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ABSTRACT

Optimizations are the fundamental component of compilers. Bugs in optimizations have significant
impacts, and can cause unintended application behavior and disasters, especially for safety-critical
domains. Thus, an in-depth analysis of optimization bugs should be conducted to help developers
understand and test the optimizations in compilers. To this end, we conduct an empirical study to in-
vestigate the characteristics of optimization bugs in two mainstream compilers, GCC and LLVM. We
collect about 57K and 22K bugs of GCC and LLVM, and then exhaustively examine 8,771 and 1,564
optimization bugs of the two compilers, respectively. The results reveal the following five character-
istics of optimization bugs: (1) Optimizations are the buggiest component in both compilers except
for the C4++ component; (2) the value range propagation optimization and the instruction combine
optimization are the buggiest optimizations in GCC and LLVM, respectively; the loop optimizations
in both GCC and LLVM are more bug-prone than other optimizations; (3) most of the optimization
bugs in both GCC and LLVM are misoptimization bugs, accounting for 57.21% and 61.38% respec-
tively; (4) on average, the optimization bugs live over five months, and developers take 11.16 months
for GCC and 13.55 months for LLVM to fix an optimization bug; in both GCC and LLVM, many
confirmed optimization bugs have lived for a long time; (5) the bug fixes of optimization bugs involve
no more than two files and three functions on average in both compilers, and around 99% of them
modify no more than 100 lines of code, while 90% less than 50 lines of code.

Our study provides a deep understanding of optimization bugs for developers and researchers. This
could provide useful guidance for the developers and researchers to better design the optimizations in
compilers. In addition, the analysis results suggest that we need more effective techniques and tools
to test compiler optimizations. Moreover, our findings are also useful to the research of automatic

debugging techniques for compilers, such as automatic compiler bug isolation techniques.

1. Introduction

Compilers (e.g., GCC, LLVM) are one of the most im-
portant system software. They play an important role in
translating source code into machine code. In addition, com-
pilers also provide optimization techniques to improve the
performance of programs. Hitherto, optimizations have be-
come a fundamental component of compilers. Hundreds of
optimizations have been implemented in compilers. As an
example, there are more than 200 and 100 optimizations for
GCC and LLVM [1], respectively. However, with the devel-
opment of compilers, similar to application software, bugs in
optimizations of compilers inevitably are introduced. Opti-
mization bugs can cause unintended behaviors and disasters,
especially for safety-critical domains.

Many techniques [24, 16, 7,22, 23, 20, 25, 10] have been
developed to detect compiler bugs. Especially, Csmith [24]
is the most used testing program generator for C/C++ com-
pilers. It has reported more than 400 compiler bugs'. In
addition, the techniques [7, 20, 22] based on equivalence
modulo inputs [7] have detected more than 1600 compiler
bugs”. However, there is no study to help developers and
researchers understand optimization bugs in compilers. Al-
though an empirical study on compiler bugs has been con-
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ducted by Sun et al. [21], it focuses on the overall situation
on compiler bugs in GCC and LLVM. Besides, not all appli-
cation developers are aware of compiler optimization bugs in
practice. Especially for inexperienced developers (e.g., stu-
dents), they always assume that bugs occurred in their pro-
grams are introduced by themselves rather than the compiler
optimizations they used. Therefore, for better understand-
ing, detection, and fix of optimization bugs in compilers, we
need to further uncover the properties of optimization bugs.

In order to gain a better understanding of optimization
bugs in compilers, we conduct an empirical study to inves-
tigate their characteristics in this study. Similar to the study
conducted by Sun et al. [21], we also investigate two main-
stream production compilers, GCC and LLVM. We collect
57,591 bugs of GCC and 22,119 bugs of LLVM, and then
exhaustively examine 8,771 and 1,564 optimization bugs of
GCC and LLVM, respectively. In particular, we mainly fo-
cus on the following five research questions (RQs) to inves-
tigate optimization bugs. In these RQs, RQ1 and RQ2 focus
on the overall trend of optimization bugs in GCC and LLVM,
which can help developers and researchers to understand the
evolution history and the distribution of optimization bugs.
While RQ3 further provides the type information of opti-
mization bugs to developers and researchers. RQ4 and RQ5
investigate the duration and fix for optimization bugs, which
can guide testing and debugging of compiler optimizations.
(1) What is the distribution of optimization bugs?

This RQ investigates the overall evolution history of op-
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timization bugs and the distribution of optimization bugs in
components, which can help to understand the importance
of optimization bugs for compiler development. The results
show that the trend of the optimization bugs in GCC is rel-
atively stable in these years, while it has an increasing trend
for LLVM. In addition, optimization bugs account for a high-
er percentage of the total bugs than the bugs in other com-
ponents except for the C+4 component. Furthermore, most
of the optimization bugs are located in the tree-optimization
component in GCC, and the Scalar optimization component
for LLVM.

(2) Which optimizations are buggy?

This RQ aims to investigate which optimizations are bug-
gy. We extract 119 and 101 files that are directly related to
the optimizations in GCC and LLVM, respectively. Then
we study the frequency that each file is changed by the re-
visions. The results illustrate that the value range propaga-
tion optimization and the instruction combine optimization
are the buggiest optimizations in GCC and LLVM, respec-
tively. Additionally, the loop optimizations in both GCC and
LLVM have more bugs than other optimizations.

(3) What are the types of optimization bugs?

We investigate the types of optimization bugs in this stu-
dy. According to the compiler testing literatures (e.g., [24,
7,22,23, 20, 25]), we manually assign a type (i.e., Misopti-
mization (Mis-opt), Crash, or Performance, see Section 2.2
for definitions) to each optimization bug. The results show
that most of the optimization bugs in both GCC and LLVM
belong to Mis-opt bugs, accounting for 57.21% and 61.38%
respectively. However, in both compilers, the bug-fixing rate
of Mis-opt bugs is smaller than those of Crash bugs and Per-
formance bugs.

(4) How long do optimization bugs live?

This RQ studies the time that optimization bugs live. On
average, optimization bugs live over five months, and it takes
11.16 months for GCC and 13.55 months for LLVM to fix an
optimization bug. In GCC, the optimization bugs in the r#/-
optimization component take more time to be fixed, 13.57
months on average; and the developers take 15.07 months to
fix Mis-opt bugs, which is longer than those of other types
of bugs. While the most time-consuming bug fixes belong
to the Interprocedural Optimizations component in LLVM,
17.77 months on average; and Performance bugs take 15.73
months on average to be fixed, which is longer than those of
Mis-opt bugs and Crash bugs in LLVM. In both GCC and
LLVM, many confirmed optimization bugs have lived for a
long time. On average, the confirmed optimization bugs for
GCC have lived for 72.38 months, while 14.38 months for
LLVM.

(5) How many files, functions, and code lines are modified
to fix an optimization bug?

