR. However, the accuracy of Li’s approaches is poor.
All other approaches take more than 1 minutes. That means the
tools will work in an offline manner. DupHunter takes 143 s (i.e.,
between 2 and 3minutes) to return a list, which is around one
minute’s (i.e., 69 s) slow compared to the best baseline Wang.
The overhead is comparable.

We have randomly selected 100 duplicate PRs to compute the
time interval to label a PR as duplicate by developers manually.
We find that the average time interval is 14 days with an average
of 7 comments generated. Hence, it would be acceptable to
help developers make decision with an overhead of the current
inference time. DupHunter can be used for practical cases.

Although these benefit and overhead are analyzed, an em-
pirical study could be needed to analyze whether this accuracy
improvement benefits teams’ performance in real-world settings
(compared to the baselines and considering the overhead). We
leave it as future work.

B. The Choice of Distance Functions

In the duplicate PRs detection component, we detect duplicate
PRs by computing the euclidean similarity of the feature vectors
of two PRs. To analyze the impact of distance measurement
functions, we replace euclidean similarity with hamming sim-
ilarity and cosine similarity. As shown in Table X, euclidean
similarity and cosine similarity have the same performance,16

while hamming similarity is less effective. Hamming similarity
calculates the number of different elements between two vectors.
This method only measures whether the value of a dimension is
the same or not, which cannot reflect the fine-grained ‘distance’
of each feature. In contrast, cosine similarity and euclidean
similarity show better performance by calculating the cosine
value of the angle and the linear distance between two vectors,

16For other k values, results are also similar.
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TABLE XI
THE IMPACT OF BALANCING TECHNIQUES

respectively. Hence, other distance measurement functions such
as cosine similarity can also be applied.

C. The Influence of Balancing Techniques

The dataset in the experiments is extremely unbalanced. We
tested three classical imbalanced learning techniques, i.e., over-
sampling, undersampling, and loss weighting, on duplicate PRs
detection. For oversampling, we replicated duplicate PR pairs
in the training set to the same number as that of non-duplicate
PR pairs in each repository. For undersampling, we randomly
selected a subset of non-duplicate PR pairs based on the number
of duplicate PR pairs in each repository. For loss weighting,
we assign a higher weight to the loss function of DupHunter
for the minority class (i.e., duplicate PR pairs). We implement
loss weighting with the DSC (dice coefficient) loss weighting
method [41]. We re-train DupHunter with the data after balanc-
ing.

As shown in Table XI, these balancing techniques do not
improve the accuracy of DupHunter. We analyze the reasons
as follows. First, oversampling and loss weighting attempt to
increase the weight of positive instances (i.e., the minority class).
However, methods such as replicating positive instances does
not add new knowledge of duplicate PR pairs, which could also
amplify the impact of the noise in positive instances. Second,
undersampling discards a large amount of data, causing the
overfitting issue. Since it is still an open question to select
the suitable techniques for improving deep neural networks on
significantly imbalanced training data [42], [43], we leave it as
future work to improve DupHunter with advanced balancing
techniques.

D. Practical Implication

This subsection discusses the practical implications of Du-
pHunter for different stakeholders, including developers, project
maintainers, and researchers.

Developers. Since fork-based development is a distributed
development process, duplicate PRs are submitted by developers
from all over the world. When developers submit a PR, after
the analysis by DupHunter, a list of potential duplicate PRs
can be provided to developers. By perusing this list, developers
can deeply analyze the PR to be submitted in advance to avoid
submitting a duplicate PR to the repository. In addition, since
DupHunter provides a list of similar (i.e., potentially dupli-
cate) PRs, another practical implication to developers is that
developers can efficiently identify, trace, and investigate the
status of a set of PRs focusing on similar issues. We remark

that DupHunter cannot avoid developers developing duplicate
PRs; however, compared with the time cost and effort caused by
subsequent discussions and rejections, DupHunter is still helpful
to developers in the fork-based development.

Project Maintainers. Project maintainers may have to tackle
with thousands of PRs submitted by developers. They need to
manually analyze whether a submitted PR is duplicate with any
PR in the repository according to their experience. This is a time-
consuming and laborious process. With DupHunter, a list of
potentially duplicate PRs is recommended to assist this process.
Although the true duplicate PRs may not be always ranked as
the first one(s), the list can narrow down the number of historical
PRs to be analyzed. Therefore, DupHunter, as a supplementary
of project maintainers’ experience, is an effective tool for them
to detect duplicate PRs.

