
Liu D, Ren ZL, Long ZT et al. Mining design pattern use scenarios and related design pattern pairs: A case study

on online posts. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 35(5): 100–116 Sept. 2020. DOI

10.1007/s11390-020-0407-0

Mining Design Pattern Use Scenarios and Related Design Pattern

Pairs: A Case Study on Online Posts

Dong Liu1, Zhi-Lei Ren1,2,∗, Member, CCF, ACM, Zhong-Tian Long3, Guo-Jun Gao1, and
He Jiang1,2, Member, CCF, ACM, IEEE

1School of Software, Dalian University of Technology, Dalian 116024, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116000, China
3International School of Information Science & Engineering, Dalian University of Technology and Ritsumeikan University

Dalian 116620, China

E-mail: dongliu@mail.dlut.edu.cn; zren@dlut.edu.cn; longzhongtian@126.com; ggjgao@163.com; jianghe@dlut.edu.cn

Received February 27, 2020; revised July 31, 2020.

Abstract In common design pattern collections, e.g., design pattern books, design patterns are documented with tem-

plates that consist of multiple attributes, such as intent, structure, and sample code. To adapt to modern developers, the

depictions of design patterns, especially some specific attributes, should advance with the current programming technologies,

for example, “known uses”, which exemplifies the use scenarios of design patterns in practice, and “related patterns”, which

describes the relatedness between a design pattern and the others within a context. However, it is not easy to update the

contents of these attributes manually due to the diversity of the programming technologies. To address this problem, in this

work, we conducted a case study to mine design pattern use scenarios and related design pattern pairs from Stack Overflow

posts to enrich the two attributes. We first extracted the question posts relevant to each design pattern by identifying

the design pattern tags. Then, the topics of the posts were discovered by applying topic modeling techniques. Finally, by

analyzing the topics specified for each design pattern, we detected 195 design pattern use scenarios and 70 related design

pattern pairs, involving 61 design patterns totally. These findings are associated with a variety of popular software frame-

works and programming techniques. They could complement the existing design pattern collections and help developers

better acknowledge the usage and relatedness of design patterns in today’s programming practice.

Keywords design pattern, software documentation, Stack Overflow, topic model

1 Introduction

Software design patterns aim to document the de-

sign knowledge of experienced developers as proven so-

lutions so that the recurring design problems can be

handled conveniently [1]. To depict design patterns,

structured representations consisting of several specific

attributes are usually adopted in various design pat-

tern collections [2]. For example, a design pattern in

the Gang of Four (GoF) book [3] is described with a

template that consists of 13 attributes, e.g., “intent”

states what issues the design pattern address, “struc-

ture” presents the classes in the design pattern using a

class diagram, and “sample code” illustrates how to im-

plement the design pattern with code fragments. The

attributes used in different design pattern collections

may carry the same meaning, despite having different

names [2].

Although there exist a number of design pattern

collections [2], their depictions may be outdated, espe-

cially for some specific attributes. Two typical exam-

ples are “known uses” and “related patterns” in the

Regular Paper

Special Section on Software System 2020

This work was supported by the National Key Research and Development Program of China under Grant No. 2018YFB1003903,
and the National Natural Science Foundation of China under Grant Nos. 61722202 and 61772107.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2020

http://dx.doi.org/10.1007/s11390-020-0407-0

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 101

GoF book. The “known uses” attribute indicates what

examples of usage of the design pattern can be found

in real software systems. New use scenarios of design

patterns may emerge in new programming techniques,

tools, and platforms. This attribute is also adopted in

some other design pattern collections, e.g., a pattern-

oriented software architecture (POSA) book [4]. The

“related patterns” attribute indicates which other de-

sign patterns are related to this one (also named “see

also” in the POSA book). Similarly, the relatedness be-

tween design patterns may be implied by some practi-

cal scenarios. Some new software frameworks may con-

tain new co-operations of design patterns, and conse-

quently, new related design pattern pairs. The present-

ing “known uses” and “related patterns” of the classical

design pattern collections, such as the GoF book which

has been published for over two decades, can hardly

involve the current programming technologies.

It is not an easy job to update the contents of these

attributes timely due to the diversity of the technolo-

gies in today’s software engineering field [5]. In the ex-

isting design pattern collections, these contents may be

written by experts. But it is difficult for an expert to

enumerate the usages of design patterns in a domain

that he/she is not familiar with.

In contrast, the programming Question and Answer

(Q&A) websites 1○ 2○ usually assemble numerous deve-

lopers with various backgrounds to post their issues

or problems with a wide range of aspects [5]. In these

posts, the modern practice of design patterns in mul-

tiple domains is likely to be involved. Hence, it is a

possible way to enrich the attributes of design patterns

by leveraging the crowdsource knowledge of the online

posts. With over 4 million participants and hundreds of

thousands of posts per month, Stack Overflow is one of

the largest programming Q&A websites and has been

used as a knowledge repository in a variety of software

engineering studies [6]. It makes an ideal source to pro-

vide the contents of these design pattern attributes.

In this work, we conducted a case study on Stack

Overflow posts to mine design pattern use scenarios and

related design pattern pairs to enrich the “known uses”

attribute and the “related patterns” attribute, respec-

tively. First, we identified a set of Stack Overflow tags,

each of which represents a certain design pattern. Next,

the question posts relevant to each of the design pat-

terns were extracted via the identified tags. Then, we

applied an advanced probabilistic model to the textual

contents of the posts for topic modeling. Finally, we

attempted to detect the use scenarios and related de-

sign patterns of each design pattern by analyzing the

topics specified for each design pattern. The relevant

data, code, and results are available online 3○.

By the case study, we obtained 195 design pattern

use scenarios and 70 related design pattern pairs, in

which 61 design patterns are involved. Compared with

those in the existing design pattern collections, our

findings are associated with a wide range of popular

software frameworks, such as Ruby on Rails, Spring,

and Object Relational Mapping, and programming do-

mains, such as mobile development, machine learning,

and web service. Moreover, as the questions on Stack

Overflow are continuously posted, our results can be up-

dated correspondingly. These findings could be reason-

able supplementaries to the depictions of the existing

design pattern collections and help developers better

acknowledge the usage and relatedness of design pat-

terns in modern programming practice.

Similar to our work, some other studies also applied

topic models in summarizing software relevant docu-

ments, such as commit-log comments [7], bug reports [8],

and online posts [5, 9]. They usually aimed to figure out

what topics were discussed and provided overviews of

these documents. Compared with these studies, the ob-

jective of our work is clearer. We focus on mining design

pattern use scenarios and related design pattern pairs

by leveraging the topics, and propose the measures to

achieve it.

The main contributions of this paper are listed as

follows.

1) We present a methodology of mining design pat-

tern use scenarios and related design pattern pairs from

the posts of programming Q&A websites. The out-

comes can be closely entwined with the current pro-

gramming technologies, thus valuable for modern deve-

lopers.

2) We report a case study on Stack Overflow, in

which 195 design pattern use scenarios are detected.

We further make some observations about the char-

acteristics of these use scenarios. These use scenar-

ios could inspire developers for practical usages of de-

sign patterns. They could also serve as candidates for

“known uses” of design pattern relevant documents.

1○Stack Overflow. https://stackoverflow.com/, July 2020.
2○Software Engineering. https://softwareengineering.stackexchange.com/, July 2020.
3○https://github.com/WoodenHeadoo/design-pattern-attributes, July 2020.

102 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

3) We also show the 70 pairs of related design pat-

terns detected by the case study and analyze the types

of the relatedness. These pairs imply the relatedness of

design patterns in practice. They could be references

for developers or examples of “related patterns” for cre-

ating design pattern relevant documents.

The rest of this paper is organized as follows. We

present the procedures of data extraction and topic

modeling in Section 2. We elaborate the case study

of detecting the design pattern use scenarios and the

related design pattern pairs in Section 3 and Section 4,

respectively. The potential threats to validity are dis-

cussed in Section 5. The studies related to our work are

outlined in Section 6. Section 7 concludes the paper.

2 Case Study Setup

In this section, we present the setup of our case

study. We first describe the details of the extraction of

Stack Overflow posts, and then we explain how to find

topics from the posts by leveraging the topic modeling

technique. The overall framework is shown in Fig.1.

2.1 Data Extraction

In this subsection, we aim to extract the Stack Over-

flow posts relevant to each design pattern.

