
How Are Design Patterns Concerned by Developers?

He Jiang∗†, Dong Liu∗, Xin Chen‡, Hui Liu†, and Hong Mei†
∗School of Software, Dalian University of Technology, Dalian, China

Email: jianghe@dlut.edu.cn, dongliu05@gmail.com
†School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

Email: liuhui08@bit.edu.cn, meihong@bit.edu.cn
‡School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China

Email: chenxin4391@hdu.edu.cn

Abstract—In recent years, design pattern has become an
accepted concept in software design and many studies have
involved various aspects of design patterns. However, it is
an open question that how design patterns are discussed by
developers.

In this study, we conduct an empirical study to answer this
question by soliciting Stack Overflow. First we build a new
open catalog with 425 design patterns. Then, we extract 187,493
design pattern relevant posts from Stack Overflow.

As to these posts, we find that the popularity of design
patterns follows a long tail distribution. More surprisingly,
nearly half of the posts focus on only five design patterns.
We also successfully detect many potential new co-occuring
design patterns, which could well complement the deficiency
of existing studies.

Keywords-design pattern; Stack Overflow; empirical study;

I. INTRODUCTION

Design patterns in software engineering provide proven
reusable solutions to commonly occurring problems by
summarizing explicit good design practices. In the literature,
a large number of studies have been conducted to investigate
the issues around design patterns [1].

Despite these encouraging studies of design patterns,
there remain many open questions to be investigated. Have
all design patterns drawn attention of developers? Does
there exist a design pattern that can always keep attractive
for developers? If not, what types of design patterns may
gradually become outdated? Are there any related design
patterns that are not introduced in the literature? Obviously,
the answers to the above questions are beneficial for both
developers and researchers. On the one hand, developers
could better acknowledge the emphases of mastering all the
design patterns and gain more experience of how to correctly
use these design patterns in practice. On the other hand,
researchers could spend more efforts on clarifying these
popular design patterns, e.g., providing more “known uses”,
code samples, and related design patterns.

To investigate the answers to these questions, we conduct
empirical analysis by Stack Overflow, one popular online
knowledge-sharing community which attracts millions of
developers to share their experience [2].

II. BUILDING RESEARCH CORPUS

A. Building Design Pattern Catalog

The design patterns1 are collected from three sources,
including existing design pattern related books [3], e.g.,
GoF [4], POSA [5], PoEAA [6], online design pattern
repositories, e.g., the Hillside repository2, and the design
pattern category of Wikipedia3.

We merge all the design patterns from the above three
sources together and remove the duplicates according to their
names. Finally, there are 425 unique design patterns in our
design pattern catalog4.

B. Posts Extraction

First, we download the Stack Overflow question posts
spanning from August 2008 to December 2017. Next, given
a design pattern in the design pattern catalog, we regard a
post as its relevant post candidate if the design pattern name
appears in the title, body, or the tags of the post.

However, the design pattern relevant post candidates are
still too noisy to use. For example, “visitor” can represent
a design pattern of GoF, but it also refers to someone
who visits a web page in some cases. Therefore, we use
a Logistic Regression classifier to determine whether a post
candidate of a design pattern is really relevant to the design
pattern. The classifier is trained on 400 randomly selected
and manually annotated post candidates with five extracted
features5.

Then, by applying the trained classifier to all the pairs of
design patterns and their relevant post candidates, 196,485
pairs (involving 187,493 non-redundant posts and 210 design
patterns) are predicted to be “relevant”. Moreover, the results
are validated manually on 385 randomly sampled pairs. With

1Please note that design patterns in this paper include both “design
patterns” and “architectural patterns”, as the definition of design pattern
may vary in different sources.

2http://hillside.net/patterns
3https://en.wikipedia.org/wiki/Category:Software design patterns
4The design pattern catalog as well as some results of the findings are

available on https://github.com/WoodenHeadoo/design-pattern-catalog/wiki
5Due to the limitation of space, the detailed description of the features are

shown on https://github.com/WoodenHeadoo/design-pattern-catalog/wiki

Authorized licensed use limited to: Dalian University of Technology. Downloaded on December 31,2020 at 01:11:31 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200

5000

10000

15000

20000

25000

Index of Design Pattern

Nu
m

be
r o

f P
os

ts

Figure 1: The number of relevant posts against each design
pattern in descending order.

respect to the class of relevant, the values of precision and
recall are 97.3% and 87.8%, respectively.

