
AdaBoost-based Refused Bequest Code Smell
Detection with Synthetic Instances

Hao Chen∗1, Zhilei Ren∗3, Lei Qiao†2, Zhide Zhou∗5, Guojun Gao∗7, Yue Ma‡6, He Jiang∗4
∗School of Software, Dalian University of Technology, Dalian, China

†Beijing Institute of Control Engineering, Beijing, China
‡Taiyuan University of Technology, Taiyuan, China

{1chenhaodlut, 2fly2moon}@163.com, {3zren, 4jianghe}@dlut.edu.cn
{5cszide, 6csyuema}@gmail.com, 7ggj gao@mail.dlut.edu.cn

Abstract—Software requirements are constantly changing.
Consequently, the development process is frequently under time
pressure, which results in technical debt. To illustrate the
symptoms of technical debt, 22 code smells have been introduced
to indicate the poor design in code fragment, among which
refused bequest is one of the most harmful smells and with
high diffuseness. However, refused bequest is rarely taken into
account because there is a lack of dataset. Moreover, it is difficult
to design the detection rules for refused bequest compared with
other popular smells.

In this paper, we propose a machine-learning-based refused
bequest smell detection framework SEADART, which features
the utilization of a set of synthetic smelly instances. Specifically,
SEADART comprises three components: (1) a smell generation
approach, and (2) a model training strategy, and (3) an AdaBoost-
based detection model. We evaluate the performance of the
proposed framework. The evaluation results suggest that the
generated smelly instances are reliable, and the trained AdaBoost
model significantly outperforms the state-of-the-art over a real-
world dataset.

Index Terms—Technical Debt, Code Smell, Refused Bequest,
AdaBoost

I. INTRODUCTION

During the software life cycle, it takes developers a large
amount of time to conduct software maintenance and evolu-
tion, in order to meet the constantly changing requirements
from users [1]. These processes are frequently performed
under time pressure, resulting in poor programming design
or implementation applied by developers, which is so-called
technical debt [2]. To illustrate the symptoms of technical debt,
Beck and Fowler [3] introduce the concept of code smell, terri-
ble decisions or choices on programming activities. Generally,
these smells have detrimental effects on the comprehensibility
of source code and thus, pose a threat to the maintainability
during the software update. They have proposed 22 kinds of
code smells, and presented detailed descriptions, features, as
well as the refactoring strategies for each smell, respectively.
Over recent years, code smell has highly attracted the attention
of academy and industry, because previous studies found that
smells or anti-patterns will bring more change- and fault-
proneness to the affected source code [4–6].

Among the 22 smells, refused bequest is considered as
one of the most harmful smells with high diffuseness [5].
This smell is introduced to indicate such subclasses that only
partially use the functions or properties inherited from the
parent classes [3]. However, it is rarely taken into account with
only limited supports for the identification of refused bequest
in previous works [7].

So far, two kinds of strategies have been exploited to
tackle the problem of smell detection, including rule-based
approaches [8–10] and machine-learning-based approaches
[11, 12]. The rule-based detectors rely mostly on the selected
or designed metrics, meaning that they require the specification
of thresholds to distinguish smelly and non-smelly instances
[13]. In contrast, the machine learning techniques are based
on massive metrics rather than threshold of metrics. Ilyas
et al. [7] conduct a systematic review and meta-analysis by
summarizing the studies on code smell detection models. In
their analysis result, some machine learning models work
well on smell identification. However, there are still some
limitations and room for the improvement of machine learning
techniques in this field.

To some extent, the existing approaches could provide
rational performance on the detection for some of code smells,
there are two major challenges for the identification of the
refused bequest smell:

• Lack of dataset. The rare concern of refused bequest
is due to the fact that there is a lack of dataset. When
creating a manually labeling dataset, it is required to con-
sider polymorphism that is widely exploited in objective-
oriented languages, which makes the labeling process
tough and time-consuming. Liu et al. [14] claim that
it is tedious to label the code smell instances manually,
especially when smells involve more than one file. When
analyzing refused bequest smell, most of the previous
studies create the dataset by applying the existing de-
tection tools and then manually evaluating the samples
identified by detectors. While in this process, some real
smelly instances might be misclassified as non-smelly
instances, which means real-world smelly instances might



be missed [7]. Landfill [15] is a manually labeled dataset
that is publicly available, while it only contains limited
kinds of smells, without refused bequest.

• Complicated rules. The existing detection strategies for
refused bequest rely mostly on rule-based techniques.
However, it is also difficult to design the detection rules
for refused bequest compared with other popular smells
(i.e., god class, feature envy, long method). The number
of overridden methods can be regarded as one of the prin-
ciples to identify refused bequest, which is widely used
in previous work. However, it is difficult to determine
the threshold because of the large differences between
projects. Besides, the identification strategy based on
the overridden number might be intervened by template
design pattern.

To address these challenges, in this paper, we propose a
framework, SEADART (Smell gEneration assisted AdaBoost-
based Detection Algorithm for Refused bequesT) that is able
to leverage a set of synthetic smelly instances, and effectively
identify the refused bequest smell. First, to tackle the chal-
lenge of lack of dataset, we propose a refused bequest smell
generation technique from the projects with high quality. To
generate positive instances with the smell, we deliberately
create unreasonable inheritance relationships. After this op-
eration, we could label the modified source files as smelly
samples. Second, to tackle the complicated rules challenge, we
adopt Adaptive Boosting (AdaBoost), as the smell detection
model that is able to learn by examples rather than designing
the detection rules. Palomba et al. [7] suggest exploiting the
ensemble techniques to enhance the performance of code smell
prediction models. Besides, AdaBoost could combine numer-
ous typical machine learning algorithms (‘weak learners’) to
improve the performance. Besides, using simple classifiers as
weak learners can effectively avoid the over-fitting problem.