2.1.1 Data Collection

The Stack Overflow data dump is publicly available

on archive.org 4○. In the case study, we collected all the

38 485 049 posts spanning from August 2008 to Decem-

ber 2017. The starting time corresponds to when the

Stack Overflow site began to operate. The end time is

set to keep a time interval by the date we started the

study so that the posts are relatively stable, i.e., with

no more deletions or modifications [10].

2.1.2 Tags Identification

To extract design-pattern-relevant posts, we used

the tags of Stack Overflow posts as the anchors [11–13].

A tag of a post is a label or keyword that summarizes

and categorizes the post. A user is encouraged to at-

tach one to five tags when posting a question in Stack

Overflow. In this study, we aim to identify each tag

that represents a certain design pattern. The following

steps detail the procedure of tag identification.

First, we made a checklist of design patterns. The

previous study [14] has constructed a design pattern cat-

alog consisting of 425 design patterns collected from

multiple sources. A design pattern may have multi-

ple well-known names (aliases), for example, “model

view controller” and “mvc” represent the same design

pattern. We took this design pattern catalog 5○ as the

checklist for identifying design pattern relevant tags.

Next, we extracted all the tags of the posts and

investigated whether they could match with the design

patterns in the checklist. A tag is a phrase consisting

of several words that are separated by hyphens. A

design pattern name is also a phrase with spaces or

hyphens as delimiters. We deleted all the delimiters in

Stack
Overflow

Data

Posts
Extraction

Design
Pattern

Checklist

Design
Pattern
Relevant

Posts

Design
Pattern
Relevant

Tags

Tags
Identification

Topic
Modeling

Topic
Assignments

Fig.1. Overall framework to carry out our case study.

4○https://archive.org/details/stackexchange, July 2020.
5○https://github.com/WoodenHeadoo/design-pattern-catalog/wiki/design-pattern-catalog, July 2020.

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 103

the tags and design pattern names or aliases. We say

a tag matches with a design pattern if the processed

tag matches one of the processed names (aliases) of the

design pattern. For example, tags “abstract-factory”

and “activerecord” match design patterns “abstract

factory” and “active record”, respectively. Tag “data-

access-object” and tag “dao” both match with “data

access object” design pattern as “dao” is an alias. If

a tag ends with “pattern”, then the suffix “pattern”

should be ignored. For example, tag “visitor-pattern”

also matches with “visitor” design pattern.

Then we manually reviewed the matching tags to

ensure accuracy. For each tag matching with a design

pattern, if there existed a tag description in Stack Over-

flow, we reviewed it to clarify whether the tag really

represented the design pattern in meaning. The false-

positive matching tags were discarded.

At last, multiple tags were considered as a same tag

if they all matched with a same design pattern. To-

tally, 94 unique tags (correspondingly 94 design pat-

terns) were identified.

2.1.3 Posts Extraction

With the identified tags, we extracted the design-

pattern-relevant posts. A question post was relevant to

a design pattern if it contains the tag matching with the

design pattern. As a question post is allowed to contain

multiple tags, it may be relevant to multiple design pat-

terns. Particularly, only question posts were adopted in

this study, since an answer usually shares a same sce-

nario with the question. Moreover, we discarded the

design patterns involving less than 100 question posts

as there may be too less information about the use sce-

narios or related patterns of them. Finally, our ex-

tracted data involved 175 213 question posts relevant

to 61 design patterns. The design patterns and the cor-

responding Stack Overflow tags are shown in Table 1.

2.2 Topic Modeling

To conduct the case study, we should understand

the contents of the design pattern relevant posts. How-

ever, the amount of the extracted posts is so large that

it is difficult to review each one manually. Thus, we

achieve the goals by leveraging an advanced topic mod-

eling technique.

2.2.1 Data Preprocessing

The textual content of a question post includes the

title and the body, and we merged them into a single

Table 1. Design Patterns with Matching Stack Overflow Tags

ID Design Pattern Tag
1 Abstract factory abstract-factory
2 Active record activerecord
3 Adapter adapter
4 Bridge bridge
5 Builder builder, builder-pattern
6 CQRS cqrs
7 Command command-pattern
8 Composite composite
9 Content negotiation content-negotiation

10 CRTP CRTP, f-bounded-polymorphism
11 DAO data-access-object, dao
12 Data mapper datamapper
13 DTO data-transfer-objects, dto
14 Decorator decorator
15 DI dependency-injection
16 Domain model domain-model
17 DCL double-checked-locking
18 Event sourcing event-sourcing
19 Facade facade
20 Factory method factory-method
21 Factory factory-pattern, factory, factories
22 Federated identity federated-identity
23 File transfer file-transfer
24 Front controller front-controller
25 Future future
26 HMVC HMVC
27 Interceptor interceptor
28 Iterator iterator
29 Lazy loading lazy-loading, lazyload
30 Master/slave master-slave
31 Materialized view materialized-views
32 Mediator mediator
33 Message broker messagebroker
34 Messaging messaging
35 MVC model-view-controller
36 MVP MVP
37 MVVM MVVM
38 Object ID objectid
39 Object pool object-pooling, objectpool
40 Observer observer-pattern
41 Page objects pageobjects
42 Pipeline pipeline
43 Pooling pooling
44 Post/redirect/get post-redirect-get
45 Publish/subscribe publish-subscribe
46 Reactor reactor
47 Record set recordset
48 Reflection reflection
49 Repository repository-pattern
50 Service layers service-layer
51 Service locator service-locator
52 Sharding sharding
53 STI single-table-inheritance
54 Singleton singleton
55 State state
56 Strategy strategy-pattern
57 Throttling throttling, throttle
58 Unit of work unit-of-work
59 Value object value-objects
60 Viewcontroller viewcontroller
61 Visitor visitor, visitor-pattern

Note: CQRS = command and query responsibility segregation,
CRTP = curiously recurring template pattern, DAO = data ac-
cess object, DTO = data transfer object, DI = dependency in-
jection, DCL = double checked locking, HMVC = hierarchical
model view controller, MVC = model view controller, MVP =
model view presenter, MVVM = model view view model, and
STI = single table inheritance.

104 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

text. In this way, a post can be regarded as a docu-

ment and topic modeling was carried out on the corpus

of posts. Before that, we preprocessed the texts to re-

move irrelevant information.

At first, we eliminated the code snippets (enclosed

in <code> or <pre> tag in Stack Overflow) as they are

usually too short to contain meaningful contents [5, 15].

Next, we removed English-language stop words such as

“the”, “is”, and “of”, as they are not likely to lead to

understandable topics [5]. The stop word list we used

is provided by MySQL for full-text queries 6○. Besides,

the HTML tags (e.g., <p>,), numbers,

punctuation marks, and other non-alphabetic charac-

ters were discarded as they are less informative. Then,

we used the Snowball stemmer 7○ to map each word in

the text to its root form, such as “developing” to “de-

velop” and “softwares” to “software”, since the mean-

ings of these forms are quite similar. At last, we counted

the frequency of each remaining word and deleted the

words occurring in less than five posts to filter out noisy

terms.

After the preprocessing, we obtained a vocabulary

containing 16 422 words.

2.2.2 Topic Model Deployment

Among various types of topic models, we choose the

collapsed Gibbs Sampling algorithm for the Dirichlet

Multinomial Mixture model (GSDMM) [16] in the case

study, as it is more suitable for our purpose. Like some

other probabilistic topic models, e.g., Latent Dirich-

let Allocation (LDA) [17], GSDMM provides the proba-

bility distribution of words for each extracted topic so

that we can comprehend a topic easily with the high

probability words as the reference. In addition, GS-

DMM is also an efficient text clustering algorithm that

assigns each post a specific topic. Therefore, we can un-

derstand the topic further by exploring some example

posts corresponding to the topic.

Generally, GSDMM is a generative model that as-

sumes the documents (posts) are generated based on

some probabilistic distributions. Assuming the number

of documents, the number of topics, and the vocabulary

size are D, T , and V respectively, the generation con-

tains three steps. At first, GSDMM generates a topic

distribution vector θ and a word distribution vector φt

(t = 1, 2, · · · , T) for each topic. Next, a topic zd is

assigned to the d-th document (d = 1, 2, · · · , D) ac-

cording to the topic distribution θ. At last, each word

in the d-th document is generated based on the corre-

sponding word distribution φzd (d = 1, 2, · · · , D).