This RQ investigates the information of bug fixes for op-
timization bugs. In particular, we study the modification of
files, functions, and lines of code to fix optimization bugs.
The results show that the bug fixes involve no more than
two files and three functions on average in both compilers.
In GCC, the bug fixes of the bugs in the tree-optimization

component involve more files and functions, 1.81 files and
3.84 functions on average; and the bug fixes involve 2.82
files and 7.18 functions on average for Performance bugs,
which is larger than those of other types of bugs. In LLVM,
the bug fixes of the bugs in the Interprocedural Optimiza-
tions component involve more files (1.75 files on average),
while the bug fixes in Transformation Utilities involve more
functions (2.67 functions on average); and the bug fixes of
Mis-opt bugs need to modify more files (1.44 files on aver-
age), while the bug fixes of Crash bugs touch more functions
(2.39 functions on average). In both compilers, around 99%
of the bug fixes only modify no more than 100 lines of code,
while 90% fewer than 50 lines of code.

In summary, our study provides a deep understanding of
compiler optimization bugs for developers and researchers.
The analysis results and findings could be useful to guide
developers and researchers to better design optimizations in
compilers. For example, in both GCC and LLVM, the loop
optimizations are more bug-prone than other optimizations,
which may indicate that there are some defects in the de-
sign of loop optimizations and the developers should pay
more attention to loop optimizations. In addition, the results
of our study also suggest that we need more effective tech-
niques and tools to test compiler optimizations. Moreover,
our study can provide useful information to the research of
automatic debugging techniques for compilers, such as the
automatic compiler bug isolation techniques [2]. For in-
stance, our findings show that developers modify no more
than two files and three functions on average to fix optimiza-
tion bugs in both GCC and LLVM, which may indicate that
we can first recognize the buggy optimizations to narrow
down the suspect buggy files and functions when we try to
isolate the root causes of optimization bugs.

The rest of the paper is organized as follows. Section 2
describes the methodology of our study. Section 3 presents
the results of the distribution of optimization bugs. Section
4 shows the buggy optimizations. The types of optimiza-
tion bugs are presented in Section 5. The analysis results of
the time that optimization bugs live are shown in Section 6.
Section 7 describes the modification of files, functions, and
lines of code for fix optimization bugs. Next, we present the
threats to validity and related work in Section 8-9. Finally,
Section 10 concludes our study.

2. Methodology

2.1. Compilers

In this study, we select two mainstream compiler sys-
tems, namely, GCC and LLVM, to investigate their opti-
mization bugs. These two compiler systems are open-source
and widely used in the industry and academia.
GCC GCCindicates the GNU Compiler Collection?, whi-
ch is a typical three-stage (including front end, middle end,
and back end) compiler system®. It includes front ends for
various programming languages (e.g., C, C++, Objective-C,

3https://gce.gnu.org/.
“https://en.wikipedia.org/wiki/Compiler.
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Fortran) and back ends for various target architectures (e.g.,
X86, MIPS, PowerPC, and RISC-V). In addition, it provides
more than 200 optimizations [5] to improve program perfor-
mance. Since the late 1980s, it has been under active devel-
opment for more than 30 years.

LLVM LLVM is a mature and widely used compiler in-
frastructure’. Similar to GCC, LLVM also is a three-stage
compiler system and supports multiple programming lan-
guages and multiple target architectures. It provides a col-
lection of modular and reusable compiler and toolchain tech-
nologies for arbitrary programming languages. With a com-
mon infrastructure, a broad variety of statically and runtime
compiled languages (e.g., the family of languages supported
by GCC, Rust, Swift, Ruby, Haskell, and WebAssembly)
have been implemented based on LLVM. In addition, hun-
dreds of analysis and transformation optimizations have been
developed in LLVM [11]. From its beginning in December
2000, LLVM has drawn much attention from both industry
and academia.

2.2. Bug sources

We collect bugs of GCC and LLVM from their bug repos-
itories®. Similar to the existing study [21], we take the bugs
that are confirmed and fixed into consideration in our study.
Thus, we can comprehensively understand the characteris-
tics of optimization bugs in GCC and LLVM. For a bug, if
its resolution field is set to fixed, and the status field is set to
resolved, verified or closed in the bug repositories of GCC
and LLVM, it is a fixed bug. Different from the fixed bug,
developers of GCC treat a bug with new status as a confirmed
bug’. Thus, we say a bug is confirmed in the GCC bug repos-
itory, if its status field is set to new, and the resolution field
is empty. While the confirmed bug of LLVM indicates that
its status field is set to confirmed, and the resolution field is
empty.
Identifying Optimization Bugs In the bug repositories of
GCC and LLVM, bugs have been classified according to the
components they belong to. In GCC, there are three main in-
termediate languages to represent the program during com-
pilation: GENERIC, GIMPLE, and RTL3, where GIMPLE
and RTL are used to optimize the program. GIMPLE is
an abstract-syntax-tree-based representation and RTL repre-
sents the Register Transfer Language. Thus, for optimization
bugs of GCC, developers of GCC usually specify the com-
ponents of them as the "tree-optimization" component or the
"rtl-optimization" component out of the 52 components in
GCC °. Therefore, we identify optimization bugs of GCC
according to the components "tree-optimization" and "rtl-
optimization" in this study. Similarly, the optimization bugs
of LLVM are identified according to the components "Scalar
Optimizations", "Loop Optimizer", "Transformation Utili-
ties", and "Interprocedural Optimizations" out of 96 com-
ponents in LLVM. These components related to optimiza-

Shttp:/llvm.org/.

Shttps://gcc.gnu.org/bugzilla/, https://bugs.llvm.org/.
https://www.gnu.org/software/gcc/bugs/management.html.
8https:/gcc.gnu.org/onlinedocs/gecint/Tree-SSA html#Tree-SSA.
“https://gcc.gnu.org/bugzilla/describecomponents.cgi?product=gcc.

tions in LLVM are set according to the directories that in-
clude the buggy optimizations and the functionality of opti-
mizations'?. For example, the component "Scalar Optimiza-
tions" indicates that the buggy optimizations belong to the
directory "scalar" in the LLVM project, while the compo-
nent "Loop Optimizer" includes the optimization bugs that
are triggered in loop optimizations.

Identifying Bug Types To investigate the bug type infor-
mation of optimization bugs, we identify the bug types of
optimization bugs. According to the compiler testing litera-
tures, such as literatures [24, 7, 22, 9, 20, 25], we divide the
optimization bugs into the following three categories:

Crash We say an optimization bug is crash if the opti-
mization crashes for optimizing the code, i.e., internal com-
piler errors and memory-safety errors for the optimizations.

Misoptimization If the optimized code crashes, termi-
nates abnormally, or produces a wrong output, we say the
corresponding optimization bug is misoptimization.

Performance The performance bug of an optimization
means that the compiler hangs or the compilation abnor-
mally slows due to the optimization.

To guarantee the correctness of bug types for optimiza-
tion bugs, the classification of optimization bugs is manually
conducted by three authors, and the type of each optimiza-
tion bug must be agreed upon by at least two authors. In
the bug reports of GCC and LLVM, there is a field "Key-
words"!!, which provides straightforward information to help
us quickly recognize the type of bugs. For example, the
value in the field "Keywords" of an optimization bug report
is "wrong-code", which indicates that the optimization bug
can be classified into Misoptimization. However, not all bug
reports have an exact value in the field "Keywords" and some
bug reports have multiple values in the field "Keywords". In
these cases, we need to further read the description and com-
ments of optimization bug reports to assign a type to them.
Identifying Bug Fix Revisions To study the bug fix infor-
mation of optimization bugs, we identify the revisions of the
corresponding fixed optimization bugs as in [21]. First, we
collect the entire revision log from the code repositories us-
ing the git'> command "git log -p —follow —stat", since GCC
and LLVM use git as their version control system. Then, for
each revision, we check whether this revision is a fix to an
optimization bug according to the following three patterns
in its commit message. This is because the developers of
GCC and LLVM usually mark a bug using one of the three
patterns in the commit message [21].