To evaluate the proposed approach, we first assess the
effectiveness of the generated dataset by manually checking
the reliability of the smelly instances. Second, we evaluate
the performance of the AdaBoost model on the refused be-
quest smell detection. Experimental results demonstrate that
AdaBoost significantly outperforms the other comparative
machine learning models most widely used in previous studies.
Finally, we examine the performance of AdaBoost on a real-
world dataset, and the results show that the proposed model
trained with the generated dataset is able to identify 78%
refused bequest smell existing in the projects, performing
considerably better than the state-of-the-art.

The paper makes the following contributions:
• We propose an ensemble-learning-based model to detect

refused bequest, which features a set of synthetic dataset
with refused bequest smell. To the best of our knowledge,
this study is the first to cope with the lack of dataset of
refused bequest smell.

• Evaluation results on the proposed approach show that the
generated dataset is adequately effective for the training

of the refused bequest detection model. The proposed
AdaBoost model can significantly outperform the existing
tools.

• An analysis of the metric importance for the task of the
refused bequest smell detection is conducted, which gains
further insights into the detection task for the refused
bequest smell.

The rest of the paper is organized as follows. We first
provide the background with a motivating example in Section
II. The proposed approach is discussed in Section III. Section
IV presents the evaluation result of our approach. The threats
to validity and related work are described in Section V and
VI. Finally, Section VII makes conclusions.

II. BACKGROUND AND SMELL EXAMPLE

In this section, we briefly describe the refused bequest smell
and the corresponding refactoring method. Then, we provide
an example to illustrate the reason why it is difficult to perform
manual labeling and design detection rules.

A. Refused Bequest

Refused bequest is proposed to indicate such subclasses that
only partially use the functions or properties inherited from
the parent [3]. There are two circumstances involved in this
smell and for each case, there are corresponding refactoring
resolutions. On the one hand, if the subclass is created to reuse
a bit of behavior inherited from the parent, the inheritance
is appropriate. This symptom can be eliminated by creating
a new sibling to push all the unused methods and fields to
the sibling, following the traditional advice to let the parent
only hold what is common [3]. However, in practice, there
is no need to abide by the conventional rules strictly, which
means that in this case, the smell can be ignored to some
extent. On the other hand, if the subclass aims at reusing the
behavior rather than supporting the superclass, the smell is
much stronger. In this case, the symptom could not be simply
addressed by applying the previous refactoring approach, and
has a detrimental effect on the quality of source code [16]. To
eliminate the smell, the inheritance relationship is required
to be removed and replaced with delegation, keeping the
functions of original projects unchanged.

B. Motivating Example

In this subsection, we present a typical refused bequest
example to illustrate the reason why it is difficult to identify.

In Figure 1, there are four classes in this example, named
Animal, Bird, Alpha, and Client, respectively. We assume that
there is an inheritance hierarchy in which Animal is designed
as the superclass of Bird and Alpha. The class Client can
get access to the two subclasses. Obviously, the inheritance
relationship between Animal and Bird is rational because
subclass Bird specializes or overrides the function, move() and
the attribute, “legs” provided by the super and supports other
behaviors (i.e., breathe(), sleep()).



Fig. 1. Refused Bequest Example

However, in the real world, the situation is much more
complicated, as what is illustrated by the case between Animal
and Alpha. It is difficult or unreasonable to determine the re-
lationship between the two classes by the textual information,
class and method name. Then, by analyzing the content and
the structure of the code fragment, two main troubles appear.

Firstly, it is not enough to focus only on single class
hierarchy itself, because polymorphism is widely exploited in
object-oriented languages. Conducting an in-depth analysis of
the hierarchy’s clients [17] can confirm whether the inherited
methods breathe() and sleep() are actually accepted by Alpha
or not. We next focus on the class named Client, which is
a simple example of the classes that contain the object of
subclasses, Alpha, and Bird.

From Figure 1, we observe that if all of the implicitly
inherited methods breathe() and sleep() are invoked by sub-
class Alpha, we could practically conclude that the inheritance
relationship is rational without Refused bequest smell. The
phenomenon means that if we can find one client in which
the subclass is managing to use the features from its parent,
the subclass could be removed from the suspect refused
bequest list. Practically, the implicit functions rarely appear
in one client simultaneously, and the candidate clients might
be scattered in the whole project, leading to the complexity of
identification. Another problem is that we could not absolutely
infer the existence of refused bequest when failing to find
out any invocation instance of the implicit methods in the
project, as some programs are designed to provide functions
for other projects (e.g., JUnit). Therefore, in order to avoid
false-positive smell instances, there is a need to understand

Fig. 2. The SEADART Framework

the real intention of source code to analyze the inheritance
relationship. Therefore, it is tedious and time-consuming to
perform manual labeling.

Furthermore, the number of overridden methods can be
regarded as one of the principles to identify refused bequest,
which is widely used in previous work. However, this strategy
leads to bias that researchers made different thresholds of
metric rule for the detection of refused bequest, causing the
scarce agreement between different detectors or approaches
[18, 19]. Another example is that the template design pattern
is widely used in open-source software frameworks. In such
pattern, the superclass is designed as the skeleton and provides
some functions for its subclasses to override. Therefore, the
identification strategy based on the number of overridden
methods might misclassify the subclasses which exploit tem-
plate pattern as refused bequest smell instances.

III. OUR APPROACH

In this section, we discuss the design of the proposed
framework. As illustrated in Figure 2, the framework can be
divided into three main components, Smell Generation, Model
Training and Smell Detection. For each component, we shall
present the details and the implementation.

A. Smell Generation Component

The upper part of Figure 2 depicts the smell generation
component, which aims at coping with the problem of lacking
dataset by creating refused bequest instances according to its
refactoring technique. The motivation behind the component is
to deliberately mutate the high-quality source code by injecting
code smell. In this study, we select the original projects with
high quality and assume that there is no such smell in these
projects. Therefore, based on this assumption, we can generate
many refused bequest smelly instances by deliberately creating
unreasonable inheritance relationships. Table I presents the



TABLE I
APPLICATIONS FOR MODEL TRAINING

Applications Description Version NOC NOM KLOCs

Weka Machine Learning Algorithms 3.9.0 1348 20,182 444

FreePlane Knowledge Management 1.3.12 424 6,938 124

Areca Document Backup 7.4.7 473 5,055 88

JExcelAPI Excel API 2.6.12 424 3,118 90

statistics of the selected systems, i.e., the version, number of
classes (NOC), number of methods (NOM), and lines of the
source code (LOC).