III. FINDINGS

A. Mostly Discussed Design Patterns

The popularity of design patterns varies sharply. The 210
design patterns that can be found in Stack Overflow are
sorted in descending order by their numbers of relevant
posts (as shown in Fig. 1). From this figure, we can observe
that only a small part of design patterns are frequently
discussed by developers and the frequency distribution of
design patterns exhibits a long tail. Moreover, almost half of
the relevant posts are covered by the top 5 design patterns
(the cutoff in the figure), namely Model View Controller
(MVC), Active Record, Model View ViewModel (MVVM),
Reflection, and Dependency Injection (DI).

Both developers and researchers could benefit from this
interesting finding (the long tail distribution of design pat-
terns) by focusing on the most discussed design patterns.

B. Evolvement of Design Patterns

The popularity of design patterns gradually evolves over
time. The evolvement trends of the design patterns initial-
ly undergo a strong rise with respect to the number of
relevant posts. After reaching their peaks, the trends of
design patterns related to traditional areas (e.g., database,
fundamental programming) present a gradually downward
trend, such as Active Record, Reflection, and Singleton.
In contrast, the trends of some design patterns associated
with emergent techniques still keep steadily upward, such
as Dependency Injection, Adapter, Future, and Pipeline,
which are relevant to web application frameworks, Android
development, concurrent programming, and data processing
of machine learning, respectively.

By investigating the applications of new technology
waves, researchers may propose more influential design
patterns.

C. Co-occurrence of Design Patterns

Two design patterns may share a same relevant post. To
facilitate the observation, we present the 25 most frequently

Table I: Top 25 most frequent design pattern pairs

ID
Design Pattern Pair
(# co-occurrences) ID

Design Pattern Pair
(# co-occurrences)

1 Unit of Work - Repository (545) 14 Factory Method - Factory (126)
2 Event Sourcing - CQRS (344) 15 MVVM - MVP (120)
3 Factory - DI (292) 16 Factory - Abstract Factory (112)
4 Repository - DI (278) 17 Unit of Work - DI (104)
5 MVVM - MVC (232) 18 Singleton - MVC (85)
6 Service Locator - DI (196) 19 MVP - DI (77)
7 Singleton - DI (194) 20 Strategy - Factory (76)
8 MVP - MVC (191) 21 Factory Method - Abstract Factory (73)
9 MVVM - DI (186) 22 Factory - Builder (71)
10 Singleton - Factory (163) 23 Service Layers - Repository (70)
11 Observer - MVC (162) 24 MVC - DAO (69)
12 Repository - MVC (151) 25 MVC - Active Record (69)
13 MVC - DI (127)

co-occurring design pattern pairs in Table I. By an in-
depth analysis on some of posts containing multiple design
patterns, we observe that these posts are mainly about
cooperations or comparisons of design patterns. That means
they are potential related design patterns. In the table, most
design pattern pairs have been provided in the literature, but
some of them are rarely discussed explicitly in the literature,
such as Factory - DI and MVC - DAO.

By referring to the potential related design patterns,
developers could consider more relevant design patterns in
resolving programming tasks and researchers could better
enrich their design pattern related documents.

IV. CONCLUSION

Design patterns play an important role for developers in
resolving some recurring problems. In this study, we conduct
an empirical study to investigate the popularity, evolvement,
and co-occurrence of design patterns in Stack Overflow.

With the results of the empirical study, developers could
better acknowledge the emphases of design patterns and
researchers could better acknowledge what design patterns
should be further enriched about their documents.

REFERENCES

[1] C. Zhang and D. Budgen, “What do we know about the
effectiveness of software design patterns?” IEEE Trans. Softw.
Eng., vol. 38, no. 5, pp. 1213–1231, Sept 2012.

[2] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Trans. Serv.
Comput., vol. 9, no. 5, pp. 771–783, 2016.

[3] S. Henninger and V. Corrêa, “Software pattern communities:
Current practices and challenges,” in Proceedings of the 14th
Conference on Pattern Languages of Programs, ser. PLOP ’07.
New York, NY, USA: ACM, 2007, pp. 14:1–14:19.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design pat-
terns:elements of reusable object-oriented software. Addison-
Wesley, 1995.

[5] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad,
Pattern-Oriented Software Architecture. John Wiley and Sons,
1996.

[6] M. Fowler, Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on December 31,2020 at 01:11:31 UTC from IEEE Xplore. Restrictions apply.