» "PR<bug-id>"
» "PR <bug-id>
» "PR <component>/<bug-id>"
where "PR" means "Problem Report" and <bug-id> stands

for the id of the corresponding bug. Note that the litera-
ture [21] only contains the second and the third pattern. The

10https://bugs.llvm.org/describecomponents.cgi?product=libraries.

https://gce.gnu.org/bugzilla/describekeywords.cgi, https:/bugs.llvm-
.org/describekeywords.cgi.

2https://git-scm.com/.
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Figure 1: The overall evolution history of the optimization bugs (in months).
Table 1 3. What is the distribution of optimization

Bug information used in this study.

Compiler Start End Total Bugs Opt. Bugs Opt. Revisions
GCC 1999-08  2019-12 57,591 8,771 3,486
LLVM 2003-10 2019-12 22,748 1,564 1,224

reason is that we find some developers of GCC and LLVM
also use the first pattern in the commit to show that it is a
fix for a bug. For example, the commit!? in LLVM con-
tains "PR39475", which means that this revision fixes bug
39475'4. After obtaining the corresponding revision of an
optimization bug, we parse it to collect the information about
the modified files, functions, and code lines.

Table 1 shows the bug information used in this study.
Generally, we obtain 57,591 GCC bugs and 22,748 LLVM
bugs, which account for 66.17% and 52.49% of all bugs in
GCC and LLVM, respectively. In particular, we collect 8,771
GCC optimization bugs and 1,564 LLVM optimization bugs.
These optimization bugs account for 76.28% and 55.40%
of all optimization bugs in GCC and LLVM, respectively,
which indicates that the selected optimization bugs are rep-
resentative. In addition, we manually classify the 10,335
optimization bugs into Crash, Misoptimization, and Perfor-
mance.

Bhttps://reviews.llvm.org/D53844.
14https://bugs.llvm.org/show_bug.cgi?id=39475.

bugs?

This section shows the distribution of optimization bugs.
We describe the general statics of optimization bugs in Sec-
tion 3.1. The distribution of optimization bugs in compo-
nents is presented in Section 3.2.

3.1. General statistics

Fig. 1 shows the overall evolution of the optimization
bugs for GCC and LLVM. In particular, it shows the num-
ber of all bugs and optimization bugs in each month. From
Fig. 1(a) and Fig. 1(b), we can see that the trend of the
optimization bugs is almost consistent with that of all bugs.
In the early stage of GCC development (1999 ~ 2006), GCC
gained much attention, which led to increasement in the num-
ber of bugs. However, the trends of GCC are relatively sta-
ble in recent years compared to LLVM. For LLVM, it has
become a mature and widely used compiler infrastructure in
these years, and has drawn much attention in industry and
academia. This results in the rapid growth of the number of
LLVM bugs.

To illustrate the importance of optimization bugs, we
show the distribution of bugs in compiler components in Fig.
2. There totally have 52 and 96 components in GCC and
LLVM, respectively. Similar to the study in [21], we also
show the top ten buggy components for each compiler. The
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Figure 2: The top 10 buggy components in GCC and LLVM.

numbers of bugs in these top ten components account for
82.72% and 69.96% bugs for GCC and LLVM, respectively.

From Fig. 2(a) and Fig. 2(b), the bugs of optimization
components in both GCC and LLVM account for a high per-
centage. For GCC, we can see that the buggiest component
is C++, containing 21.63% of the 57,591 bugs. Meanwhile,
there are four language-dependent components (i.e., C++,
fortran, C, ada) in these ten buggy components. They all
belong to the front end of GCC. Apart from the language-
dependent components, we can see that the optimization com-
ponents (including "tree-optimization" and "rtl-optimizatio-
n") in GCC are the buggiest components, accounting for aro-
und 15.23% of the bugs. For LLVM, the buggiest com-
ponent is "new-bugs", since the developers can submit bug
reports without specifying their components [21]. Similar
to GCC, C++ component in LLVM also has a high per-
centage of bugs. Besides the C++ and new-bugs compo-
nents, the optimization components (including "Scalar Op-
timizations", "Loop Optimizer", "Transformation Utilities",
and "Interprocedural Optimizations") in LLVM are the bug-
giest components, containing 6.88% of the 22,748 bugs. The
percentage of bugs in optimization components of LLVM is
lower than that of GCC. The reason for this may be that some
optimization bugs are submitted in the new-bugs component
for LLVM.

3.2. Bugs in Optimization Components

Table 2 and Table 3 show the bugs in each optimization
component in GCC and LLVM, respectively. In particular,
we present the numbers of bugs with two status (i.e., Fixed
and Confirmed) for each optimization component. From Ta-

Table 2
Bugs in each GCC optimization component.
Component/Status Fixed Confirmed \ Total
tree-optimization 4,868 846 5,714
P (85.19%)  (14.81%) | (65.15%)
rtl-optimization 2,759 298 3,057
P (90.25%)  (9.75%) | (34.85%)
7,627 1,144
Total (86.96%) (13.04%) | o'
Table 3
Bugs in each LLVM optimization component.
Component/Status Fixed Confirmed | Total
L 930 37 967
Scalar Optimizations (96.17%) (3.83%) (61.83%)
Loop Optimizer 3150 110 3260
(96.63%)  (3.37%) | (20.84%)
N 145 2 147
Interprocedural Optimizations (98.64%) (1.36%) (9.40%)
. e 122 2 124
Transformation Utilities (98.39%) (1.61%) (7.93%)
1,512 52
Total (96.68%) (3.32%) | 104

ble 2, we can see that most optimization bugs for GCC are
contained in the "tree-optimization" component, accounting
for 65.15% of the 8,771 bugs. The reason may be that many
optimizations are implemented in the "tree-optimization" co-
mponent. In GCC, there are 85 files that are directly re-
lated to the "tree-optimization" component. The filenames
of these files all have the same prefix "tree-". However, the
percentage of fixed bugs for the "rtl-optimization" compo-
nent is 90.25%, which is larger than 85.19% for the "tree-
optim-ization" component. Besides, we can see that there
still are 14.81% and 9.75% bugs that are confirmed but not
fixed in "tree-optimization" and "rtl-optimization" compo-
nents, respectively.

For LLVM, we can see that the buggiest optimization
component is "Scalar Optimizations" from Table 3, contain-
ing 61.83% of the 1,564 bugs. However, the percentages of
fixed bugs for the Interprocedural Optimizations and "Trans-
formation Utilities" components are higher than other com-
ponents. This may be that the optimizations implemented in
these two components are much simpler than those of other
components. The major optimizations of LLVM are imple-
mented in the "Scalar Optimizations" components, there are
77 files in the corresponding directory in LLVM. The overall
rate of fixed optimization bugs in LLVM is 96.68%, which
is higher than GCC’s 86.96%. The reason may be due to the
fine-grained modular design of LLVM.