First, given the source code of a project, we adopt the
Eclipse JDT APIs to parse the code into an abstract syntax
tree (AST). After building the AST of source files, we perform
the candidate class selection through a filter. The candidates
are those classes that can be infected with the smell with
keeping the original function unchanged. The detailed process
is shown in Algorithm 1. The filter takes AST as the input, and
performs analysis on this project, in order to select the classes
without superclass as candidates. Besides, abstract classes and
interfaces are required to be removed from the candidate
list, because these classes are impossible to be designed as
subclasses.

As for the inheritance generation process, it is necessary to
follow some principles. This is due to the fact that randomly
choosing the parents for the candidates is irrational, resulting
in the relatively large differences between the modified files
and the practical refused bequest smells. As mentioned in
section II, for each smell, there are corresponding refactoring
strategies to eliminate it. Thus, we conduct an in-depth analy-
sis of the refactoring approach of refused bequest, Replacing
Inheritance with Delegation.

Algorithm 2 illustrates the specific strategy for the inheri-
tance creation of those candidates. To select the ideal class
to be extended for each candidate, we focus only on the
classes defined in the project itself without considering the
ones from the libraries or Jars. With this option, the generated
inheritance hierarchy will appear in the same project. Besides,
we should remove the classes that are defined as abstract or
interface from the alternative parent list, since the refused
bequest smell is rarely found between abstract or interface
and their children. In particular, with all these optional parents,
we follow the inspiration from the refactoring strategy to look
for the delegation pattern existing in one Java source file and
replace it with the inheritance relationship to create the refused
bequest smell. Specifically, due to the wide distribution of
delegation pattern, if there exists more than one such pattern,
we choose the one that most intimates with the candidate as the
superclass. In this paper, the level of intimacy is determined
by how many times the class is invoked by our candidate.

Algorithm 1 Filter
1: Input: AST representation of the source code

2: Output: Candidate classes list

3: // Candidate classes selection

4: candidate list← 0

5: for each class c in the source code do
6: if c is neither abstract nor interface with no parent then
7: candidate list← candidate list ∪ {c}
8: end if
9: end for

10: Return: candidate list.

After confirming the parent of one candidate, the inheritance
relationship could be established with the keyword “extends”.
Considering the number of overridden methods that indicate
the existence of refused bequest to some extent, we generate
as many “overridden method” as possible in the candidate, to
bring it closer to the real smell. More specifically, the operation
could ensure that all of the generated overridden methods are
not invoked by other classes in this project, which implies that
these inherited methods are refused by the candidates.

Finally, it is required to deal with the problems caused
by creating inheritance, to guarantee that the functionality of
projects remains the same with no errors (i.e., name conflict,
visibility of methods and attributes). After all the above
processes, the refused bequest dataset has been generated
with modified candidates as positive training items (smelly
instances), and others as negative items (non-smelly instances).

B. Model Training Component

As mentioned in Section II, the metric-based detection
approach might lead to bias with the scarce agreement between
researchers and it is relatively difficult to design the heuristics
rule. In order to avoid manually designed rules, in this paper,
we choose the machine-learning-based approach to perform
the refused bequest detection, which enables us to learn by
examples instead of exploring the threshold of metrics.

After the smell generation phase, we can obtain a suffi-
ciently large dataset to train the machine learning model. In
this detection task, binary classification is applied to predict
whether a given class is smelly or non-smelly. The dependent
variable of our model is the smelliness of class, which can



TABLE II
METRIC DEFINITION

Category Name Definition Category Name Definition

Basic BUR Usage ratio Complexity AMW Average methods weight

GEEDY Raised exceptions CC Cyclomatic complexity

PNAS Public number of attributes NOEU Number of external variables

Size LOC Lines of code in the class NOLV Number of local variables

LOCC Lines of code classes NOP Number of parents in method

NOM Number of methods WMC Weight methods count

Cohesion ALD Access of local data WOC Weight of class

TCC Tight class cohesion Inheritance DIT Depth of inheritance hierarchy

Coupling ATFD Access to foreign data NOA Number of ancestors

CM Changing methods NOD Number of descendants

DAC Data abstraction coupling Encapsulation LAA Locality of attribute accesses

FANOUT Number of classes referenced NOAM Number of added methods

FDP Foreign data providers NOPA Number of public attributes

Algorithm 2 Inheritance Generation
1: Input: Candidate classes list candidate list

2: Output: Smelly instances list

3: // Inheritance relationship generation

4: parent list← 0

5: for each class c in candidate list do
6: for each class p in in source code do
7: if p is defined in this porject and invoked by c then
8: parent list← parent list ∪ {p}
9: end if

10: end for
11: intimate index← 0

12: parent class

13: for each class p in in parent list do
14: Calculate the times of invocation w

15: if intamate index ≤ w then
16: intamate index← w

17: parent class← p

18: end if
19: Create inheritance relationship between parent and c

20: Eliminate the effects caused by new inheritance

21: end for
22: end for
23: Return: candidate list.

be labeled according to the result of the smell generation.
As for the independent variables, we choose the widely used
structural-based metric that plays a significant role to enhance
the prediction performance.

In order to calculate these metrics, Iplasma [10] and To-

gether1 are employed in this study. We choose 26 well-
known code metrics that are widely used in previous studies
[11, 20, 21], covering different aspects of code, i.e., Basic,
Size, Complexity, Cohesion, Coupling, Inheritance, and En-
capsulation. The chosen metrics and their descriptions are
illustrated in Table II.