Instead of applying the GSDMM model to the en-

tire posts directly, we adapted it to involve the factor of

design pattern. Specifically, we distributed the prepro-

cessed posts to K categories according to their relevant

design patterns (K = 61 in this study). A post can

be in multiple categories simultaneously as it may con-

tain multiple design pattern tags. Then, GSDMM was

applied to each category. We should note that each

category has its own topic distribution vector θk (k =

1, 2, · · · , K), but all the categories share a same batch

of topics and word distribution vectors φ1,φ2, · · · ,φT .

The reasons why we consider this setup are two-

fold. On the one hand, retaining a specific distribution

of topics for each design pattern is more accurate to de-

pict the design patterns than leveraging a unique topic

distribution. On the other hand, it is more efficient and

significant to share topics than to separate the posts of

each design pattern totally, e.g., we may detect the us-

age of different design patterns in a same scenario.

To use GSDMM in practice, the parameters should

be specified, i.e., α, the hyper-parameter for the topic

distribution, β, the hyper-parameter for the word dis-

tribution, n, the number of iterations for Gibbs Sam-

pling, and T , the number of topics. For α, β, and n,

we adopted the default settings in [16] that α = 0.1, β

= 0.1, and n = 150. As the number of topics, T , is a

key parameter that directly influences the outcomes of

the case study, we determined it experimentally.

As mentioned before, GSDMM is also a clustering

algorithm that assigns a specific topic for each post. Ac-

cording to the empirical results in [16], the number of

clusters (actually assigned topics) grows first and finally

gets stable near the ground truth when T is enlarged.

We repeated this experiment on our post corpus by in-

creasing T from 50 to 500 and recording the number

of found clusters for each configuration. Fig.2 reports

the mean results of eight trials for each value of T . As

shown in Fig.2, the stable number of clusters is roughly

120. Therefore, we set T = 120 so that the true clusters

tend to be found and few topics are likely to be redun-

dant. With this number of topics, we got 115 clusters

finally.

6○https://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html, July 2020.
7○https://www.nltk.org/api/nltk.stem.html, July 2020.

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 105

50 100 150 200 250 300 350 400 450 500

Number of Topics (T)

50

60

70

80

90

100

110

120

130

N
u
m

b
e
r

o
f
F
o
u
n
d
 C

lu
st

e
rs

Number of Found Clusters

Approximate Value of Convergence

Fig.2. Number of clusters found by GSDMM with different val-
ues of T .

2.2.3 Topic Model Outputs

By inferring through the Gibbs Sampling

algorithm [16], the topic assignment to each post (zd,

d = 1, 2, · · · , D) was obtained. Moreover, GSDMM

outputs two matrices that represent the distribution

vectors, namely the pattern-by-topic (K × T) matrix

Θ, in which the element θkt represents the probability

for a post of the k-th design pattern to be assigned with

the t-th topic, and the topic-by-word (T × V) matrix

Φ, in which φtv denotes the probability for a post of

the t-th topic to be generated by the v-th word. The

sum of each row of Θ or Φ is 1.

These outputs can assist to perform the case study

conveniently. With the pattern-by-topic matrix, we can

acknowledge which topics are the emphases when consi-

dering a specific design pattern. In Fig.3, we visual-

ize the pattern-by-topic matrix with a heat map. As

presented in Fig.3, the posts relevant to a design pat-

tern usually concentrate on some certain topics. Most

other topics have low probabilities on this design pat-

tern. Therefore, we need only to focus on these topics

for efficiency when analyzing this design pattern.

With the topic-by-word matrix, we can comprehend

a topic by reviewing the words of high probability. For

instance, we can infer that the topic #49 (topic ID in

the original order) is about Android development ac-

cording to top words “java android view active layout

app”. Furthermore, with the topic assignments, we can

choose a set of posts assigned with some topic as exam-

ples to help the comprehension.

3 Case Study Part 1: Use Scenarios of Design

Patterns

In this section, we are to investigate the following

research question.

RQ1. What are the possible use scenarios of each

design pattern?

Fig.3. Distribution of topics on each design pattern (Θ).

106 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

3.1 Motivation

The topics of the Stack Overflow posts have been

extracted and the posts tagged with a given design pat-

tern tend to concentrate on some certain topics. That

means, these topics, namely dominant topics, arouse

wider concerns than other topics. Therefore, the dom-

inant topics may imply some customary practical uses

of the design pattern. In this part of the case study,

we aim to detect the design pattern use scenarios from

the dominant topics. These use scenarios, which cor-

respond to the “known uses” attribute of the GoF

book [3], could be potential materials for learning de-

sign patterns.

3.2 Approach

At first, we determined the dominant topics for each

of the design patterns. For each design pattern, we

sorted the topics according to the probabilities (the

corresponding row of the pattern-by-topic matrix Θ)

in descending order. As presented in Fig.4, the sorted

probability distribution usually exhibits a long tail phe-

nomenon. By connecting the tops of the bars into a

curve, we detected the knee point [18] of the curve. The

topics whose corresponding probabilities are greater

than that at the knee point are the dominant topics.

Then, we manually analyzed each dominant topic

to infer the use scenario behind it. For each dominant

topic of a design pattern, we randomly sampled 10 rep-

resentative posts that were assigned to the topic and

involved the design pattern as a tag. Moreover, we ex-

tracted the top 15 words (keywords) with the highest

probabilities according to the topic-by-word matrix Φ

to interpret the topic.

With the representative posts and the keywords, we

attempted to conclude the use scenario of the design

pattern. Three of the authors (the first, the third, and

the fourth) participated in the use scenario summariz-

ing process. Before that, the participants went over

the related materials to get familiar with the involving

design pattern. During the process, each participant in-

dependently reviewed the dominant topic and tried to

summarize the implied use scenario with some phrases.

As an ideally summarized use scenario should repre-

sent some common use of the design pattern, the texts

containing these phrases and the design pattern were

searched online to check whether such a use scenario

could be verified by other sources. After all the par-

ticipants completed the work, we discussed each one’s

summary together to make a compromise about the de-

pictions of the use scenario.

100 120

Index of Sorted Topics

0.0

0.1

0.2

0.3

0.4

P
ro

b
a
b
il
it
y

Knee Point at 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30
P
ro

b
a
b
il
it
y

Knee Point at 8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
il
it
y

Knee Point at 17

0 20 40 60 80

100 120

Index of Sorted Topics

0 20 40 60 80

100 120

Index of Sorted Topics

0 20 40 60 80

(b)

(a)

(c)

Fig.4. Sorted probability distribution of topics on each design
pattern. (a) Visitor. (b) Reflection. (c) MVC.

3.3 Results

By reviewing the dominant topics of each design

pattern manually, the use scenarios of these design pat-

terns were detected. During this process, the scenarios

behind multiple topics might appear to be quite similar

for some design patterns. In this case, these topics were

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 107

merged into one use scenario. Moreover, some topics

were discarded as they are not related to use scenar-

ios, e.g., they are about how to implement some design

patterns. Totally, we obtained 195 use scenarios that

involve a wide range of frameworks, techniques, and do-

mains. A part of the use scenarios are shown in Table 2.

The full list is available online 8○. For each use scenario,

a brief summary, the corresponding design pattern, and

the corresponding topic ID(s) are presented. To en-

hance readability, we have provided online materials 8○

for each use scenario. The online materials include offi-

cial documents of software frameworks, articles of pro-

gramming communities, and posts of technical blogs, in

which these use scenarios are detailedly discussed.