4. Which optimizations are buggy?

This section presents information about buggy optimiza-
tions in GCC and LLVM. Instead of listing the concrete op-
timizations, we show the files that implement the optimiza-
tions because it is hard to understand all optimizations of
GCC and LLVM. To obtain the files of buggy optimizations,
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Table 4 Table 5
Top 30 buggy files related to the optimizations of GCC. Top 30 buggy files related to the optimizations of LLVM.
File Description Freq. | File Description Freq. File Description Freq. | File Description Freq
tree-vrp.c Value range propa- 143 tre.e-ssa- PHI node optimiza- 36 Igs:rr‘l;‘i::::n_c Combine instruc- 238 | InlineFunction.cpp | Inline of function 12
) phiopt.c . g.cpp tions
gation tions .
tree-ssa-sccvn.c | Value numbering 92 | tree-ssa-dom.c | Dominator optimiza- 36 LoopVectorize.cpp | Loop vectorize 58 S'mpl_EL“P' Simple loop 11
. Unswitch.cpp s
tions unswitch
combine.c Instruction combina- 83 tree.c Tree nodes opera- 35 SimplifyCFG.cpp Peephole  optimize ~ 32 | Reassociate.cpp Reassociate commu- 11
tion tions the CFG tative expressions
. tree-ssa- P SLPVectorizer.cpp | superword-level par- 32 LoopSimplify.cpp Loop simplify 11
tree-ssa-pre.c Pl.art.lal ) redundancy 81 strlen.c ORtIm;Zath}:] for 30 allelism vectorization
elimination string length SROA .cpp Scalar replacement 25 | Local.cpp Local  transforma- 10
tree-cfg.c Split critical edges 69 | tree-ssa-loop.c | Loop optimization 30 of aggregates tions
tree-ssa- s . i i
tree-sra.c Scalar  replacement 61 ree-ssa Math optimizations 29 LICM.cpp Loop invariant code 24 LoopUnroll.cpp Loop unroll 9
of aggregates math-opts.c motion
IndVarSimplify.cpp | Induction  variable 21 LCSSA.cpp Loop-closed SSA 9
tree-ssa- . . tree-ssa- . . . P
. May-alias optimiza- 50 A Canonical induction 29 simplify
structalias.c M loop-ivcanon.c iabl i JumpThrea-
N on N variable creation GlobalOpt.cpp Global variable opti- 18 ding’i:pp Jump threading 9
ree-ssa- Reassociation 50 Iree-s.sa- Loop invariant mo- 28 mization ’
reassoc.c oop-im.c tion SCCP.cpp Sparse  conditional 17 | GVNHoist.cpp Global value num- 9
tree-ssa-ccp.c Conditional constant 50 ipa-cp.c Interprocedural con- 28 :_O"Sta"t propaga- bgnnf _bised expres-
. . ion sion hois
opagatio stant propagatio
propagation . nt pr Pag on GVN.cpp Global value num- 17 LoopRotation.cpp | Loop rotation 8
passes.c Pass manager 50 ifevt.c If conversion 25 bering
tree-loop- o . P
distribution.c Loop distribution 42 tree-ssa-dce.c [?ead code elimina- 24 Smlwlphfyhb— Library calls simpli- 16 Infiner.cpp Inline 8
tion Calls.cpp fier
tree-ssa- . . .
forwprop.c Forward propagation 41 | tree-ssa-copy.c | Conditional ~ copy 24 NewGVN.cpp New global value 15 | MemCPyOPE Memcpy calls opti- 7
. of single-use vari- propagation numbering imizer.cpp mization
ables DeadStore- o . .
tree-if-conv.c If-conversion for vec- 40 tree-eh.c Lower exception 24 Elimination.cpp Soesd store elimina- 14 | LoopUnswitch.cpp. | Loop unswitch 7
torizer handling control .
flow ;iji’::;?h- Loop strength reduc- 13 tﬁ:;sct;:ths- Constants to hoist 7
tree-parloops.c | Autoparallelization 39 | cfgexpand.c Translate GIMPLE 24 ) tion .
trees to RTL Loopldl.om— Loop idiom recog- 13 onmo'teMemory— Promote memory to 6
o tree-ssa- ) - Recognize.cpp oo ToRegister.cop | | o0
tree-ssa.c Enter static single 36 X X Combine conditional 23 ©! cgistel
. ifcombine.c . R
assignment form expression to sim-
plify control flow

we parse the commit logs to find the commits for the revi-
sions of the optimization bugs. We utilize the pattern listed
in Section 2.2 to check whether a revision is for an optimiza-
tion bug. Then we extract the changed files, and manually
check whether a file is used to implement an optimization.
In this way, we totally extract 1,589 and 348 files for GCC
and LLVM, of which 119 and 101 files are directly used to
implement optimizations in GCC and LLVM, respectively.
From these files, we can indirectly learn about the buggy
optimizations, since the names of these files, to some extent,
can reflect the function of the optimizations implemented in
these files. Table 4 and Table 5 show the top 30 buggy files
related to the optimizations of GCC and LLVM. We give
each file a description according to the documents of GCC
and LLVM. The frequency of each file is the number of re-
visions that moditfy this file to fix bugs.

From Table 4, we can see that the buggiest files used to
implement optimizations of GCC belong to the "tree-optimi-
zation" component. The file "tree-vrp.c" is the buggiest file,
which has been modified by at least 143 revisions related to
optimization bugs. The value range propagation optimiza-
tion is implemented in the file "tree-vrp.c". In addition, most
optimizations in these 30 files focus on optimizing a sin-
gle function, rather than the interprocedural optimization for
the whole program. There is only the file "ipa-cp.c" that
is used to implement the interprocedural constant propaga-
tion optimization in these 30 files. This may indicate that
the optimizations in GCC for optimizing a single function
need to be further tested. Specifically, there are five files
(i.e., "tree-loopdistribution.c", "tree-parloops.c", "tree-ssa-
loop.c", "tree-ssa-loop-ivcanon.c", and "tree-ssa-loop-im.c")
that focus on the loop optimizations, which may suggest that
the developers should pay more attention on the loop opti-

mizations in GCC.

For LLVM, we can see that the buggiest file is "Instruc-
tionCombining.cpp” that implements the instruction com-
bine optimization from Table 5. Note that the frequency
of the file "InstructionCombining.cpp” is higher than that
of other files in Table 5. This is because there are many
files that are used to implement the instruction combine opti-
mization and the name of these files all have the same prefix
"InstCombine", so we add all the frequency of these files
to the frequency of "InstructionCombining.cpp"”. Similar to
GCC, the files used to implement loop optimizations have
more bugs than other files from Table 5. There are nine files
(i.e., "LoopVectorize.cpp", "LICM.cpp", "LoopStrengthRe-
duce.cpp", "LoopldiomRecognize.cpp"”, "LoopSimplify.cpp”,
"LoopUnroll.cpp”, "LCSSA.cpp", "LoopRotation.cpp”, and
"LoopUnswitch.cpp") related to loop optimizations, account-
ing for 30% of the 30 files. Thus, more test may be fur-
ther conducted for loop optimizations in LLVM. In addi-
tion, the files (i.e., "GVN.cpp", "NewGVN.cpp", and "GVN-
Host.cpp") related to the global value numbering optimiza-
tion are all buggy. This may indicate that there are some
design flaws for the global value numbering optimization in
LLVM.