After constructing the dataset with labels and metrics as
features, we perform data preprocessing to deal with the miss-
ing values and duplicate data. For missing values, we select
the average value on the feature to fill the blank. Meanwhile,
duplicate data with identical class names are removed from
the dataset.

As for the detection model, we apply an AdaBoost based
classifier, due to its promising potential in enhancing the
performance of code smell prediction models [7]. AdaBoost
[22], short for Adaptive Boosting, is one of the most well-
known algorithms in the boosting family. The algorithm trains
models sequentially, with getting a new trained model at each
round. For each round, the misidentified instances are recorded
with weight increased in the next round. Based on this feature,
we can select numerous typical learning algorithms as ‘weak
learners’, including decision tree and support vector machine
(SVM) to improve the performance. The ensemble process
is established by iteratively adding models, and the final
output of the boosted learner is a weighted sum that is
combined by the output of several weak learners. By applying
the AdaBoost algorithm on the detection, there is less need
to worry about the over-fitting problem than other machine
learning algorithms. Because using simple classifiers as weak

1http://www.microfocus.com/en-us/products/together



learners can effectively avoid over-fitting.
Finally, finding optimal parameters plays an important role

in model training, which might have a significant impact on the
performance of the model. For AdaBoost, the most important
parameters are the learning rate and the number of weak
learners. The Grid-search algorithm [23] is able to find the
near-optimal value of parameters by exploring the parameter
space. By performing cross validation, Grid-search can auto-
matically optimize the selection of all possible combinations
of parameters. And the whole parameter optimization process
can be accomplished in less than five minutes.

C. Smell Detection Component

In order to further verify the availability of the generated
dataset and the trained model, we perform the refused bequest
detection on real-world projects. We choose a small, manually
labeled dataset provided by the empirical study [5], in which
there are 395 releases of 30 open source systems to investigate
the density and harmfulness of 13 code smells including
refused bequest. Therefore, among these projects, we only
select the ones with more refused bequest smell instances to
avoid the randomness of the detection result, which can ensure
the reliability of the smell detection experiment. The detailed
descriptions of selected systems are illustrated in Table III.

With these labeled datasets, we need to perform the metric
extraction again and keep the selected metrics the same as the
ones used in the generated dataset. In addition, we perform
the same data preprocessing strategy so that the detection
model can work normally. The real-world dataset is then fed
into the trained model for smell detection. Palomba et al. [7]
suggest that focusing on the cross-project code smell detection
represents the right choice because the smell detection process
are generally performed on completely unknown projects.
Hence, for the trained model, we select the merged dataset
from the four projects in the smell generation component, in
order to eliminate the differences between different software.

IV. EVALUATION

In this section, we intend to evaluate the proposed approach,
by investigating the result of the smell generation approach
on four open-source projects, as well as the performance
of proposed detection model on five real-world applications
respectively.

A. Research Questions

This study concentrates on the following research questions
(RQs):
• RQ1: Does the smell generation method create the in-

stances with real refused bequest smell?
• RQ2: Is AdaBoost able to outperform other machine

learning techniques for the refused bequest detection?
• RQ3: Does the AdaBoost model trained with the gen-

erated dataset work well on real-world projects? How
does the AdaBoost model perform when compared with

existing rule-based tools for the detection of the refused
bequest smell?

• RQ4: What are the most important metrics that indicate
the existence of refused bequest?

Among these RQs, RQ1 evaluates the reliability of the
refused bequest smell dataset generated by the designed
approach. To answer this question, the generation result is
manually checked by five postgraduate students. All these
students major in software engineering and have internship
experience with Java development. The manual checking pro-
cess is conducted independently, and the participants exchange
the examined files to cross-check. Finally, a group discussion
is carried out to eliminate inconsistency.

RQ2 investigates the performance of AdaBoost in detect-
ing the refused bequest smell compared with other machine
learning models. There are some studies that have employed
machine learning techniques to identify other smells with high
accuracy. Thus, we choose the top two widely used models
in existing works to conduct a comparison, according to the
statistic [7].

RQ3 concentrates on the effectiveness of the trained model
in the real world. Although the generated datasets have been
manually evaluated, the smelly instances are not from real-
world applications. Hence, it is necessary to evaluate the per-
formance of the model again on real-world dataset. Answering
this question would verify the availability of our model for the
refused bequest detection, and further confirm the usability of
the generated smell dataset by the proposed approach. RQ3
also concerns the comparison with existing rule-based tools.
The comparative approaches considered in our experiment are
two state-of-the-art tools, which are able to report the refused
bequest smell in Java code: Iplasma [10] and Decor [8]. The
two tools are chosen due to the following reasons. First, among
these code smell detection tools, there are few designed for
the refused bequest identification. Iplasma has been widely
applied as a benchmark for code smell detection algorithms
comparison [11, 24]. Besides, these tools are publicly avail-
able, which means it enables other researchers to reproduce
our experiment to make the validation and conduct further
study.

RQ4 aims at discovering the most important metrics for
the identification of the refused bequest smell. Based on
our trained AdaBoost model, we can obtain the correlation
coefficient of metrics, in order to assess the importance of
metrics, providing a reference for the researchers who aim at
the metric-based detection techniques.

B. Subject Selection

In this study, we evaluate the proposed smell generation
approach on four open-source applications presented in Table
I. Since the proposed approach is accomplished by applying
JDT tools provided by Eclipse, the selected projects are
Java applications only. The columns report the name and the



TABLE III
APPLICATIONS FOR VALIDATION

Applications Description Version NOC NOM KLOCs Number of Smell

Derby Relational Database Management System 3.9.0 1,929 28,119 734 17

Eclipse Integrated Development Environment 3.6.0 1,181 18,234 441 10

Xecres XML Parser 1.2.0 471 7,342 201 3

Pig Large Dataset Analyzer 0.8.0 441 7,619 184 3

Hsqldb HyperSQL Database Engine 2.2.8 513 8,808 260 12

description of the projects, the version, the number of classes,
the number of methods, and the kLOCs, respectively.

