
Yi-Xuan Tang, Zhi-Lei Ren, He Jiang et al. Journal of computer science and technology: Instruction for authors. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 1–25 November 2019. DOI

An Empirical Comparison between API Tutorials and API Crowd
Documentation

Yi-Xuan Tang1, Zhi-Lei Ren1,∗, He Jiang1,2,3, Xiao-Chen Li1, and Wei-Qiang Kong1

1School of Software, Dalian University of Technology, Dalian 116000, China
2Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116000, China
3School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100000, China

E-mail: tangyixuan@mail.dlut.edu.cn; zren@dlut.edu.cn; jianghe@dlut.edu.cn; li1989@mail.dlut.edu.cn;
wqkong@dlut.edu.cn

Received November **, 2019; revised November **, 2019.

Abstract API documentation is critical for developers to learn APIs. However, it is unclear whether different types

of API documentation have distinct effects on the API learnability for developers. Thus, we conduct an empirical study

to compare the API learnability between official API tutorials and API crowd documentation based on three aspects, i.e.,

the coverage of APIs, the concerns for APIs, and the presentations. Based on the quantitative analyses, we find that: (i)

API crowd documentation can be regarded as a supplement to the official API tutorials in some extent; (ii) the concerns

for frequently used APIs between official API tutorials and API crowd documentation show a huge mismatch, which may

prevent developers from deeply understanding the usages of APIs through only one type of API documentation; (iii) official

API tutorials can help developers seek API information on a long page and API crowd documentation could provide long

codes for a particular programming task. These findings may help developers determine which API documentation could

be selected for learning APIs and find the useful information they need.

Keywords API documentation, empirical study, quantitative analysis

1 Introduction

Application Programming Interfaces (APIs) provide

access to sophisticated functionalities for building and

integrating application software. They allow developers

to use complex functions without having to modify or

understand the underlying implementation details [1].

Thus, software developers tend to reuse APIs in existing

frameworks and libraries to facilitate the developmen-

t process [2, 3]. However, APIs are usually complex

and hard to learn, because they may contain hundred-

s of elements at different levels (packages, types, and

methods) and elaborate dependencies [4]. Thus, vari-

ous types of API documentation provide the behavior

of API elements to assist developers in learning APIs,

such as API specifications, API tutorials, API crowd

documentation, wikis, and blogs [1].

However, it is unclear whether there are any differ-

ences on the API learnability between different types

of API documentation. API learnability usually refers

to how easy an API is to learn [5]. Specifically, we dif-

ferentiate the official API tutorials and the API crowd

documentation as two types of API documentation in

Regular Paper

This work is supported by the National Key Research and Development Program of China under Grants 2018YFB1003900, the
National Natural Science Foundation of China under Grants No. 61722202, 61772107 and 61572097, and the Fundamental Research
Funds for the Central Universities under Grant No. DUT18JC08.

∗Corresponding Author

©2018 Springer Science + Business Media, LLC & Science Press, China

2 J. Comput. Sci. & Technol., November 2019, Vol., No.

this paper. Official API tutorials are usually organized

by API designers, whereas API crowd documentation is

derived from social media, such as Stack Overflow. Al-

though the providers are different for these two types of

API documentation, both of them provide explanatory

descriptions and code snippets to demonstrate how a

certain functionality can be implemented, which is also

known as API usage scenarios [6]. Notably, official API

tutorials usually contain functional descriptions of API

features, which are more authoritative and representa-

tive than other API tutorials [2]. Thus, our goal is to

examine whether there is a difference and to what ex-

tent of the difference on the API learnability between

official API tutorials and API crowd documentation.

To meet our objectives, we conduct an empirical s-

tudy on the Java API documentation and the Android

API documentation. As for Java API documentation,

we collect 1,062 documents for the Java official tuto-

rial from the Oracle website and 462,154 Java crowd

documents based on the 〈java〉 tag from the Stack Ex-

change Data Dump. Simultaneously, in order to consti-

tute Android API documentation, we obtain 181 docu-

ments for the Android official tutorial from the Android

SDK and 393,812 Android crowd documents based on

the tag of 〈android〉. Specifically, we compare these two

types of API documentation from three aspects, includ-

ing the coverage of APIs, the concerns for APIs, and

the presentations. The API coverage could determine

whether developers can refer to official API tutorials or

API crowd documentation to find API information for

the specific APIs. The concerns for APIs could reveal

whether the official API tutorials can be effectively uti-

lized for learning APIs. The presentations of API docu-

mentation could influence the API learnability to some

extent. Accordingly, we propose the following research

questions, which each question corresponds to one of

the aspects:

• RQ1. What is the coverage of APIs in of-

ficial API tutorials and API crowd documen-

tation? We employ a traceability recovering tool to

link code-like terms in official API tutorials and API

crowd documentation to specific APIs, i.e., Java Stan-

dard Edition (SE) APIs version 7∗ and Android API li-

brary version 7.0†. Based on the specific API elements,

we can measure the coverage of Java APIs and Android

APIs, and determine whether there is a difference on

API coverage between official API tutorials and API

crowd documentation.