5. What are the types of optimization bugs?

5.1. General statistics

Bug types are an important aspect to understand the qual-
ity of a compiler. Through the analysis of the bug types for
optimization bugs, we can further know the flaws of the op-
timizations in GCC and LLVM. In this study, we manually
assign a type to each optimization bug according to the com-
piler testing literatures (e.g., [24, 7, 22, 9, 20, 25]). Gener-
ally, the types of optimization bugs can be divided into three
categories, i.e., Crash, Misoptimization (Mis-opt for short),
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Figure 3: The percentage of optimization bugs for each bug
type in GCC and LLVM.

Table 6
Bugs of each type in GCC's optimization components.
Component Mis-opt Crash Performance ‘ Total
tree- 3,294 2,227 193 5,714
optimization  (57.65%) (38.97%)  (3.38%) | (65.15%)
rtl- 1,724 1,223 110 3,057
optimization  (56.40%) (40.01%) (3.60%) (34.85%)
5,018 3,450 303
Total (57010%)  (39.33%)  (3.45%) 8.771
Table 7
Bugs of each type in LLVM'’s optimization components.
Component Mis-opt Crash Performance ‘ Total
Scalar 599 317 51 967
Optimizations  (61.94%) (32.78%) (5.27%) (61.83%)
Loop 182 129 15 326
Optimizer  (55.83%) (39.57%)  (4.60%) | (33.71%)
Interprocedural 99 45 3 147
Optimizations  (67.35%) (30.61%) (2.04%) (9.40%)
Transformation 80 42 2 124
Utilities (64.52%) (33.87%)  (1.61%) (7.93%)
960 533 71
Total (61.38%) (34.08%)  (4.54%) 1.564

and Performance. The details of these three bug types can
be found in Section 2.2.

Fig. 3 shows the percentage of each type of optimiza-
tion bugs in GCC and LLVM. From Fig. 3(a) and Fig. 3(b),
it is clear that most optimization bugs are Mis-opt bugs in
both GCC and LLVM, accounting for 56.15% and 68.03%
of the total optimization bugs for GCC and LLVM, respec-
tively. The percentage of Mis-opt bugs in LLVM is larger
than that of GCC. This may be caused by the insufficient
test of LLVM. However, the percentage of Crash bugs in
GCC is larger than that of LLVM. The reason for this may
be that the code of GCC is implemented by C programming
language, while C+4 for LLVM. Although the developers
of GCC, to some extent, have refactored the code of GCC
using C++ programming language, there is still much work
to be done. In both GCC and LLVM, the percentage of Per-
formance bugs is very small compared to Mis-opt bugs and
Crash bugs. One possible explanation is that testers and
users may do not pay much attention to Performance bugs,

Table 8
The status of optimization bugs for each bug type in GCC.
Type\Status Fixed Confirmed \ Total
Mis-opt 3,965 1,053 5,018
P (79.02%)  (20.98%) | (57.21%)
Crash 3,390 60 3,450
(98.26%) (1.74%) (39.33%)
Performance 272 31 303
(89.77%)  (10.23%) (3.45%)
7,627 1,144
Total (86.96%) (13.04%) | o'
Table 9
The status of optimization bugs for each bug type in LLVM.
Type\Status Fixed Confirmed [ Total
Micont 919 41 960
s-op (95.73%)  (4.27%) | (61.38%)
Crash 523 10 533
(98.12%)  (1.88%) | (34.08%)
Performance 0 . &
(98.59%)  (1.41%) | (4.54%)
1,512 52
Total (96.68%) (3.32%) 1,564

since Performance bugs are hard to reproduce in a differ-
ent environment. In most cases, Performance bugs may be
caused by the setting of the user’s system, such that the de-
velopers can hardly reproduce them in their system. In ad-
dition, we cannot rule out that Performance bugs may rarely
occur in essence compared to other types of bugs.

5.2. Bugs of each type in optimization components

Table 6 and Table 7 show the information about opti-
mization bugs of each type in the optimization components
of GCC and LLVM, respectively. From Table 6, we can see
that the percentages of Mis-opt bugs, Crash bugs, and Per-
formance bugs in both tree-optimization component and rtl-
optimization component are similar. The numbers of bugs
of these three types account for about 56%, 40%, and 3%
of the 5,714 and 3,057 bugs in the two optimization compo-
nents, respectively. Similar to the number of bugs in the tree-
optimization component and rtl-optimization component, the
number of bugs of each type in tree-optimization component
is almost twice as large as that of the rtl-optimization com-
ponent.

Similar cases also occur in LLVM. However, the per-
centage of Crash bugs in the Loop Optimizer component
is larger than those of other components. There are 129
Crash bugs in the Loop Optimizer component, accounting
for 39.57% of the 326 bugs. In addition, the percentage of
Performance bugs in the Scalar Optimizations is also larger
than those of other components, accounting for 5.27%. This
may suggest that the developers of LLVM should conduct
more tests for different types of bugs.
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5.3. Status of optimization bugs for each bug type

To investigate the status of optimization bugs for each
bug type, we statistic the number of optimization bugs ac-
cording to their types and status. Table 8 and Table 9 show
the information about the status of each bug type for opti-
mization bugs in GCC and LLVM. In general, the bug-fixing
rate of LLVM is larger than that of GCC. For LLVM, 96.68%
optimization bugs are fixed, while 86.96% for GCC. Besides,
from 6, Table 7, Table 8, Table 9, we can see that the major-
ity of optimization bugs in both GCC and LLVM are Crash
and Mis-opt bugs. However, the bug-fixing rate of Crash
bugs is larger than those of Mis-opt bugs for both GCC and
LLVM. The bug-fixing rates of Crash bugs are 98.26% and
98.12% for GCC and LLVM, respectively. While the bug-
fixing rates are only 79.02% and 95.73% for Mis-opt bugs of
GCC and LLVM, respectively. This may be because of the
difficulty for analyzing and locating the root causes of Mis-
opt bugs. For Crash bugs, developers can leverage the back-
trace information to analyze the root causes of bugs, while
only limited information could be used to help developers
logically understand the root cause of a Mis-opt bug.

In addition, for Performance bugs, LLVM has a higher
bug-fixing rate than GCC. There are 10.23% Performance
bugs that are confirmed but not fixed for GCC. However,
only one confirmed Performance bug for LLVM is not fixed,
accounting for 1.41% of 71 LLVM Performance bugs. Be-
sides, LLVM also has a better bug-fixing rate of Mis-opt
bugs compared to GCC. There are 95.73% Mis-opt bugs that
are fixed, but only 79.02% for GCC. One possible reason is
due to the better modular design of LLVM, such that devel-
opers can quickly find the root causes of Performance bugs
and Mis-opt bugs.

6. How long do optimization bugs live?

This section investigates the time that optimization bugs
live for GCC and LLVM. Specifically, we focus on the time
to fix bugs and the time that confirmed bugs live until Dec.

1.01 f"_'_'___d,—
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c 0.7
o
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o
o
“ 0.6
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optimization bugs live for GCC and LLVM.

Table 10
The average months that optimization bugs live for each op-
timization component and each bug type in GCC.