These applications are chosen due to the following reasons.
First, all of them are publicly available. Second, all of these
projects are famous and considered to be of high quality [14].
As mentioned in Section III, the smell generation approach is
based on the assumption that there exists no smell involved in
the original projects.

For the smell detection experiment, we choose another
group of applications, which are presented in Table III. These
applications are filtered from the empirical study [5], which
aims at investigating the density and harmfulness of 13 code
smells including refused bequest, with providing a small
dataset for each smell. Because there is little refused bequest
smell in some applications and thus, we only select the ones
with more refused bequest instances as our validation dataset
to avoid the randomness of the detection result, which can
ensure the reliability of the smell detection experiment. Among
the five applications, Derby and Eclipse are large projects
with more than 1,000 classes involved and the other three are
relatively small.

C. Evaluation Metrics

In order to measure the effectiveness of the trained machine
learning models and detection tools, we calculate the precision,
recall, and F1-score that are widely used to evaluate the
performance of algorithms.

Precision =
True Positives

True Positives+ False Positives
(1)

Recall =
True Positives

True Positives+ False Negatives
(2)

According to the formula, Precision represents of all the
predicted positive instances, the percentage of true positive.
While Recall reports of all the actually positive instances, the
percentage of correctly predicted as positive. Precision and
Recall can account for the performance of detection results in
different aspects. However, it is common that during model
training and detection task, either precision is high and recall

TABLE IV
MANUALLY EVALUATED GENERATED SMELLY INSTANCES

Applications
Number/Percentage

of Smell
on Generated Dataset

Correct Incorrect

Weka 131/8.43% 129 2

FreePlane 85/9.72% 82 3

Areca 47/8.62% 45 2

JExcelAPI 35/7.96% 35 0

Total 298/8.76% 291 7

is low or vice versa, which brings difficulties to evaluate the
model with two metrics.

F1-score is defined as the harmonic mean of Precision and
Recall. Compared with balancing two separate metric together,
F1 score is more convenient to work with and it is represented
by the following formula:

F1-Score = 2× Precsion×Recall

Precision+Recall
(3)

D. RQ1: Effectiveness of Generated Dataset

To investigate the effectiveness of generated dataset, the
generation result is manually checked by five postgraduate
students who are majored in software engineering and ex-
perienced in Java language. The manually evaluated results
are presented in Table IV. The first column presents the name
of applications and the second one presents the number and
the percentage of generated smelly instances for each project.
Columns 3-4 illustrates the number of correct and incorrect
smelly instances, respectively.

As the table shows, the percentage of smelly instances in
each project is very small. However, the density of refused
bequest in our study is slightly higher than the real-world
circumstance, because the smelly instances are generated
deliberately, in order to create a sufficiently large dataset to
train the machine learning model.



TABLE V
EVALUATION RESULTS ON PROPOSED DETECTION MODEL

Applications AdaBoost Decision Tree SVM

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Weka 0.961 0.854 0.901 0.787 0.800 0.788 0.758 0.738 0.740

FreePlane 0.831 0.822 0.817 0.729 0.711 0.699 0.752 0.544 0.602

Areca 0.697 0.820 0.732 0.575 0.600 0.579 0.563 0.720 0.577

JExcelAPI 0.915 0.950 0.927 0.795 0.825 0.800 0.950 0.825 0.869

Average 0.851 0.861 0.844 0.721 0.734 0.716 0.756 0.706 0.697

Merged 0.826 0.757 0.787 0.689 0.700 0.688 0.613 0.643 0.643

As mentioned in Section I, we assume that the selected
projects are with high quality, which means there is no refused
bequest smell in the original source code. Therefore, we
only manually evaluate the generated smell items, with the
evaluation results presented in columns 3-4. The Evaluation
results suggest that the generation approach is able to produce
reliable refused bequest smells. For each project, there are
only no more than three incorrect smells. These instances are
recognized as incorrect smells because it is difficult to estimate
whether they are smelly or not when reading the source code.

E. RQ2: Performance of AdaBoost

To answer this RQ, we first compare the AdaBoost model
with other machine-learning-based techniques, including deci-
sion tree and SVM. The comparison results are presented in
Table V. The first column indicates the employed applications,
datasets for model training and detection. The rest columns
present the evaluation metrics on different machine learning
models. Note that the result of the last row is evaluated by
merging the dataset and then running models on it rather
than simply calculating the average performance on the above
applications.

From Table V we can obtain the following observations:
First, AdaBoost performs dramatically better than the other

machine learning models in terms of F1-score. Its average F1-
score achieves 0.84, while the average F1-score of decision
tree and SVM is only 0.71 and 0.69, respectively. Besides,
AdaBoost is able to recognize most of the refused bequest
smells in these projects because the average recall gets to
0.86, which is 0.12 better than decision tree and 0.15 better
than SVM. Apart from that, the average precision (0.85) of
AdaBoost significantly outperform decision tree (0.72) and
SVM (0.75) as well.

Among these four projects, the performance of smell pre-
diction on Weka is the best, because there are more smelly in-
stances generated by our approach, which enables the model to
learn more smell-specific features from examples. The results
also account for the importance of the annotated smell dataset

for the smell identification when using machine-learning-based
techniques.

Although on the merged dataset, the trained models fail to
perform as well as on a single project, the result is in general
acceptable, and the slight decline of the performance on the
merged dataset is rational because of the large differences
between projects. Also, it is necessary to build the model
with robustness, in order to perform smell detection on other
unknown projects, as what is suggested by Palomba et al.
[7], paying more attention to the cross-project code smell
prediction.

From the above analysis on the detection result, we conclude
that AdaBoost significantly outperforms the other machine
learning techniques that are most frequently applied in pre-
vious studies for code smell detection.