Researchers. DupHunter analyzes software artifacts accord-
ing to syntactic structure information and joint reasoning, which
provides an innovation for solving the similarity measurement
of other software artifacts (besides PRs). In addition, DupHunter
detects duplicate PRs by calculating their similarity. The simi-
larity of PRs can be used as inputs for other software repository
mining tasks, such as identifying developers with similar interest
and clustering PRs for repository statistical analysis.

E. Threats to Validity

1) Internal Threats: The main threat to internal validity
is the correctness of the reproduced models (Li-T, Li-D, Li-
TD [26], Ren [27], and Wang [28]). To alleviate this threat, we
have double-checked our implementation of Li’s approach and
Wang’s approach with reference to their papers. Additionally,
we directly use the source code published by Ren et al. [27] to
implement their approach.

2) External Threats: The first external threat is that we only
conduct experiments on the repositories from GitHub, which
may not represent all fork-based PRs. However, GitHub is
one of the most commonly used OSS platforms. We evaluated
DupHunter with 26 projects from different domains and using
different programming languages in GitHub to alleviate this
threat.

The second threat is that we only evaluate the ability of differ-
ent approaches in distinguishing labeled duplicate PR pairs from
a large collection of non-duplicate PR pairs, because of the huge
cost of manually checking whether or not a given PR is duplicate
with all the existing PRs in a repository. However, we believe our
evaluation can reflect the effectiveness of an approach in helping
project maintainers and developers efficiently detect duplicate
PRs.

Third, our dataset is constructed by adding 100000 non-
duplicate PR pairs into training and testing sets. The number of
non-duplicate PR pairs can affect the effectiveness of DupHunter
as evaluated in Section V-D. Since non-duplicate PR pairs are
easy to create automatically, we can obtain enough non-duplicate
PR pairs for training. Another threat is that non-duplicate PR
pairs in our dataset are randomly created from the merged PRs
without manual check. There may be potential duplicate PR
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pairs. Since two merged PRs are usually non-duplicate [27], we
believe the ratio of duplicate PR pairs is small compared with
the large number of non-duplicate PR pairs.

In the future, we plan to collect additional datasets from
different open-source platforms and evaluate DupHunter in a
real developing scenario.

3) Construct Threats: DupHunter extracts syntactic struc-
tural information from the title and description of a PR. We
use the approaches proposed in the existing study [27] to process
non-text features. In future work, we will design a model that also
extracts the syntactic structural information from non-text fea-
tures (e.g., the patch content). However, our current experiments
demonstrate the importance of syntactic structural information
and joint reasoning in detecting duplicate PRs.

VII. RELATED WORK

In this section, we discuss duplicate detection for different
software artifacts, including duplicate PRs detection, duplicate
questions detection in Stack Overflow, and duplicate bug reports
detection.

A. Duplicate PRs Detection

There are mainly three approaches for duplicate PRs detec-
tion. Li et al. [26] calculate the similarity between titles and
descriptions of PRs using TF-IDF to detect duplicate PRs. They
examine the effectiveness of the similarity of titles, the similarity
of descriptions, and the similarity of both titles and descriptions
to indicate duplicate PRs.

Ren et al. [27] study additional features for detecting duplicate
PRs. They manually check 45 pairs of duplicate PRs to iden-
tify seven new features (i.e., Feature#4–Feature#10 in Table I)
for measuring the similarity of two duplicate PRs. Combining
with the similarity of titles and descriptions, the values of the
new features are used as input to train a classifier to predict
whether a pair of PRs is duplicate or not. In a follow-up study,
Wang et al. [28] explore the influence of the time interval (i.e.,
Feature#3 in Table I) on detecting duplicate PRs.

Different from existing studies, we construct feature graphs
to adopt the syntactic structural information of text features and
use a graph matching network to represent PRs. Our approach
can generate vectors from feature graphs by considering the
joint reasoning between PRs to further improve the accuracy of
duplicate PRs detection.