Table 2. Use Scenarios of Design Patterns

Design Pattern Name Topic ID Summary Online Materials 8○

Active record 68 Embedded in Ruby on Rails as ActiveRecord u1
80 PostgreSQL specific usage of active record u2
120 Modified version of active record pattern in CodeIgniter u3

Command 100 Command pattern in game programming u4.1, u4.2
1, 48, 95 Command pattern in GUI design (WPF, GWT, WinForms) u5.1, u5.2, u5.3

Composite 9 Composite in GUI design (SWT, GWT, WPF, JSF) u6.1, u6.2, u6.3, u6.4
93 Composite data entity u7
71 Composite in JavaScript frameworks (Marionette.js, ExtJS) u8.1, u8.2
43 Composite for file systems u9

Lazy loading 93 Entity lazy loading in ORM (Entity Framework, Nhibernate) u10.1, u10.2
46 Images lazy loading in jQuery u11.1, u11.2
28 Feature modules lazy loading in Angular u12
91 Images lazy loading in Android ListView u13
69 DataTables lazy loading in PrimeFaces u14

Master/slave 8 MongoDB master-slave replication (database) u15
52 Jenkins master/slave architecture (project management) u16
37 MySQL master-slave replication (database) u17
44 Using in ActiveMQ for high availability (message queue) u18
15 Bluetooth master-slave model (communication) u19
22 Master-slave programming paradigm in parallel computing u20

MVVM 102 Constructing architectures in WPF u21
101 MVVM Light Toolkit u22
71 MVVM in KnockoutJS u23
39 MVVM in mobile development (Android, iOS) u24.1, u24.2
69 Applying MVVM to Kendo UI u25

Object pool 100 Avoiding memory fragmentation in game programming u26
91 Reusing ListViews in Android development u27

Pipeline 41, 43 Shell script pipeline (Unix shell, Powershell, Bash) u28.1, u28.2, u28.3
75 Pipeline for machine learning (Scikit-Learn) u29
116 Pipeline in MIPS architecture u30
52 Pipeline for projects Continuous Integration/Delivery (Jenkins) u31
42 Graphics pipeline (OpenGL, DirectX) u32.1, u32.2
44 Pipeline for web service (NServiceBus, Redis, BizTalk) u33.1, u33.2, u33.3
8 Pipeline for data processing (MongoDB, Hadoop) u34.1, u34.2
23 Pipeline for JavaScript and CSS assets u35

Sharding 8 Database sharding (MongoDB) u36
27, 119 Database sharding (MySQL, PostgreSQL) u37.1, u37.2
44 Message queue sharding (RabbitMQ) u38
76 Akka cluster sharding u39

Singleton 119 Singleton class for database connection (bad design) u40
62 Spring Bean singleton scope u41
54 Singleton UIViewController in iOS development (bad design) u42.1, u42.2
41 Singleton-decorator in Python u43

State 71 React component state u44
100 Using state pattern in game programming u45
23 State pattern for routing in Angular UI.Router u46

Visitor 107 Combining with the traversal strategies of tree structure u47.1, u47.2
36 Parsing abstract syntax trees u48.1, u48.2
43, 60 Transforming structures into XML files u49

8○https://github.com/WoodenHeadoo/design-pattern-attributes/blob/master/supplements.pdf, July 2020.

https://guides.rubyonrails.org/active_record_basics.html
https://edgeguides.rubyonrails.org/active_record_postgresql.html
https://codeigniter.com/userguide2/database/active_record.html
https://www.habrador.com/tutorials/programming-patterns/1-command-pattern/
http://gameprogrammingpatterns.com/command.html
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/commanding-overview?redirectedfrom=MSDN
https://www.peterfranza.com/2013/07/16/gwt-dispatcher-practical-use-of-the-command-pattern/
https://documentation.devexpress.com/WindowsForms/113965/Build-an-Application/WinForms-MVVM/Concepts/Commands
https://help.eclipse.org/2019-12/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/Composite.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/Composite.html
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/walkthrough-hosting-a-wpf-composite-control-in-windows-forms
https://blogs.oracle.com/enterprisetechtips/true-abstraction:-composite-ui-components-in-jsf-20-part-1
https://docs.microsoft.com/en-us/dynamics365/fin-ops-core/dev-itpro/data-entities/develop-composite-data-entities
https://marionettejs.com/docs/v2.4.7/marionette.compositeview.html
https://www.extjs-tutorial.com/extjs/composite-elements-in-extjs
https://python-patterns.guide/gang-of-four/composite/
https://entityframework.net/lazy-loading
https://nhibernate.info/doc/howto/various/lazy-loading-eager-loading
https://imagekit.io/blog/lazy-loading-images-complete-guide/
https://plugins.jquery.com/lazyload/
https://angular.io/guide/lazy-loading-ngmodules
http://blogs.innovationm.com/lazy-loading-and-memory-management-of-images-in-listview-in-android/
https://primefaces.github.io/primefaces/8_0/#/components/datatable
https://docs.mongodb.com/manual/core/master-slave/
https://wiki.jenkins.io/display/JENKINS/Slave+To+Master+Access+Control
https://dev.mysql.com/doc/mysql-replication-excerpt/5.5/en/replication.html
http://activemq.apache.org/masterslave.html
https://learn.sparkfun.com/tutorials/bluetooth-basics/all
https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src2/io/C/main.html
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
http://www.mvvmlight.net/
https://knockoutjs.com/documentation/observables.html
https://www.simplifiedcoding.net/android-mvvm-tutorial/
https://www.toptal.com/ios/swift-tutorial-introduction-to-mvvm
https://demos.telerik.com/kendo-ui/mvvm/index
http://gameprogrammingpatterns.com/object-pool.html
https://developer.android.com/reference/android/support/v4/util/Pools
https://www.shellscript.sh/tips/pipelines/
https://docs.microsoft.com/en-us/powershell/scripting/learn/understanding-the-powershell-pipeline?view=powershell-6
https://www.gnu.org/software/bash/manual/html_node/Pipelines.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://en.wikipedia.org/wiki/MIPS_architecture
https://jenkins.io/solutions/pipeline/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline
https://docs.particular.net/nservicebus/pipeline/
https://redis.io/topics/pipelining
https://docs.microsoft.com/en-us/biztalk/core/pipelines
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://www.wisdomjobs.com/e-university/hadoop-tutorial-484/hadoop-pipes-14765.html
https://guides.rubyonrails.org/asset_pipeline.html
https://docs.mongodb.com/manual/sharding/
https://www.mysql.com/products/cluster/scalability.html
https://wiki.postgresql.org/wiki/Built-in_Sharding
https://github.com/rabbitmq/rabbitmq-sharding/
https://doc.akka.io/docs/akka/current/typed/cluster-sharding.html
https://stackoverflow.com/questions/814206/getting-db-connection-through-singleton-class
https://docs.spring.io/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes
https://matteomanferdini.com/swift-singleton/
https://stackoverflow.com/questions/41136597/create-singleton-of-a-viewcontroller-in-swift-3
https://pypi.org/project/singleton-decorator/
https://reactjs.org/docs/state-and-lifecycle.html
http://gameprogrammingpatterns.com/state.html
https://ui-router.github.io/guide/states
https://gerardnico.com/data/type/tree/visitor
http://www.lihaoyi.com/post/ZeroOverheadTreeProcessingwiththeVisitorPattern.html
https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
https://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/ParseTreeVisitor.html
https://refactoring.guru/design-patterns/visitor

108 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

Counting all these scenarios, 59 design patterns and

72 topics are covered. The number of detected use

scenarios for each design pattern ranges from 1 to 8.

There are three design patterns that achieve the maxi-

mum number of use scenarios. They are “Dependency

Injection”, “Iterator”, and “Pipeline”. Some other de-

sign patterns also have relatively large numbers of use

scenarios, such as “Interceptor” (7), “Decorator” (6),

“Master/Slave” (6), “MVC” (6), and “Repository” (6).

That means they are active design patterns in Stack

Overflow. However, for the two design patterns, i.e.,

“Bridge” and “Strategy”, we did not find significant use

scenarios corresponding to them. The relevant question

posts are mainly about the implementations or basic

concepts of these two design patterns. Among the 72

topics, the topic #44 which is about message queues

and the topic #93 which is relevant to data entities,

are the most frequent ones that all participate in 10

use scenarios.

Furthermore, we analyze these use scenarios and

make some observations.

• A design pattern may be embedded or commonly

applied into some specific software frameworks and be-

come a key concept in these frameworks. For example,

“Active Record” is a design pattern that encapsulates

both the database access and the domain logic. This

design pattern is adopted in Ruby on Rails framework

as a module named ActiveRecord. Several mechanisms

of “Active Record”, e.g., association, migration, and

validation, are provided by Ruby on Rails as built-in

features (u1). The “MVVM” design pattern is another

example. “MVVM” usually serves as the core architec-

ture when developing a Windows Presentation Foun-

dation (WPF) application (u21). Some core features

of WPF, including data binding, data template, and

the resource system, make “MVVM” a suitable design

pattern for this framework.

• A design pattern may be used to handle some spe-

cific programming tasks as paradigms. For instance,

with the “Visitor” design pattern, we can perform ope-

rations on tree structures, especially parse abstract

syntax trees (ASTs). By defining specific operations

on a visiting node when traversing an AST, various

tasks can be implemented, such as error recovery and

binding resolution. Several code analysing tools have

adopted this design pattern, e.g., Eclipse AST View

(u48.1) and ANTLR (u48.2). Similarly, the “Compo-

site” design pattern can be used to design graphical

user interface applications. “Composite” is suitable for

constructing complex user interface components by in-

tegrating simple controls, such as buttons, textboxes,

and checkboxes. Some user interface development plat-

forms, e.g., Google Web Toolkit (u6.2) and Java Server

Faces (u6.4), leverage “Composite” to organize their

applications.