F. RQ3: Performance on real-world projects

In order to evaluate the performance of AdaBoost model
trained by our generated dataset, we perform the smell detec-
tion experiment on a real-world dataset with manual labels,
which is provided by the existing empirical study [5]. The
detection result is presented in Table VI. In the table, the
first column illustrates the name of the real-world projects.
And for each project, there are three other columns indicating
the evaluation metrics, which are the same as the ones in
the previous experiment to investigate the performance of the
proposed model and the existing tools, respectively.

From Table VI, we can make the following observations:

• First, the proposed AdaBoost model trained by the gener-
ated dataset is able to detect the refused bequest smell on
the real-world projects. On average, the proposed model
successfully identifies about 0.78 of the smells existing in
the project. Especially, all of the refused bequest smell
contained in project Pig are recognized by our model.
However, because the percentage of smelly instances
is quite low, the precision of the model only achieves
about 0.60 on average, while the F1-score is 0.67, which
indicates the result is acceptable.



TABLE VI
EVALUATION RESULTS ON REAL-WORLD DATASET

Applications AdaBoost Iplasma Decor

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Derby 0.570 0.670 0.610 0.100 0.600 0.171 0.180 0.400 0.248

Eclipse 0.500 0.800 0.620 0.180 0.400 0.248 0.200 0.500 0.286

Xecres 0.670 0.710 0.690 0.180 0.400 0.248 0 0 0

Pig 0.600 1.000 0.750 0.170 0.330 0.224 0 0 0

Hsqldb 0.690 0.750 0.720 0.120 0.250 0.162 0.180 0.145 0.161

Average 0.606 0.786 0.678 0.150 0.396 0.211 0.112 0.209 0.139

• Second, the proposed AdaBoost model can also signifi-
cantly outperform the state-of-the-art Iplasma and Decor
on the real-world dataset in detecting the refused be-
quest code smell. More specifically, the proposed model
improves the precision from 0.15 (Iplasma) and 0.12
(Decor) dramatically to 0.60. Besides, as for the recall
metric, AdaBoost also performs much better than Iplasma
and Decor, meaning that the proposed model is able to
detect much more true positive smelly instances.

From the detection results, we can find that the existing tools
perform poorly because of the following reasons. First, these
detection tools are rule-based, and the thresholds of the metrics
are designed according to the projects in previous studies. The
large differences between projects might cause unsatisfactory
performance. Second, over projects Xecres and Pig, the results
of Decor are zero, mainly because there are only three smells
existing in the projects, yet Decor fails to identify the smelly
instances.

We conclude from these results that the proposed AdaBoost
based detection model is able to identify refused bequest
smells on the real-world projects with high recall and accept-
able precision, and performs significantly better than the state-
of-the-art tools.

G. RQ4: Importance of Metrics

In order to analyze the most important metrics, we compute
the correlation coefficients for all selected metrics and list the
top 10 metrics in Table VII. In the table, the first column
shows the ranking of each metric, and columns 2-3 illustrate
the name and the category of the metrics. The last column
is the calculation result of the correlation coefficient for each
metric.

From the statistical results, we can observe the following
phenomena. First, there are two metrics belonging to the
inheritance category in the top five importance metrics, which
indicates that the proposed detection model is reasonable.
However, only considering the two metrics relating to inheri-
tance are not sufficient to identify the refused bequest smells.

As mentioned in section II, it is unreasonable to detect the
refused bequest smell based on the number of overridden
methods only, although most of the previous works take such
strategy. Apart from that, there are about half of the metrics
are relating to the size or complexity of source code, meaning
that the bigger class is prone to contain refused bequest smell.

TABLE VII
RESULTS OF TOP 10 IMPORTANT METRICS

Ranking Metric Category Importance

1 NOM Size 0.39

2 DIT Inheritance 0.38

3 NOAM Encapsulation 0.35

4 WMC Complexity 0.32

5 NOA Inheritance 0.32

6 DAC Coupling 0.30

7 LOCC Size 0.19

8 BUR Basic 0.17

9 WOC Complexity 0.15

10 TCC Cohesion 0.13

V. THREATS TO VALIDITY

After analyzing the performance of our experiment and
model, it is worth mentioning that there are two main points
that may pose threats to the validity.

First, in this study, we make an assumption that the handled
original projects are with high quality, meaning that there is
no refused bequest smell in these applications. Only based on
this assumption, the result of the smell generation approach is
reliable. However, the assumption might be invalid and hence,
the evaluation of the effectiveness of the generated dataset
may be inaccurate. In order to minimize the threat, we choose
the well-known applications whose quality has been confirmed



by Liu et al. [14]. Besides, we perform manual checking on
the generated dataset before applying it to model training to
ensure the trained detection model is of great performance.

Second, although the generated dataset is checked manu-
ally, the automatically generated smelly instances might be
different from those introduced by developers in real-world
projects. Consequently, the model trained with such dataset
may not support the real-world applications. To mitigate this
threat, we consider some small datasets which are manually
labeled by Palomba et al. [5], and run our detection model
on the real-world dataset to confirm the availability of the
proposed model. Besides, during this process, the usability of
the generation approach can be confirmed, which means the
automatically generated dataset can be used to train the model
for the refused bequest smell detection.

VI. RELATED WORK

A. Refused Bequest

Beck and Fowler [3] introduce the concept of code smell
to indicate such subclasses that use only some functions or
properties inherited from its parent. To enhance the compre-
hensibility and maintainability of software, they present the
corresponding strategy “Replace Inheritance with Delegation”
to eliminate such smell.

Kegel and Steimann [25] perform an informal analysis of
the refactoring approach and propose a tool that is able to
implement such refactoring. Their analysis results suggest that
the refactoring is not always possible and may not be effective
as expected. Therefore, they investigate indispensable precon-
ditions and implementable postconditions and then build a tool
to achieve the refactoring.

However, the identification of the refused bequest smell is
rarely concerned in this community. Marinescu [26] proposes
a detection strategy by combining the code metrics and the
definition of the threshold. This mechanism is employed by
capturing deviations from good design heuristics. Iplasma [10]
is a publicly available tool that is designed for quality analysis
of object-oriented applications. It is able to detect the refused
bequest smell by using metric-based rules. Moha et al. [8]
design DECOR to define the rules of code smell detection by
using Domain-Specific Language and they extend the tool to
support for the refused bequest detection.