• RQ2. Are the concerns for APIs consistent

in official API tutorials and API crowd docu-

mentation? We treat the ranking orders or the rank-

ing proportions as an indicator of the concerns for APIs

in official API tutorials and API crowd documentation.

First, we rank the API elements according to their fre-

quencies in the API documentation. Then, we calcu-

late the ranking orders and the ranking proportions for

several frequently used APIs to examine whether these

APIs are regarded as equally important in these two

types of API documentation.

• RQ3. Are there any differences of the pre-

sentation between official API tutorials and API

crowd documentation? And to what extent of

the differences? We first conduct a survey to under-

stand what characteristics of API documentation could

facilitate API learnability. According to the results of

the survey, we then employ the Wilcoxon rank-sum test

with effect sizes to differentiate the presentation of of-

ficial API tutorials and API crowd documentation.

Overall, we discover that the coverage of APIs in

API crowd documentation is much higher than that in

∗https://docs.oracle.com/javase/7/docs/api/
†https://developer.android.google.cn/reference/packages

Yixuan Tang et al.: Empirical Comparison of API Documentation 3

Explanatory	description

Title

Code	snippetAccepted answer	

Tags

Code-like	term

Creation	date
Explanatory	description

Code-like	term

Explanatory	description

Code	snippet	
Code-like	term

(a)

Explanatory	description

Title

Code	snippetAccepted answer	

Tags

Code-like	term

Creation	date
Explanatory	description

Code-like	term

Explanatory	description

Code	snippet	
Code-like	term

(b)

Fig.1. Document examples in official API tutorials and API crowd documentation. (a) Document in the Java tutorial and the Android
tutorial. (b) Document in the java crowd documentation.

official API tutorials. Thus, for most APIs, developer-

s can rely on API crowd documentation to learn how

to use these APIs. We also find that there are signifi-

cant inconsistencies on API concerns for the most fre-

quently used APIs. In other words, API designers and

developers may focus on different APIs. In addition,

official API tutorials contain more explanatory descrip-

tions and hyperlinks regarding an API, which is helpful

for developers to learn APIs thoroughly. API crowd

documentation is practical for accomplishing program-

ming tasks due to the more quantitative and longer

code snippets.

The main contributions of this paper are summa-

rized as follows:

• We provide a systematic and comprehensive em-

pirical comparison between official API tutorials and

API crowd documentation. The procedures can also be

conducted to compare other types of API documenta-

tion.

• We provide evidence for the differences of API

learnability between official API tutorials and API

crowd documentation from three aspects, namely the

different coverage proportions of APIs, the inconsis-

tent concerns for APIs, and the distinct presentations.

These differences may help developers select the suit-

able API documentation to find the desired information

they need.

The rest of the paper is organized as follows. In Sec-

tion 2, we present the background and the related work.

In Section 3 and Section 4, we present the case study

setup and the results of our case study. We list several

lessons learned in Section 5 and discuss the threats to

validity our findings in Section 6. Finally, we conclude

this paper in Section 7.

2 Background and related work

Work related to our study can be divided into two

aspects, namely the work on official API documenta-

tion and the work on crowd documentation. Partic-

ularly, we refer to three levels of APIs in this paper,

4 J. Comput. Sci. & Technol., November 2019, Vol., No.

i.e., API Packages, API Types, and API Methods. API

Methods can be executed to interact with other objects

in the application. An API Type can be a class, an in-

terface, an enumeration, or an annotation, which offers

a list of API Methods of communication among vari-

ous components. API Packages provide a large number

of API Types which are grouped into different pack-

ages according to functionality, such as “java.lang”, “ja-

va.util”, and “java.io”.

2.1 Official API documentation

Official API documentation, such as official API tu-

torials and API specifications, plays an important role

in learning APIs [2]. Official API tutorials are usually

organized by a series of programming topics [7, 8]; the

API specifications usually explain the functionality, pa-

rameters, and possible exceptions for APIs. Since this

study focuses on the official API tutorials, we present

the examples of official API tutorials in Fig. 1(a). From

Fig. 1(a), we can see that the explanatory descriptions

and the code snippets are two important components of

the official API tutorials. The explanatory description-

s explain the considerations on how to use APIs and

the code snippets describe a required sequence of API

calls for implementing a certain functionality. Actual-

ly, official API documentation is created by a few API

designers and consulted by a variety of developers [9].