• Multiple design patterns may be applied to a same

domain but with different perspectives. For example,

in the game programming domain, we detect three

relevant design patterns, namely “Command”, “Object

Pool”, and “State”. When playing a game, the “Com-

mand” design pattern allows the players to configure

the keyboard or mouse settings according to their pref-

erences (u4.1, u4.2). During the game, the “State” de-

sign pattern makes a role change its actions accordingly

when the state changes (u45). To improve the perfor-

mance, “Object Pool” maintains a pool of reusable ob-

jects to avoid memory fragmentation (u26). Likewise,

“Master/Slave” and “Sharding” are both design pat-

terns aiming to achieve better performance and scala-

bility of databases. The former separates the read and

write operations by database replication (u15, u17) and

the latter breaks a large database into smaller ones with

nothing shared (u36, u37.1, u37.2).

• A design pattern may have multiple use scenarios

with distinct contexts. For instance, “Lazy Loading” is

a design pattern to delay the initialization of an object

until needed. On the one hand, “Lazy Loading” can

be used by a user interface for loading images (u11.1,

u11.2). Specifically, an image will not be visible until

the user scrolls down the page and the image place-

holder comes into viewport. On the other hand, this

design pattern can also be deployed on application data,

i.e., deterring the loading of the data from database un-

til the SQL query is triggered (u10.1, u10.2). Another

example is the “Pipeline” design pattern which builds

a workflow by assembling a series of actions. It has

been used to perform machine learning tasks (Scikit-

Learn, u29), build asynchronous messaging (NService-

Bus, u33.1), and configure the jobs to build/test/deploy

projects (u31), etc. The Unix shell also adopts the con-

cept of “Pipeline” (u28.1).

• Some idiomatic usages of design patterns are re-

garded as bad practice. Inconsistent with our imagina-

tions, some of the use scenarios are given negative com-

ments by the answers in Stack Overflow. They are all

about the “Singleton” design pattern. Specifically, the

two use scenarios, i.e., making the database connection

object as a “Singleton” (u40) and making the UIView-

Controller in iOS as a “Singleton” (u42.1, u42.2), are

not recommended in practice, as the use of singletons

https://guides.rubyonrails.org/active_record_basics.html
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
https://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/ParseTreeVisitor.html
http://www.gwtproject.org/javadoc/latest/com/google/gwt/user/client/ui/Composite.html
https://blogs.oracle.com/enterprisetechtips/true-abstraction:-composite-ui-components-in-jsf-20-part-1
https://www.habrador.com/tutorials/programming-patterns/1-command-pattern/
http://gameprogrammingpatterns.com/command.html
http://gameprogrammingpatterns.com/state.html
http://gameprogrammingpatterns.com/object-pool.html
https://docs.mongodb.com/manual/core/master-slave/
https://dev.mysql.com/doc/mysql-replication-excerpt/5.5/en/replication.html
https://docs.mongodb.com/manual/sharding/
https://www.mysql.com/products/cluster/scalability.html
https://wiki.postgresql.org/wiki/Built-in_Sharding
https://imagekit.io/blog/lazy-loading-images-complete-guide/
https://plugins.jquery.com/lazyload/
https://entityframework.net/lazy-loading
https://nhibernate.info/doc/howto/various/lazy-loading-eager-loading
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://docs.particular.net/nservicebus/pipeline/
https://jenkins.io/solutions/pipeline/
https://www.shellscript.sh/tips/pipelines/
https://stackoverflow.com/questions/814206/getting-db-connection-through-singleton-class
https://matteomanferdini.com/swift-singleton/
https://stackoverflow.com/questions/41136597/create-singleton-of-a-viewcontroller-in-swift-3

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 109

may easily cause problems such as tight coupling be-

tween classes, unwanted global accessibility, and incon-

venience for unit test.

Overall, the detected use scenarios are usually as-

sociated with the modern software frameworks or pro-

gramming techniques. This characteristic makes these

use scenarios have a better practical value for deve-

lopers than those mentioned in classical design pattern

books.

3.4 Summary

There are 195 design pattern use scenarios detected

from the Stack Overflow posts. These use scenarios

could be reference cases for novice developers or ex-

amples of “known uses” when creating design pattern

relevant documents.

4 Case Study Part 2: Related Design Pattern

Pairs

In this section, we aim to investigate the following

research question.

RQ2. Which pairs of design patterns may be re-

lated?

4.1 Motivation

Two design patterns may be taken as tags simulta-

neously in a same post. That means they are likely to

be related in some way. In the GoF book, the “related

patterns” attribute is described as “What design pat-

terns are closely related to this one? What are the im-

portant differences? With which other patterns should

this one be used?” It implies two types of related-

ness, i.e., the two design patterns are similar and the

two design patterns are usually used together. The co-

occurrence of design pattern tags could cover both of

the two types. In this part, we aim to detect the related

design pattern pairs from the co-occurrences. The re-

sults could help developers to better acknowledge the

relationship between design patterns.

4.2 Approach

Firstly, the potentially related design pattern pairs

were selected. For each given design pattern, we found

out all the other design patterns co-occurring with, and

sorted them in descending order according to the num-

bers of posts that contain the co-occurring pairs. By

leveraging the knee point finding method [18], the de-

sign patterns ahead of the knee point were selected to

form potential related pairs with the given design pat-

tern. All the potential related pairs were determined in

this way with regard to all the design patterns and the

duplicates were eliminated, i.e., “PatternA-PatternB”

and “PatternB-PatternA” counted as a same pair.

Next, each potential related design pattern pair was

analyzed manually by consulting the involving topics.

For each potential related pair, we clarified the topic

assignments on the posts that contain the pair. The

top most topic, which has the maximum times of as-

signments, was used to assist us to comprehend why

the two design patterns co-occur. We extracted 15 key-

words of the top most topic and 10 representative posts

that are assigned to this topic and contain the pair as

references.

Just as in the previous part, the manual analysis was

conducted by the three participants. With these mate-

rials, each participant attempted to ascertain whether

the pair of design patterns are indeed related in some

way, and summarized why they are related. To help

to understand the co-occurrence further, the partici-

pants could search for more materials that contain the

two design patterns on the Internet. Afterwards, we

discussed the results of each participant and tried to

reach an agreement.

4.3 Results

By reviewing the top most topic of each selected

co-occurring design pattern pair, we determined the re-

lated pairs. From some co-occurring pairs, no explicit

relationships were inferred by our review, e.g., the two

design patterns are merely building blocks of a same

software system but do not interact with each other

directly. Under this circumstance, the co-occurring de-

sign patterns were not regarded as related design pat-

terns. Finally, we detected 70 unique pairs of related

design patterns. Part of the related design pattern pairs

are presented in Table 3 and the entire results can be

accessed online 9○. For each related design pattern pair,

we also provided a summary, which implies why they

are related, and the online materials 9○, which imply the

relationship between the two design patterns.

Overall, the 70 related design pattern pairs involve

45 design patterns. Among them, the top 3 most

frequent design patterns are “Dependency Injection”,

“Repository”, and “MVC”, which appear in 9, 9, and

9○https://github.com/WoodenHeadoo/design-pattern-attributes/blob/master/supplements.pdf, July 2020.