Unlike these detection approaches, in this work, we exploit
machine-learning-based technique, which is largely metrics
based learning by examples strategy to identify the refused
bequest smell.

B. Machine Learning Based Code Smell Prediction

Because machine learning techniques have been success-
fully applied in many fields, a large number of studies employ
machine learning models to identify code smells [7]. Maiga et
al. [27] introduce SVM to detect blob, functional decomposi-
tion, spaghetti code, and swiss army knife anti-patterns, which
can be considered as the smell existing in software design.

Maiga and Ali [12] extend the previous work by considering
the feedback of developers. Fontana et al. [20] perform 16
different machine learning algorithms on 74 systems for the
detection of four code smells (data class, large class, feature
envy, and long method), and they extend the work for the
prediction of the severity of smells [28]. Liu et al. [14] employ
deep learning to detect feature envy by combining the textual
and structural information of the source code.

However, despite the wide use of machine learning for code
smell prediction, some of the smells are rarely supported,
especially refused bequest, which has been confirmed to be
harmful to developers [5, 29]. Meanwhile, the ensemble tech-
niques have not been considered to enhance the performance
of the detection models. In this study, we exploit the Adaptive
Boosting model to identify the refused bequest smell and
train the model with the sufficiently large dataset, which is
generated by the proposed generation strategy rather than
relying on the detection results of the existing smell detectors.

VII. CONCLUSION

In this paper, we present a framework SEADART, which is
able to create reliable smelly instances and effectively identify
the refused bequest smell. To tackle the challenge of lack
of dataset, we propose a refused bequest smell generation
strategy. Besides, we apply the generated dataset to train an
AdaBoost based detection model. To verify the usefulness
of the proposed detection model and the generated dataset,
we perform the refused bequest smell detection on the real-
world dataset. The evaluation results suggest that the gener-
ated smelly instances are reliable, and the trained AdaBoost
model performs better than two most frequently used machine
learning models, and significantly outperforms the state-of-
the-art. Finally, we analyze the most important metrics for
the identification of the refused bequest smell, in order to
provide a reference for the researchers who aim at the metric-
based detection techniques. However, the smell generation
and detection framework is designed for java program. Thus,
it is not generalizable to other languages, which becomes a
limitation of the proposed approach.

For the future work, we intend to explore new metrics rather
than considering the structural metrics only, in order to further
improve the performance of our detection model. Moreover,
we are interested in extending the smell generation strategy to
make the created instances closer to the real-world smells.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their great
efforts.

REFERENCES

[1] M. M. Lehman, “Programs, life cycles, and laws of
software evolution,” Proceedings of the IEEE, vol. 68,
no. 9, pp. 1060–1076, 1980.

[2] W. Cunningham, “The wycash portfolio man-
agement system,” OOPS Messenger, vol. 4,



no. 2, pp. 29–30, 1993. [Online]. Available:
https://doi.org/10.1145/157710.157715

[3] M. Fowler, Refactoring - Improving the Design of
Existing Code, ser. Addison Wesley object technology
series. Addison-Wesley, 1999. [Online]. Available:
http://martinfowler.com/books/refactoring.html

[4] F. Khomh, M. D. Penta, Y. Guéhéneuc, and G. Antoniol,
“An exploratory study of the impact of antipatterns on
class change- and fault-proneness,” Empirical Software
Engineering, vol. 17, no. 3, pp. 243–275, 2012. [Online].
Available: https://doi.org/10.1007/s10664-011-9171-y

[5] F. Palomba, G. Bavota, M. D. Penta, F. Fasano,
R. Oliveto, and A. D. Lucia, “On the diffuseness
and the impact on maintainability of code smells: a
large scale empirical investigation,” Empirical Software
Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.
[Online]. Available: https://doi.org/10.1007/s10664-017-
9535-z

[6] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D.
Penta, A. D. Lucia, and D. Poshyvanyk, “When and
why your code starts to smell bad (and whether the
smells go away),” IEEE Trans. Software Eng., vol. 43,
no. 11, pp. 1063–1088, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2653105

[7] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang,
“Machine learning techniques for code smell detection:
A systematic literature review and meta-analysis,” Inf.
Softw. Technol., vol. 108, pp. 115–138, 2019. [Online].
Available: https://doi.org/10.1016/j.infsof.2018.12.009

[8] N. Moha, Y. Guéhéneuc, L. Duchien, and A. L. Meur,
“DECOR: A method for the specification and detection
of code and design smells,” IEEE Trans. Software Eng.,
vol. 36, no. 1, pp. 20–36, 2010. [Online]. Available:
https://doi.org/10.1109/TSE.2009.50

[9] N. Tsantalis and A. Chatzigeorgiou, “Identification of
move method refactoring opportunities,” IEEE Trans.
Software Eng., vol. 35, no. 3, pp. 347–367, 2009.
[Online]. Available: https://doi.org/10.1109/TSE.2009.1

[10] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu,
and R. Wettel, “iplasma: An integrated platform for qual-
ity assessment of object-oriented design,” in Proceedings
of the 21st IEEE International Conference on Software
Maintenance - Industrial and Tool volume, ICSM 2005,
25-30 September 2005, Budapest, Hungary, 2005, pp.
77–80.