Fixed Confirmed
tree-optimization  9.79 68.99
rtl-optimization 13.57 82.02
Mis-opt 15.07 73.87
Crash 6.43 40.45
Performance 13.06 83.58

31, 2019. Fig. 4 shows the months that optimization bugs
live for GCC and LLVM. From Fig. 4(a) and Fig. 4(b), we
can see that most fixed bugs can be processed in about 24
months in both GCC and LLVM. In general, developers of
GCC need 11.16 months for fixing an optimization bug on
average. While the confirmed optimization bugs of GCC live
for 72.38 months on average. For the 7,627 fixed bugs, 6,633
and 3,419 of them can be fixed in 24 months and one month,
account for 86.97% and 44.83%, respectively. In LLVM,
the distributions of the time for the two types of bugs are
similar to GCC. The average months for the fixed bug and
the confirmed bug are 13.55 and 14.63, respectively. There
are 1,218 and 777 optimization bugs of LLVM that can be
fixed in 24 months and one month, accounting for 80.56%
and 51.39%, respectively. Besides, it is clear from Table 4
that the time for confirmed bugs of LLVM is shorter than
GCC. The time that the confirmed bugs live is 14.63 months
on average for LLVM, while it is 72.38 months for GCC.
This is because there are some confirmed bugs of GCC that
have lived for a long time. For example, GCC bug 5738!°
is confirmed at Apr. 2002, but it is still not fixed until Dec.
2019.

Table 10 and Table 11 present the average months that
optimization bugs live for each optimization component and
each bug type in GCC and LLVM. From Table 10, we can see
that the average months for the bugs in the r#l-optimization

Shttps://gce.gnu.org/bugzilla/show_bug.cgi?id=5738.
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Table 11
The average months that optimization bugs live for each op-
timization component and each bug type in LLVM.

Fixed Confirmed
Scalar Optimizations 13.97 9.49
Loop Optimizer 10.70 25.0
Interprocedural Optimizations 17.77 66.0
Transformation Utilities 12.62 1.5
Mis-opt 14.11 13.41
Crash 12.26 7.7
Performance 15.73 134.0

component are longer than those of the tree-optimization co-
mponent. This is because that optimizations implemented
in the rtl-optimization component are more complex than
those in the tree-optimization component. In addition, Mis-
opt bugs take longer time than other types of bugs. For ex-
ample, developers of GCC need an average of 15.07 months
for fixing a Mis-opt bug, while it is 6.43 months for a Crash
bug on average. The reason for this may be that it is difficult
to analyze and locate the root causes of Mis-opt bugs. To al-
leviate this difficult, Chen ef al. [2] present a method based
on effective witness test program generation to automatically
isolate the root causes of compiler bugs.

For LLVM, we can see that the most time-consuming
bugs belong to the Interprocedural Optimizations compo-
nent from Table 11. The average months for fixed bugs and
confirmed bugs in the Interprocedural Optimizations com-
ponent are 17.77 and 66.0, respectively. This is because, on
the one hand, the interprocedural optimizations are hard to
understand by developers, since they are used to optimize
the whole program that may include many functions. On
the other hand, it is difficult to analyze the root causes of
the bugs in Interprocedural Optimizations component. For
a target program with many functions, if it triggers a bug for
an interprocedural optimization, any function of it may con-
tain the code to trigger the bug. Besides, instead of Mis-opt
bugs, the average months for Performance bugs in LLVM
are longer than those of other types of bugs. For instance,
it takes average of 15.73 months to fix a Performance bug.
Especially, the LLVM performance bug 3082 is confirmed
at Nov. 2008, but it has lived about 134.0 months until Dec.
2019. This may be due to the difficulty to locate the real rea-
son for Performance bug. For example, the developers take
a long time to discuss the root cause of LLVM bug 105847
and propose patches for this bug.

7. How many files, functions, and code lines
are modified to fix an optimization bug?

This section investigates the number of files, functions,
and code lines for fixing optimization bugs in GCC and LLV-
M. With a better understanding of bug fixes of optimization
bugs, developers of compilers can make better design deci-

16https://bugs.llvm.org/show_bug.cgi?id=3082.
Thttps://bugs.llvm.org/show_bug.cgi?id=10584.

Table 12
The average number of files, functions, and code lines for fixing
optimization bugs in GCC and LLVM.

Files Functions ﬂ
Add Delete
GCC 1.66 3.07 25.11 10.10
LLVM 1.43 2.45 40.15 18.25

sions of optimizations. In addition, our study also provides
useful guidance for automatic debugging techniques (e.g.,
[2]) for compiler bugs. We parse patches in the commit log,
and extract the information about the modified files, func-
tions, and code lines. Note that we exclude the files that are
used to test GCC and LLVM, since these files do not im-
pact the functionality of GCC and LLVM but they contain
many code changes. Table 12 shows the average number of
files, functions, and code lines for fixing optimization bugs
in GCC and LLVM. In general, the developers of GCC need
to modify more files and functions to fix optimization bugs
than LLVM. However, to fix optimization bugs in LLVM,
the developers of LLVM need to add or delete more code
than GCC.

7.1. Number of files

Fig. 5 shows the relation between the number of files
modified in a fix and the fraction of bugs. From Fig. 5(a), we
can see that around 90% of the optimization bugs involve at
most 3 files in GCC and LLVM. Specially, more than 79% of
the GCC optimization bugs and 81% of the LLVM optimiza-
tion bugs only involve one file. Moreover, most optimization
bugs in both GCC and LLVM can be fixed by modifying no
more than 14 files. Fig. 5(b) shows the summary statistics
(including mean, median and standard deviation (SD)). On
average, the developers need to modify 1.66 and 1.43 files
to fix an optimization bug in GCC and LLVM, respectively.
This may indicate that both GCC and LLVM all have a good
modular design of optimizations, such that most of the op-
timization bugs only touch a small portion of the compiler
code.

Table 13 presents statistics of the number of files in bug
fixes of each optimization component and each bug type in
GCC and LLVM. For GCC, the optimization bugs in the
tree-optimization component involve more files than the rt-
optimization component. The mean of the tree-optimization
component is 1.81, while it is 1.41 for the rtl-optimization
component. For each type optimization bugs in GCC, Per-
formance bugs involve more files. The mean, median, and
SD of Performance bugs are 2.82, 2.00, and 3.64, which are
much larger than those of Mis-opt bugs and Crash bugs. For
LLVM, the optimization bugs in the Interprocedural Op-
timizations touch more files than other optimization com-
ponents. In addition, the developers need to modify more
files to fix Mis-opt bugs compared to Crash bugs and Per-
formance bugs, 1.44 files on average.
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(a) The empirical cumulative distribution of the number of files
modified in a bug fix.
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(b) The statistics of the number of files in bug fixes.

Figure 5: The number of files modified in bug fixes for GCC
and LLVM.

Table 13
The statistics of the number of files in bug fixes for each op-
timization component and each bug type in GCC and LLVM.
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(a) The empirical cumulative distribution of the number of
functions modified in a bug fix.

Mean Median SD Min  Max
GCC 3.07 1.00 5.27 1 47
LLVM 2.24 1.00 4.39 1 112

(b) The statistics of the number of functions in bug fixes.

Figure 6: The number of functions modified in bug fixes for
GCC and LLVM.

Table 14
The statistics of the number of functions in bug fixes for each
optimization component and each bug type in GCC and LLVM.