B. Duplicate Questions Detection in Stack Overflow

Many duplicate questions are submitted to Stack Overflow
daily. However, multiple duplicate questions cannot be detected
simultaneously in Stack Overflow [44]. Muhammad et al. [45]
investigate the reasons for submitting duplicate questions. They
find that the most common reason is the lack of searching
for existing questions and answers before submission. Zhang
et al. [44] propose an initial solution for duplicate questions
detection in Stack Overflow by measuring the similarity of

different factors of a question (such as the title and the de-
scription). However, the effectiveness of this approach is lim-
ited since semantic information of questions could be lost. To
further improve the detection accuracy, Mizobuchi et al. [46]
use word embedding to overcome the word ambiguity when
comparing the similarity of questions. Zhang et al. [47] compare
the effectiveness of continuous word vectors, topic model, and
frequent phrase pairs to capture the semantic similarity between
questions. In recent studies, Wang et al. [48], [49] construct
three deep learning networks, including WV-CNN, WV-RNN,
and WV-LSTM, to detect duplicate questions, which are respec-
tively based on the structure of convolutional neural networks,
recurrent neural networks, and long short-term memory. Zhou
et al. [50] add the attention mechanism to the deep neural
networks.

DupHunter is different from these deep learning based ap-
proaches from two aspects. On the one hand, these approaches
mainly analyze the title and the description of questions. How-
ever, a PR has lots of non-text information which drives us
to conduct joint reasoning on PRs. On the other hand, we
use a cross-graph calculation attention coefficient mechanism
to capture the semantic similarity between PRs, which is not
applied in the existing studies.

C. Duplicate Bug Reports Detection

Bug reports allow users and developers to provide timely
feedback on bugs encountered when using software [51], [52].
Similar to fork-based development, different users and develop-
ers may submit duplicate bug reports.

To detect duplicate bug reports, various types of automated
approaches have been proposed [53], [54], [55]. Most of the
existing approaches use information retrieval to analyze dupli-
cate bug reports. They compare the text information [51], [56]
and the execution information [57], [58] in bug reports to detect
duplicates. Besides, Ashima et al. [59] propose a model that uses
a convolutional neural network to extract relevant features form
bug reports. These features are then used to determine duplicate
bug reports. Thiago et al. [60] proposed SiameseQAT which
combines context and semantic learning and corpus-level topic
extraction to improve the detection accuracy. In addition, Nathan
et al. [61] combine visual information and textual information to
help developers find duplicate video-based bug reports. Zhang
et al. [62] summarize the related work on duplicate bug reports
detection.

For bug reports, the main content is the title and the de-
scription. Approaches for duplicate bug reports detection may
not work well in detecting duplicate PRs, because developers
often rarely write particularly detailed descriptions in PRs, but
upload the modified source code. In addition, duplicate bug
report detection approaches usually construct features specified
to bug reports, such as the differences of products, components,
versions, priority of two bug reports. These features cannot be
used for duplicate PRs detection. Hence, for the task of dupli-
cate PRs detection, it is important to comprehensively consider
the syntactic structural information and the joint reasoning of
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different elements of PRs, which have not been considered in
duplicate bug reports detection approaches.

VIII. CONCLUSIONS AND FUTURE WORK

Most open-source software projects are maintained based on
an uncoordinated process called the fork mechanism, leading to
many duplicate PRs. To help project maintainers and developers
reduce the workload of analyzing duplicate PRs, in this paper,
we propose DupHunter for duplicate PRs detection. DupHunter
contains a graph embedding component and a duplicate PRs
detection component, which are designed to respectively address
the challenges of existing approaches, i.e., ignoring syntactic
structural information and lacking joint reasoning between PRs.
Experimental results on 26 open-source projects show that both
components improve the effectiveness of DupHunter in detect-
ing duplicate PRs. DupHunter outperforms the state-of-the-art
approaches in terms of multiple evaluation metrics. It achieves
a Precision@1 value of 0.922. Such results show the potential
capability of DupHunter to reduce the development cost caused
by duplicate PRs in the fork-based development process.

In the future, we plan to construct additional features and
extract semantic structural information from them to build a
more effective model. We also plan to use datasets from different
open-source communities to further evaluate DupHunter.
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