110 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

Table 3. Related Design Pattern Pairs

Design Pattern Pair Category Summary Online

Materials 10○

Abstract factory &
dependency injection

Co-operation Abstract factory can be used in dependency injection frameworks for
creating stateful objects

r1

Active record & MVC Dependency Active record can be the Model in MVC r2

Active record & single
table inheritance

Co-operation Active record usually allows single table inheritance r3

Command & MVVM Dependency Command is often used in MVVM architecture to coordinate the view
with the viewmodel

r4

CQRS & event
Sourcing

Co-operation CQRS is often used along with event sourcing for efficient queries r5

DAO & DTO Analogy They all operate on data between classes or modules r6

DAO & record set Dependency Record set is often used in DAO to manipulate data r7

DAO & repository Analogy They are all responsible for data access of a software system r8

Dependency injection
&
factory

Analogy They all have the purpose to separate the use of a certain component r9

Dependency injection
&
reflection

Dependency Dependency injection can be implemented by using reflection r10

Dependency injection
&
repository

Co-operation Repositories can be injected via dependency injection r11

Dependency injection
& singleton

Analogy They can all make dependencies for objects r12

Double Checked
locking & singleton

Dependency Double checked locking can be used to make singleton thread safe r13

HMVC & MVC Variation HMVC is a variation of MVC r14

Iterator & visitor Analogy Both iterator and visitor can be used to visit structures of elements r15

Master/slave &
sharding

Analogy They can be all database partitioning approaches r16

Mediator & publish/
subscribe

Dependency Mediator can be used to implement the publish/subscribe model r17

Message broker & mes-
saging

Variation Message broker is a way for messaging r18

Messaging & publish/
subscribe

Variation Publish/subscribe is a kind of messaging pattern r19

MVC & MVVM Analogy MVC and MVVM are both for building architectures of presentation r20

MVC & observer Dependency Observer can be used to synchronize the Model and the View in MVC r21

MVC & service layers Co-operation Service layers interact with the controller in MVC r22

Repository & unit of
work

Co-operation Unit of work is often implemented on repositories r23

8 pairs, respectively. As presented in Subsection 3.3,

these design patterns all have relatively large numbers

of use scenarios. It shows again that they are active

design patterns. In addition, the most frequently re-

viewed topic is topic #51, which is about examples and

comparisons of design patterns. It represents the type

of relatedness that the two design patterns of the pair

are similar.

By analyzing each of the related design pattern

pairs, we find that they may be divided into four cate-

gories.

• Analogy. The two sides of the pair are distinct de-

sign patterns but they have similar functions for some

special uses. This category is relevant to the topic of

comparison or difference between design patterns. The

askers in Stack Overflowmay post questions like: “what

is the difference between A and B?” “A or B, which

one to use?” For example, “DAO” and “Repository”

are similar as they are all responsible for data access of

a software system. “DAO” is closer to the database but

“Repository” is associated with the domain model (r8).

Likewise, “Dependency Injection” and “Singleton” are

both design patterns that can provide an object with

references to other objects. “Dependency Injection”

10○https://github.com/WoodenHeadoo/design-pattern-attributes/blob/master/supplements.pdf, July 2020.

https://www.theserverside.com/news/1321145/Programmatic-Dependency-Injection-with-an-Abstract-Factory
https://guides.rubyonrails.org/v4.2/active_record_basics.html
https://api.rubyonrails.org/classes/ActiveRecord/Inheritance.html
https://www.codeproject.com/tips/813345/basic-mvvm-and-icommand-usage-example
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://stackoverflow.com/questions/14366001/dto-and-dao-concepts-and-mvc
https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/recordset-object-dao
https://stackoverflow.com/questions/8550124/what-is-the-difference-between-dao-and-repository-patterns
http://tutorials.jenkov.com/dependency-injection/dependency-injection-replacing-factory-patterns.html
https://edi.wang/post/2018/12/28/dependency-injection-with-multiple-implementations-in-aspnet-core
https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/dependency-injection
https://social.technet.microsoft.com/wiki/contents/articles/19463.singleton-or-dependency-injection.aspx
https://codepumpkin.com/double-checked-locking-singleton/
https://en.wikipedia.org/wiki/Hierarchical_model%E2%80%93view%E2%80%93controller
https://stackoverflow.com/questions/28319129/visitor-pattern-vs-iterator-pattern-visiting-across-hierarchy-class
http://www.agildata.com/database-sharding/
https://www.oodesign.com/mediator-pattern.html
https://hackernoon.com/introduction-to-message-brokers-part-1-apache-kafka-vs-rabbitmq-8fd67bf68566
https://en.wikipedia.org/wiki/Publish/subscribe
https://stackoverflow.com/questions/19444431/what-is-difference-between-mvc-mvp-mvvm-design-pattern-in-terms-of-coding-c-s
https://visualstudiomagazine.com/articles/2013/08/14/the-observer-pattern-in-net.aspx
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions-1/models-data/validating-with-a-service-layer-cs
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://stackoverflow.com/questions/8550124/what-is-the-difference-between-dao-and-repository-patterns

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 111

achieves this by explicitly setting the dependencies but

“Singleton” makes the dependent objects globally ac-

cessible (r12).

• Variation. One design pattern in the pair is a

variation, evolution, implementation, or subtype of the

other one. In Stack Overflow, if one design pattern

is discussed in a question post, the other one is also

likely to be mentioned as a relevant term. For instance,

“HMVC” is an evolution of the “MVC” design pattern

to handle the salability problem of MVC-based appli-

cations (r14). “Publish/Subscribe” is a kind of “Mes-

saging” design pattern that implements messaging be-

tween publishers and subscribers through an interme-

diary message bus (r19).

• Co-Operation. The two design patterns usually

co-operate with each other to achieve some special pur-

poses, but they are relatively independent. For exam-

ple, “Repository” usually accompanies with “Unit of

Work” to create an abstraction layer between business

logics and data stores. “Repository” defines the basic

operations of data entities and “Unit of Work” ensures

multiple operations complete or fail entirely to avoid

database in-consistency (r23). Another pair is “CQRS”

and “Event Sourcing”. “CQRS” is a design pattern

that segregates the data reading model and the data

writing model. Along with “Event Sourcing”, the writ-

ing operations are stored as events that can be used to

notify the reading model for more efficient queries (r5).

• Dependency. One design pattern in the pair is

used by or assist to implement the other one. For ex-

ample, “DAO” provides some specific data operations

for the business logic layer without exposing details of

the database. To perform the operations, “DAO” usu-

ally uses another design pattern, i.e., “Record Set”,

to manipulate the data by creating snapshots of the

database (r7). In multi-threaded environments, we

should ensure thread safety when using “Singleton” de-

sign pattern. That is, only one singleton instance can

exist at the same time. To this end, “Double Checked

Locking” is applied to the initialization method of the

singleton class to check whether an instance is already

created (r13).

Generally, the first two categories correspond to the

type that the two design patterns are similar and the

last two categories correspond to the type that they are

usually used together. The numbers of pairs belonging

to the four categories are 33, 6, 17, and 14, respec-

tively. In design pattern books, the “related patterns”

of one design pattern may only involve the other ones

depicted in the current book. However, our results are

not restricted by this factor. Design patterns of diffe-

rent collections can be related.

4.4 Summary

Via the case study, 70 related design pattern pairs

were detected from Stack Overflow posts. These pairs

could help developers to discriminate design patterns

or serve as potential candidates for “related patterns”

of design pattern relevant documents.

5 Discussions

5.1 Implications

The findings of this study would suggest some im-

plications for software practitioners. On the one hand,

developers, especially novice developers, could better

acknowledge the usage of design patterns in practice.

For example, the use scenarios provide some valuable

instances to show when or where to apply a design pat-

tern, especially along with the modern software frame-

works or programming techniques. The related design

pattern pairs could help developers to cognize and dis-

criminate similar design patterns. On the other hand,

these findings supply materials for documenting design

patterns. For example, the use scenarios and the re-

lated design pattern pairs could serve as the contents

of the sections of “known uses” and “related patterns”

respectively in a design pattern book. As the online

posts are updating continuously, these mined materials

can keep up-to-date, too.

5.2 Automation

In this study, the final outcomes, i.e., the design

pattern use scenarios and related design pattern pairs,

were obtained manually. As the Q&A websites, e.g.,

Stack Overflow, are keeping changing, it will be much

more convenient and efficient to update the results if

we can automate the whole process. However, it is not

a trivial job. For example, recognizing a use scenario

from text and creating a human-readable depiction are

both related to human cognition, and the answers tend

to be open-ended. Nevertheless, we may go a step fur-

ther. For instance, the automatic methods could be

leveraged to summarize the topics, or to extract the

keywords to describe the use scenarios or the relation-

ships between design patterns, so that the labor cost

could be reduced. We will consider these trials in the

future work.

https://social.technet.microsoft.com/wiki/contents/articles/19463.singleton-or-dependency-injection.aspx
https://en.wikipedia.org/wiki/Hierarchical_model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Publish/subscribe
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/recordset-object-dao
https://codepumpkin.com/double-checked-locking-singleton/

112 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

5.3 Threats to Validity

There are several potential threats to the validity

of our work. First, the method of extracting the Stack

Overflow posts relevant to each design pattern may in-

volve inaccuracies. However, the method that uses the

tag information is a practical way to identify domain

specific posts [9, 15, 19]. The manual check of the tags also

helps to reduce the inaccuracies. Second, the parameter

settings of the topic model may be not the optima. To

minimize this threat, we have tried to specify these set-

tings objectively by combining the default values and

the results of experiments. Third, the meanings of the

topics were interpreted manually. It may lead to biases.