Mean Median SD  Min Max Mean Median SD  Min Max
GCC:tree-optimization 1.81 1.00 1.92 1 14 GCC:tree-optimization 3.84 2.00 6.23 1 47
GCC:rtl-optimization 1.41 1.00 1.63 1 14 GCC:rtl-optimization 1.85 1.00 2.76 1 26
GCC:Mis-opt 1.70 1.00 1.73 1 12 GCC:Mis-opt 2.92 1.00 4.78 1 41
GCC:Crash 1.53 1.00 1.70 1 14 GCC:Crash 2.95 1.00 5.20 1 47
GCC:Performance 2.82 2.00 3.64 1 14 GCC:Performance 7.18 2.0 9.87 1 36
LLVM:Scalar Optimizations 1.41 1.00 1.95 1 42 LLVM:Scalar Optimizations 2.20 1.00 4.99 1 112
LLVM:Loop Optimizer 1.34 1.00 1.06 1 11 LLVM:Loop Optimizer 2.20 1.00 2.34 1 24
LLVM:Interprocedural Optimizations  1.75 1.00 2.81 1 25 LLVM:Interprocedural Optimizations  2.32 1.00 3.75 1 33
LLVM:Transformation Utilities 1.52 1.00 1.56 1 11 LLVM:Transformation Utilities 2.67 1.00 3.80 1 24
LLVM:Mis-opt 1.44 1.00 1.59 1 25 LLVM:Mis-opt 2.18 1.00 2.84 1 33
LLVM:Crash 1.43 1.00 2.37 1 42 LLVM:Crash 2.39 1.00 6.37 1 112
LLVM:Performance 1.32 1.00 0.83 1 6 LLVM:Performance 2.04 1.00 1.76 1 9

7.2. Number of functions

Fig. 6(a) shows the empirical cumulative distribution of
the number of functions modified in a bug fix. From Fig.
6(a), around 96% of the GCC optimization bugs and 99% of
LLVM involve at most 14 functions. In particular, more than
58% of the optimization bugs in GCC and LLVM only in-
volve one function. Moreover, the bug fixes with 4 functions
cover more than 85% and 90% of the optimization bugs in
GCC and LLVM, respectively. Fig. 6(b) presents the statis-
tics of the number of functions in bug fixes. Generally, GCC
needs to modify more functions than LLVM, 3.07 functions
on average.

Table 14 displays the statistics of the number of functions
in bug fixes of each optimization component and each bug
type in GCC and LLVM. For GCC, the optimization bugs
in tree-optimization component and Performance bugs in-
volve more functions. Specifically, the mean of the number
of functions for fixing a Performance bug is 7.18, while it is
only 2.92 for Mis-opt bugs. However, in contrast to GCC,
the Crash bugs touch more functions in LLVM, 2.39 func-
tions on average.

7.3. Lines of code

In addition to the files and the functions, we also inves-
tigate the lines of source code in bug fixes. In our study, we
treat code and comments in a uniform way, that is, the infor-
mation about code and comments are all considered when we
investigate the lines of code in bug fixes. This is because that
comments play an important role in software developments.
Comments can not only improve the readability and main-
tainability of source code, but also provide a significant re-
source for software reuse [13]. In addition, GCC and LLVM
are two mature and widely used compilers. All source code
of GCC and LLVM are implemented according to strict code
standards'®, which guarantees the quality of code and com-
ments. Thus, under the premise that both the source code
and the comments are of high quality, we believe it is rea-
sonable to consider all information about the code and the
comments for investigating the lines of code in bug fixes.
Fig. 7 shows the relation between the number of code lines
modified in a fix and the fraction of bugs. As shown in Fig.
7(a), most of the bug fixes add or delete fewer than 250 lines

8https://www.gnu.org/prep/standards/standards.html, https:/[lvm.org-
/docs/CodingStandards.html.
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(a) The empirical cumulative distribution of the number of code lines mod-
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GCC-add 25.11 7.00 84.14 0 1256
GCC-del 10.10 1.00 30.70 0 203

LLVM-add 40.15 20.00 68.68 0 945
LLVM-del 18.25 3.00 85.12 0 1665

(b) The statistics of the number of code lines in bug fixes.

Figure 7: The number of code lines modified in bug fixes for
GCC and LLVM.

of code in GCC and LLVM. Around 99% of the bug fixes
only modify no more than 100 lines of code, while 90% less
than 50 lines of code. On average, as Fig. 7(b) shows, the
developer of LLVM need to add or delete more lines of code
to fix an optimization bug. The means of the added and
deleted lines of code in LLVM are 40.15 and 18.25 respec-
tively, while they are 25.11 and 10.10 for GCC. In addition,
the median for GCC is smaller than LLVM. Especially, the
median of the added lines of code in GCC is only 7, while it
is 20 for LLVM. The reason may be that LLVM has drawn
much attention from both industry and academia, such that
many developers devote to enhance LLVM.

Table 15 shows the statistics of the number of code lines
added/deleted in bug fixes of each optimization component
and each bug type in GCC and LLVM. For GCC, the trend
of the added/deleted lines of code in the bug fixes is the same
as the function modification. For example, the bug fixes
in the tree-optimization component involve more functions
than the rtl-optimization component (see Table 14). Simi-
larly, the bug fixes in the tree-optimization component also
need to add/delete more lines of code. On average, the de-
velopers add/delete 33.15/14.16 lines of code to fix an op-
timization bug in the tree-optimization, and the median is
9.00/2.00. However, in LLVM, although the bug fixes in
the Interprocedural Optimizations component involve more
functions than other optimization components, they contain
fewer modification of lines of code. The mean is 33.42/9.57
to add/delete lines of code in the Interprocedural Optimiza-
tions component, while it is 45.31/30.55 for the Transforma-
tion Utilities component.

Table 15

The statistics of the lines of code added/deleted in bug fixes
for each optimization component and each bug type in GCC
and LLVM.

Mean Median SD Min Max
GCCitreeoptimization 33.15/14.16 _ 9.00/2.00 _ 105.12/37.61 0/0 1,256/293
GCCirtloptimization ~ 12.28/3.62  4.00/1.00  21.61/11.01 0/0  138/77
GCC:Mis-opt 26.12/8.87  7.00/1.00  101.83/26.79 0/0 1,256/293
GCC:Crash 19.61/9.62  7.00/1.00  41.29/3020 0/0  387/231
GCC:Performance 92.00/36.55 28.00/12.00 176.91/64.75 0/1  643/236
LLVM:Scalar
Optimizations 40.85/17.10  18.00/3.00 76.49/66.13  0/0 945/1,231
LLVM:Loop Optimizer 38.81/20.77  23.50/3.00 46.84/126.06 1/0 271/1,665
LLVM:Interprocedural
Optimizations 33.42/9.57 22.00/4.00 41.05/13.97 1/0 236/69
b:\“/i';’i';:ra“f”ma“"” 45.31/3055 22.00/5.00 72.56/125.30 0/0  404/69
LLVM:Mis-opt 45.20/16.34  23.00/4.00 77.66/78.78  0/0 945/1,665
LLVM:Crash 30.07/15.55  16.00/2.00 47.81/66.15 0/0 444/1,046