[11] L. Amorim, E. Costa, N. Antunes, B. Fonseca,
and M. Ribeiro, “Experience report: Evaluating the
effectiveness of decision trees for detecting code smells,”
in 26th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2015, Gaithersbury,
MD, USA, November 2-5, 2015. IEEE Computer
Society, 2015, pp. 261–269. [Online]. Available:
https://doi.org/10.1109/ISSRE.2015.7381819

[12] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane,

Y. Guéhéneuc, and E. Aı̈meur, “SMURF: A svm-based
incremental anti-pattern detection approach,” in 19th
Working Conference on Reverse Engineering, WCRE
2012, Kingston, ON, Canada, October 15-18, 2012.
IEEE Computer Society, 2012, pp. 466–475. [Online].
Available: https://doi.org/10.1109/WCRE.2012.56

[13] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and
E. Figueiredo, “A review-based comparative study
of bad smell detection tools,” in Proceedings of
the 20th International Conference on Evaluation and
Assessment in Software Engineering, EASE 2016,
Limerick, Ireland, June 01 - 03, 2016, S. Beecham,
B. A. Kitchenham, and S. G. MacDonell, Eds.
ACM, 2016, pp. 18:1–18:12. [Online]. Available:
https://doi.org/10.1145/2915970.2915984

[14] H. Liu, Z. Xu, and Y. Zou, “Deep learning based
feature envy detection,” in Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018, M. Huchard, C. Kästner, and
G. Fraser, Eds. ACM, 2018, pp. 385–396. [Online].
Available: https://doi.org/10.1145/3238147.3238166

[15] F. Palomba, D. D. Nucci, M. Tufano, G. Bavota,
R. Oliveto, D. Poshyvanyk, and A. D. Lucia,
“Landfill: An open dataset of code smells with
public evaluation,” in 12th IEEE/ACM Working
Conference on Mining Software Repositories, MSR
2015, Florence, Italy, May 16-17, 2015, M. D. Penta,
M. Pinzger, and R. Robbes, Eds. IEEE Computer
Society, 2015, pp. 482–485. [Online]. Available:
https://doi.org/10.1109/MSR.2015.69

[16] D. Taibi, A. Janes, and V. Lenarduzzi, “How developers
perceive smells in source code: A replicated study,” Inf.
Softw. Technol., vol. 92, pp. 223–235, 2017. [Online].
Available: https://doi.org/10.1016/j.infsof.2017.08.008

[17] P. F. Mihancea, “Towards a client driven characterization
of class hierarchies,” in 14th International Conference
on Program Comprehension (ICPC 2006), 14-
16 June 2006, Athens, Greece. IEEE Computer
Society, 2006, pp. 285–294. [Online]. Available:
https://doi.org/10.1109/ICPC.2006.48

[18] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and
M. Zanoni, “Antipattern and code smell false positives:
Preliminary conceptualization and classification,” in
IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016,
Suita, Osaka, Japan, March 14-18, 2016 - Volume 1.
IEEE Computer Society, 2016, pp. 609–613. [Online].
Available: https://doi.org/10.1109/SANER.2016.84

[19] F. A. Fontana, P. Braione, and M. Zanoni,
“Automatic detection of bad smells in code: An
experimental assessment,” J. Object Technol., vol. 11,
no. 2, pp. 5: 1–38, 2012. [Online]. Available:
https://doi.org/10.5381/jot.2012.11.2.a5



[20] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning
techniques for code smell detection,” Empirical Software
Engineering, vol. 21, no. 3, pp. 1143–1191, 2016.
[Online]. Available: https://doi.org/10.1007/s10664-015-
9378-4

[21] D. D. Nucci, F. Palomba, D. A. Tamburri,
A. Serebrenik, and A. D. Lucia, “Detecting code
smells using machine learning techniques: Are we there
yet?” in 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018,
Campobasso, Italy, March 20-23, 2018, R. Oliveto,
M. D. Penta, and D. C. Shepherd, Eds. IEEE
Computer Society, 2018, pp. 612–621. [Online].
Available: https://doi.org/10.1109/SANER.2018.8330266

[22] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting,” in Computational Learning Theory, Second
European Conference, EuroCOLT ’95, Barcelona, Spain,
March 13-15, 1995, Proceedings, ser. Lecture Notes
in Computer Science, P. M. B. Vitányi, Ed., vol.
904. Springer, 1995, pp. 23–37. [Online]. Available:
https://doi.org/10.1007/3-540-59119-2 166

[23] C. Tantithamthavorn, S. McIntosh, A. E. Hassan,
and K. Matsumoto, “The impact of automated
parameter optimization on defect prediction models,”
CoRR, vol. abs/1801.10270, 2018. [Online]. Available:
http://arxiv.org/abs/1801.10270

[24] M. A. S. Bigonha, K. A. M. Ferreira, P. P. Souza,
B. L. Sousa, M. Januário, and D. Lima, “The
usefulness of software metric thresholds for detection

of bad smells and fault prediction,” Inf. Softw.
Technol., vol. 115, pp. 79–92, 2019. [Online]. Available:
https://doi.org/10.1016/j.infsof.2019.08.005

[25] H. Kegel and F. Steimann, “Systematically refactoring
inheritance to delegation in java,” in 2008 ACM/IEEE
30th International Conference on Software Engineering,
2008, pp. 431–440.

[26] R. Marinescu, “Detection strategies: metrics-based rules
for detecting design flaws,” in 20th IEEE International
Conference on Software Maintenance, 2004. Proceed-
ings., 2004, pp. 350–359.

[27] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane,
Y. Guéhéneuc, G. Antoniol, and E. Aı̈meur, “Support
vector machines for anti-pattern detection,” in IEEE/ACM
International Conference on Automated Software
Engineering, ASE’12, Essen, Germany, September 3-
7, 2012, M. Goedicke, T. Menzies, and M. Saeki,
Eds. ACM, 2012, pp. 278–281. [Online]. Available:
https://doi.org/10.1145/2351676.2351723

[28] F. A. Fontana and M. Zanoni, “Code smell severity
classification using machine learning techniques,” Knowl.
Based Syst., vol. 128, pp. 43–58, 2017. [Online].
Available: https://doi.org/10.1016/j.knosys.2017.04.014

[29] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto,
and A. D. Lucia, “Do they really smell bad? A
study on developers’ perception of bad code smells,”
in 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada,
September 29 - October 3, 2014. IEEE Computer
Society, 2014, pp. 101–110. [Online]. Available:
https://doi.org/10.1109/ICSME.2014.32