To alleviate this problem, we referred to not only the

keywords of high probabilities but also a set of example

posts to comprehend the topics better. At last, when

analyzing the use scenarios or related design patterns

of a design pattern, we only investigated a part of the

topics. We may obtain more outcomes if more topics

are involved. However, we have found that most of the

posts relevant to a design pattern can be covered by

some certain topic. It is a reasonable choice to focus

on some critical topics when considering the factor of

efficiency.

6 Related Work

In this section, we briefly review the related studies

to our work, including studies about the features of de-

sign patterns, empirical studies on Stack Overflow, and

studies applying topic models to software documents.

6.1 Features of Design Pattern

There are several studies that investigate various

features of design patterns with data. Similar to our

work, some of them concern the features of a design pat-

tern itself. Hasheminejad and Jalili extracted the prob-

lem domains of design patterns from design pattern col-

lections and used them for design pattern selection [20].

Scanniello et al. investigated how the kind of documen-

tation for design patterns affects the comprehensibility

of design pattern instances in source code [21]. Ampat-

zoglou et al. examined the stability of GoF design pat-

terns with a case study on about 65 000 Java classes [22].

Meanwhile, some studies focus on the features of

software systems caused by applying design patterns.

Hussain et al. performed a case study of the correla-

tion between design pattern usage and system struc-

tural complexity [23]. Jaafar et al. evaluated the im-

pact of six design patterns on the fault-proneness of

three open-source software systems [24]. Aversano et al.

explored the defects of design pattern classes in the

crosscutting code by analyzing the software evolution

data [25].

Different from these studies, the features concerned

in this paper are use scenarios and design pattern re-

latedness.

6.2 Empirical Study on Stack Overflow

A number of empirical studies have leveraged the

Stack Overflow as their data source. Among them, the

studies attempting to summarize the themes, trends,

or issues of some specific domains are most related to

ours. Yang et al. conducted a large-scale study on

Stack Overflow questions to explore security related

topics and trends [15]. Similarly, the study conducted by

Bagherzadeh and Khatchadourian concentrated on big

data questions and tried to understand the interesting

and difficult topics among big data developers [9]. Zou

et al. performed an exploratory analysis of Stack Over-

flow posts aiming to comprehend the non-functional re-

quirements of developers [26].

Some studies aim to discover the improper prac-

tice of programming from Stack Overflow. Nagy and

Cleve investigated the MySQL related questions on

Stack Overflow to analyze the error patterns in SQL

queries [27]. In [28], Zhang et al. extracted API usage

patterns from Java repositories and used them to dis-

cover potential API usage violations that may produce

unexpected behaviors in Stack Overflow posts. Rah-

man et al. conducted a systematic analysis of insecure

Python code blocks in Stack Overflow answers [29].

Furthermore, some other studies focus on the hu-

man or community behaviors on Stack Overflow. Ford

et al. used mixed methods to identify contribution bar-

riers for females on Stack Overflow [30]. Zhang et al.

investigated the process that an answer on Stack Over-

flow becomes obsolete and identified the characteristics

of obsolete answers [31]. Marder carried out a regression

analysis of user activities on Stack Overflow to examine

how the users behave when earning badges [32].

The key difference between our work and the above

studies is that we focus on the analysis of design-pattern

relevant question posts on Stack Overflow.

6.3 Topic Model in Software Engineering

Except for being applied to analyze the textual con-

tent of Stack Overflow, topic models have been lever-

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 113

aged in many other software engineering tasks. In some

studies, topic model techniques are used for modeling

source code. Thomas et al. leveraged a topic model

technique on the source code of software systems to

capture the changes and describe the evolutions [33]. To

facilitate the reading and browsing of source code in

code editors, Fowkes et al. used a scoped topic model

on code tokens to fold code automatically so that the

users can hide code blocks selectively [34]. Considering

the barriers that prevent classical topic models from be-

ing applied to source code, e.g., the sparsity of source

code, Mahmoud and Bradshaw proposed a specialized

topic modeling approach for source code [35].

Moreover, some studies use topic models on other

software documents. Xia et al. proposed a novel topic

modeling algorithm for bug reports and used it for bug

triaging [36]. In [37], Jiang et al. built a framework

of recommending relevant API tutorial fragments, in

which the topic model is used to estimate the corre-

lations between tutorial fragments and APIs. Hu et

al. analyzed the commit messages of software projects

with an online topic model to discover emerging topics

in development iterations [38].

Among these studies, many of them choose LDA

as the topic model. In contrast, our choice is the spe-

cialized GSDMM, which is more suitable for our cir-

cumstance. On the one hand, the topic distribution for

each design pattern can be obtained so that we can ac-

knowledge what the important topics for a given design

pattern are. On the other hand, GSDMM assigns each

post only one topic instead of a mixture of topics; there-

fore we can better understand a topic by consulting the

corresponding posts.

7 Conclusions

In this work, we conducted a case study on Stack

Overflow to explore some specific attributes of design

patterns, i.e., use scenarios and related design pattern

pairs. We first extracted the Stack Overflow question

posts relevant to design patterns by leveraging the tags,

and then we used an advanced topic modeling technique

to find the topics from the posts and build the associa-

tions between the topics and each design pattern. With

the help of the identified topics, we detected 195 use

scenarios of 61 design patterns and 70 pairs of related

design patterns. These use scenarios are in relation to

various software frameworks and techniques; the related

pairs mainly belong to four categories, namely analogy,

variation, co-operation, and dependency.

These findings, on the one hand, could help deve-

lopers better acknowledge the usage and relatedness of

design patterns in modern programming practice. On

the other hand, they could serve as materials for cre-

ating design pattern relevant documents, e.g., as the

examples of “known uses” and “related patterns” in

design pattern books.

In the future, we plan to investigate other online

resources, such as other Q&A websites, forums, and

technical blogs, to detect more use scenarios and re-

lated design pattern pairs. We also plan to extend this

work to make the methodology more automatic.

References

[1] Zhang C, Budgen D. What do we know about the effective-

ness of software design patterns? IEEE Trans. Softw. Eng.,

2012, 38(5): 1213-1231.

[2] Henninger S, Corrêa V. Software pattern communities:

Current practices and challenges. In Proc. the 14th Conf.

Patt. Lang. Prog., Sept. 2007, Article No. 14.

[3] Gamma E, Helm R, Johnson R, Vlissides J. Design Pat-

terns: Elements of Reusable Object-Oriented Software (1st

edition). Addison-Wesley Professional, 1994.

[4] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal

M. Pattern-Oriented Software Architecture: A System of

Patterns (1st edition). Wiley, 1996.

[5] Barua A, Thomas S W, Hassan A E. What are developers

talking about? An analysis of topics and trends in Stack

Overflow. Empir. Softw. Eng., 2014, 19(3): 619-654.

[6] Ahmad A, Feng C, Ge S, Yousif A. A survey on mining stack

overflow: Question and answering (Q&A) community. Data

Technol. Appl., 2018, 52(2): 190-247.

[7] Hindle A, Godfrey M W, Holt R C. What’s hot and what’s

not: Windowed developer topic analysis. In Proc. the 25th

IEEE Int. Conf. Softw. Maint., Sept. 2009, pp.339-348.

[8] Han D, Zhang C, Fan X, Hindle A, Wong K, Stroulia E.

Understanding Android fragmentation with topic analysis

of vendor-specific bugs. In Proc. the 19th Working Conf.

Reverse Eng., Oct. 2012, pp.83-92.

[9] Bagherzadeh M, Khatchadourian R. Going big: A large-

scale study on what big data developers ask. In Proc. the

27th ACM Joint Eur. Softw. Eng. Conf./Symp. Found.

Softw. Eng., Aug. 2019, pp.432-442.

[10] Zhou P, Liu J, Yang Z, Zhou G. Scalable tag recommenda-

tion for software information sites. In Proc. the 24th IEEE

Int. Conf. Softw. Anal. Evol. Reeng., Feb. 2017, pp.272-282.

[11] Chen C, Gao S, Xing Z. Mining analogical libraries in

Q&A discussions — Incorporating relational and categori-

cal knowledge into word embedding. In Proc. the 23rd IEEE

Int. Conf. Softw. Anal. Evol. Reeng., Mar. 2016, pp.338-

348.

[12] Wang X Y, Xia X, Lo D. TagCombine: Recommending tags

to contents in software information sites. J. Comput. Sci.