LLVM:Performance 50.91/61.62 17.00/10.00 70.22/197.81 0/0 271/1,231

8. Threats to Validity

Threats to Internal Validity. The threats to internal validity
mainly lie in the correctness of the examination methodol-
ogy. Firstly, we collect the optimization bugs from the bug
repositories of GCC and LLVM according to the predefined
optimization components they belong to. However, not all
optimization bugs are in the predefined optimization com-
ponents. Thus, our data may not contain all the optimization
bugs of the selected compilers. For example, the developers
of LLVM can submit bug reports without specifying their
components. Some optimization bugs of LLVM may belong
to the new-bugs component, which is not an optimization
component. Secondly, we manually assign a type to each
optimization bug according to its comments. However, it is
difficult to obtain the type of a bug only according to the
comments for some special cases. To reduce this threat, we
ask three authors of this study to evaluate the comments un-
til we reach a consensus. Thirdly, we parse the commit logs
to collect the information of the modification of files, func-
tions, and lines of code in bug fixes. However, the results
may not be precise. For example, we may not extract a few
functions due to the complex syntax of C/C++. To alleviate
this threat, we manually check the results, and try our best to
make our program automatically extract precise results. We
believe that the results of this study are credible.

Threats to External Validity. The threats to external valid-
ity mainly lie in the representativeness of the chosen com-
pilers. We select GCC and LLVM in this study. Both GCC
and LLVM are mature and widely used compilers written in
C/C++. They have been used to implement many program-
ming languages (e.g., C++, Ada, Fortran) for various archi-
tectures, and many effective optimization algorithms have
been implemented. We believe that GCC and LLVM can
well represent most of the traditional compilers, and the op-
timizations implemented in them can also represent most of
the optimizations used by other compilers. However, the se-
lected compilers in this study may not well reflect the com-
pilers based on the virtual machine (e.g., Just-In-Time com-
pilers for Java) or interpreters (e.g., Python). While both
Just-In-Time compilers and interpreters also contain many
optimizations, we thus believe that the results of this study
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may also be useful for the design and the implementation of
Just-In-Time compilers and interpreters.

9. Related work

The most relevant work are the studies [21] and [14]. Sun
et al. [21] present the first empirical study on compiler bugs.
They examine about 50K bugs and 30K bug fix revisions of
GCC and LLVM, and show four characteristics of compiler
bugs, such as the distribution of bugs in source files. Sim-
ilar to the study [21], we also study the compiler bugs of
GCC and LLVM. However, we focus on the optimization
bugs, since optimizations are important for modern compil-
ers. Our study complements the work conducted by Sun et
al. [21], such that the developers and researchers can further
understand compiler bugs. The second most relevant work
is the study conducted by Michaél et al. [14]. In [14], the
authors study the practical impact of fuzzer-found compiler
bugs on real-world applications. Although the authors show
that only a very small part of miscompilation bugs in a ma-
ture compiler can influence the real-world application, com-
piler fuzz testing is also an important technique to improve
the quality of compilers. Our study provides an insight into
compiler optimization bugs, which may help the researchers
to design more efficient fuzz testing methods for compilers.

Besides the work [21] and [14], there are still many em-
pirical studies on bugs. Chou et al. [3] present a study of op-
erating system errors. They collect approximately one thou-
sand errors by applying automatic, static, compiler analysis
to the Linux and OpenBSD kernels, and show that device
drivers have much more bugs than other components of the
kernels. Li et al. [8] study bug characteristics in modern
open-source software. They analyze around 29, 000 bugs
of Mozilla and Apache using natural language text classi-
fication techniques. They find that semantic bugs are the
dominant root causes and security bugs have an increasing
trend the open-source software. Lu ef al. [12] investigate the
real world concurrency bug characteristics. They randomly
collect 105 real-world concurrency bugs from MySQL, Apa-
che, Mozilla, and OpenOffice, and examine concurrency bug
patterns, manifestation, and fix strategies of these bugs. Their
findings are useful for concurrency bug detection, testing,
and concurrent programming language design. Sahoo et al.
[18] conduct an empirical study on bugs that affect repro-
ducibility at the production site. They analyze 266 reported
bugs of six server applications, such as MySQL, Apache,
and OpenSSH, and provide several implications on automatic
bug diagnosis tools based on their findings. Song et al. [19]
present an empirical study to understand performance bugs
in open source projects, and show that the statistical debug-
ging technique can well diagnose performance problems.

For better understanding bugs in machine learning sys-
tems, Thung et al. [4] analyze bugs of Apache Mahout,
Lucene, and OpenNLP. They divide the bugs into three cat-
egories based on their characteristics, and provide the re-
lationship between bug categories and bug characteristics.
Zhang et al. [26] conduct an empirical study on the char-

acteristics of deep learning defects. They collect 175 Ten-
sorFlow coding bugs from GitHub issues and StackOver-
flow questions, and analyze the symptoms and root causes of
these bugs. Islam et al. [6] analyze characteristics of bugs in
deep learning software. They collect 2716 high-quality posts
from Stack Overflow and 500 bug fix commits of five open-
source deep learning libraries (e.g., Tensorflow, Theano, and
Torch), and analyze many characteristics of these bugs, such
as the types of bugs, root causes of bugs, and the impacts of
bugs.

Unlike other empirical studies, our work focus on opti-
mization bugs in compilers, which may be a complement for
other studies to better understand the corresponding bugs.
For example, there are also many optimizations in some deep
learning frameworks, such as TensorFlow [15] and PyTorch
[17]. Most of the algorithms for these optimizations are
the same as those in compilers. Our findings may also pro-
vide useful guidance toward better designing and testing op-
timizations in deep learning frameworks.

10. Conclusion

In this study, we present an empirical study of optimiza-
tion bugs in GCC and LLVM. We collect 57,591 GCC bugs
and 22,748 LLVM bugs, and then exhaustively examine 8,771
and 1,564 optimization bugs of GCC and LLVM, respec-
tively. In particular, we have shown the characteristics of
compiler optimization bugs including (1) the distribution of
optimization bugs over time and the distribution in compo-
nents; (2) the optimizations related to the optimization bugs;
(3) the types of optimization bugs; (4) the time that optimiza-
tion bugs live; and (5) the bug fixes information of optimiza-
tion bugs.

The results illustrate that (1) optimizations are the buggi-
est component except for the C++ component in both GCC
and LLVM; (2) the buggiest optimization in GCC is the value
range propagation optimization, while it is the instruction
combine optimization for LLVM; in both GCC and LLVM,
the loop optimizations are more bug-prone than other opti-
mizations; (3) more than half of optimization bugs are Mis-
opt bugs, which account for 57.21% and 61.38% of the total
optimization bugs in GCC and LLVM, respectively; (4) op-
timization bugs in both compilers live over five months, and
the average months for fixing an optimization bug are 11.16
and 13.55 for GCC and LLVM respectively; many confirmed
optimization bugs in GCC and LLVM have lived for a long
time; (5) developers modify no more than two files and three
functions on average to fix an optimization bug in both com-
pilers, and around 99% of the bug fixes modify less than 100
lines of code, while 90% less than 50 lines of code.

Our study gives the compiler developers and researchers
insight into understanding optimization bugs. This could
guide the developers and researchers to better design, test,
and debug the optimizations in compilers.
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