Technol., 2015, 30(5): 1017-1035.

114 J. Comput. Sci. & Technol., Sept. 2020, Vol.35, No.5

[13] Zhang Y, Lo D, Xia X, Sun J L. Multi-factor duplicate ques-

tion detection in Stack Overflow. J. Comput. Sci. Technol.,

2015, 30(5): 981-997.

[14] Jiang H, Liu D, Chen X, Liu H, Mei H. How are design

patterns concerned by developers? In Proc. the 41st Int.

Conf. Softw. Eng. Comp., May 2019, pp.232-233.

[15] Yang X L, Lo D, Xia X, Wan Z Y, Sun J L. What security

questions do developers ask? A large-scale study of Stack

Overflow posts. J. Comput. Sci. Technol., 2016, 31(5): 910-

924.

[16] Yin J, Wang J. A Dirichlet multinomial mixture model-

based approach for short text clustering. In Proc. the 20th

ACM Int. Conf. Knowl. Disc. Data Mining, Aug. 2014,

pp.233-242.

[17] Griffiths T L, Steyvers M. Finding scientific topics. Proc.

National Academy Sci., 2004, 101(suppl. 1): 5228-5235.

[18] Satopaa V, Albrecht J, Irwin D, Raghavan B. Finding a

“Kneedle” in a haystack: Detecting knee points in system

behavior. In Proc. the 31st Int. Conf. Distrt. Comput. Syst.

Workshops, June 2011, pp.166-171.

[19] Rosen C, Shihab E. What are mobile developers asking

about? A large scale study using Stack Overflow. Empir.

Softw. Eng., 2016, 21: 1192-1223.

[20] Hasheminejad S M H, Jalili S. Design patterns selection: An

automatic two-phase method. J. Syst. Softw., 2012, 85(2):

408-424.

[21] Scanniello G, Gravino C, Risi M, Tortora G, Dodero

G. Documenting design-pattern instances: A family of

experiments on source-code comprehensibility. ACM Trans.

Softw. Eng. Methodol., 2015, 24(3): Article No. 14.

[22] Ampatzoglou A, Chatzigeorgiou A, Charalampidou S,

Avgeriou P. The effect of GoF design patterns on stabil-

ity: A case study. IEEE Trans. Softw. Eng., 2015, 41(8):

781-802.

[23] Hussain S, Keung J, Khan A A, Bennin K E. Correlation

between the frequent use of gang-of-four design patterns

and structural complexity. In Proc. the 24th Asia-Pacific

Softw. Eng. Conf., Dec. 2017, pp.189-198.

[24] Jaafar F, Guéhéneuc Y G, Hamel S, Khomh F, Zulkernine

M. Evaluating the impact of design pattern and anti-pattern

dependencies on changes and faults. Empir. Softw. Eng.,

2016, 21(3): 896-931.

[25] Aversano L, Cerulo L, Di Penta M. Relationship between

design patterns defects and crosscutting concern scattering

degree: An empirical study. IET Softw., 2009, 3(5): 395-

409.

[26] Zou J, Xu L, Yang M, Zhang X, Yang D. Towards com-

prehending the non-functional requirements through deve-

lopers’ eyes: An exploration of Stack Overflow using topic

analysis. Inf. Softw. Technol., 2017, 84: 19-32.

[27] Nagy C, Cleve A. Mining Stack Overflow for discovering

error patterns in SQL queries. In Proc. the 7th IEEE Int.

Conf. Softw. Maint. Evolut., Sept. 2015, pp.516-520.

[28] Zhang T, Upadhyaya G, Reinhardt A, Rajan H, Kim M.

Are code examples on an online Q&A forum reliable? A

study of API misuse on Stack Overflow. In Proc. the 40th

Int. Conf. Softw. Eng., May 2018, pp.886-896.

[29] Rahman A, Farhana E, Imtiaz N. Snakes in paradise? Inse-

cure python-related coding practices in Stack Overflow. In

Proc. the 16th IEEE/ACM Int. Conf. Mining Softw. Re-

pos., May 2019, pp.200-204.

[30] Ford D, Smith J, Guo P J, Parnin C. Paradise unplugged:

Identifying barriers for female participation on Stack Over-

flow. In Proc. the 24th ACM Joint Eur. Softw. Eng.

Conf./Symp. Found. Softw. Eng., Nov. 2016, pp.846-857.

[31] Zhang H, Wang S, Chen T P, Zou Y, Hassan A E. An em-

pirical study of obsolete answers on Stack Overflow. IEEE

Trans. Softw. Eng.. doi:10.1109/TSE.2019.2906315.

[32] Marder A. Stack Overflow badges and user behavior: An

econometric approach. In Proc. the 12th IEEE/ACM Int.

Conf. Mining Softw. Repos., May 2015, pp.450-453.

[33] Thomas S W, Adams B, Hassan A E, Blostein D. Validat-

ing the use of topic models for software evolution. In Proc.

the 10th IEEE Working Conf. Source Code Anal. Manip.,

Sept. 2010, pp.55-64.

[34] Fowkes J, Chanthirasegaran P, Ranca R, Allamanis M, La-

pata M, Sutton C. Autofolding for source code summariza-

tion. IEEE Trans. Softw. Eng., 2017, 43(12): 1095-1109.

[35] Mahmoud A, Bradshaw G. Semantic topic models for source

code analysis. Empir. Softw. Eng., 2017, 22(4): 1965-2000.

[36] Xia X, Lo D, Ding Y, Al-Kofahi J M, Nguyen T N, Wang

X. Improving automated bug triaging with specialized topic

model. IEEE Trans. Softw. Eng., 2017, 43(3): 272-297.

[37] Jiang H, Zhang J, Ren Z, Zhang T. An unsupervised ap-

proach for discovering relevant tutorial fragments for APIs.

In Proc. the 39th Int. Conf. Softw. Eng., May 2017, pp.38-

48.

[38] Hu J, Sun X, Li B. Explore the evolution of development

topics via on-line LDA. In Proc. the 22nd IEEE Int. Conf.

Softw. Anal. Evol. Reeng., Mar. 2015, pp.555-559.

Dong Liu received his M.S. degree

in computer science and technology

from Hebei University of Technology,

Baoding, in 2016. He is currently a

Ph.D. candidate in Dalian University

of Technology, Dalian. His current re-

search interests include mining software

repositories and data-driven methods in

software engineering.

Zhi-Lei Ren received his B.S. degree

in software engineering and his Ph.D.

degree in computational mathematics

from Dalian University of Technology,

Dalian, in 2007 and 2013, respectively.

He is currently an associate professor

with Dalian University of Technology,

Dalian. His current research interests

include evolutionary computation, automatic algorithm

configuration, and mining software repositories.

Dong Liu et al.: Mining Design Pattern Use Scenarios and Related Design Pattern Pairs 115

Zhong-Tian Long is currently a un-
dergraduate student in Dalian Univer-
sity of Technology, Dalian. His current
research interests include machine learn-
ing and artificial intelligence.

Guo-Jun Gao received his B.S. de-

gree in software engineering from Dalian

University of Technology, Dalian, in

2010. He is currently a Ph.D. candidate

in Dalian University of Technology,

Dalian. His current research interests

include search-based software engineer-

ing and compiler options selection.

He Jiang received his Ph.D. degree

in computer science from University of

Science and Technology of China, Hefei,

in 2004. He is currently a professor

with Dalian University of Technology,

Dalian, and an adjunct professor with

Beijing Institute of Technology, Beijing.

His current research interests include intelligent software

engineering, mining software repositories, and compilers.

	1 Introduction
	2 Case Study Setup
	2.1 Data Extraction
	2.1.1 Data Collection
	2.1.2 Tags Identification
	2.1.3 Posts Extraction

	2.2 Topic Modeling
	2.2.1 Data Preprocessing
	2.2.2 Topic Model Deployment
	2.2.3 Topic Model Outputs

	3 Case Study Part 1: Use Scenarios of Design Patterns
	3.1 Motivation
	3.2 Approach
	3.3 Results
	3.4 Summary

	4 Case Study Part 2: Related Design Pattern Pairs
	4.1 Motivation
	4.2 Approach
	4.3 Results
	4.4 Summary

	5 Discussions
	5.1 Implications
	5.2 Automation
	5.3 Threats to Validity

	6 Related Work
	6.1 Features of Design Pattern
	6.2 Empirical Study on Stack Overflow
	6.3 Topic Model in Software Engineering

	7 Conclusions