When facing unfamiliar APIs, developers often refer to

API tutorials to understand their correct usages, such

as which methods to call and which parameters to use

for a method.

In most cases, developers hope to quickly under-

stand how to use an API. However, previous work has

shown several challenges on effectively seeking informa-

tion and using APIs. Robillard et al. [4] observed that

insufficient code snippets are an obstacle for developers

to learn APIs. He also found five important factors that

influence the API learnability, i.e., the documentation

of intent, code snippets, cookbooks for mapping usage

scenarios to API elements, the penetrability of APIs,

and the format and the presentation of the documen-

tation [10]. Scaffidi [11] investigated four challenges in

learning and using APIs, i.e., inadequate documenta-

tion, insufficient orthogonality, inappropriate abstrac-

tions, and incompatible assumptions.

These obstacles and factors motivate researchers

to focus on various tasks to facilitate APIs’ learning

efficiency, such as tutorial API fragments recommen-

dation [7, 12], API documentation enhancement [13],

quality measurement [14], and error detection [15]. For

examples, tedious API tutorials can be divided into sev-

eral API tutorial fragments to help developers quickly

learn unfamiliar APIs [7, 12]; error documentation can

be improved to provide reliable information for devel-

opers [15]. Based on the efforts of these researchers,

official API documentation can be effectively utilized

by developers to some extent.

Similar to the previous work, we also focus on the

analysis of factors that may influence the API learnabil-

ity in the official API documentation. The difference

is that we compare how different API documentation

(official API tutorials and API crowd documentation)

could influence the API learnability. In detail, we con-

duct a quantitative analysis to provide evidence from

three aspects, i.e., the coverage of APIs, the concerns

for APIs, and the presentations. These three aspects

can also be used to compare other types of API docu-

mentation.

2.2 Crowd documentation

Crowd documentation is an online discussed re-

source, which can be derived by developers’ contribu-

tions through social media [16], such as Stack Over-

flow. Stack Overflow, a popular online technical Ques-

Yixuan Tang et al.: Empirical Comparison of API Documentation 5

tion and Answer (Q&A) forum, allows millions of de-

velopers to communicate API-related questions [16, 17].

Thus, abundant API usage information on Stack Over-

flow forms online crowd documentation.

In Stack Overflow, when a developer meets an API

usage question, he/she can check whether there are sim-

ilar questions that have been solved with the best an-

swers. Once not, a new question can be posted on

Stack Overflow. The question is required to be la-

beled with one to maximum of five tags to categorize

it. For example, a Java question with the title of “how

to read/convert an InputStream into a String in ja-

va” is submitted by a developer in November 2008, as

shown in Fig. 1(b). The curating activities (such as

voting) and incentives (such as reputation scores) on

Stack Overflow can motivate developers to answer this

question. In such a way, submitters can get very fast

responses in median of 11 minutes [18]. After verifying

the responses, the developer can mark one of them as

the best answer to the question. The best answer is p-

resented with a green checkmark on the left side of the

answer. In order to guarantee the quality of the crowd

documentation, we combine the questions and the cor-

responding best answers into question-answer pairs and

select those pairs that contain at least one API element

to compose the API crowd documentation.

Previous work on crowd documentation analysis

focuses on various aspects, including the coverage of

APIs [16], the influence of several code properties on

the number of crowd documentation [19], the duplicate

questions [20], and the trends and topics in Stack Over-

flow [21, 22, 23]. Parnin et al. [16] found that the crowds

can generate abundant contents with code snippets and

achieve the high API coverage of three popular APIs,

namely Android APIs, GWT APIs, and Java APIs. For

example, the crowd documentation has covered 87% of

the Android classes based on the Exchange Data Dump

until December 2011. Beyer et al. [19] revealed that

the code properties of code metrics RFC (Response For

a Class) and WMC (Weighted Method Count) impact

the number of crowd documents for Android APIs. Im-

proving these properties can also improve the usabili-

ty of APIs and reduce the amount of crowd documen-

tation [19]. Zhang et al. [20] proposed an automated

approach, namely DupPredictor, to identify duplicate

questions on Stack Overflow. The DupPredictor can-

not only save resources for developers to answer other

questions, but also accelerate the process for solving

questions. Yang et al. [21] leveraged a topic model,

LDA (Latent Dirichlet Allocation), to cluster differen-

t security-related questions on Stack Overflow. They

found that the most popular topic was web security.

Besides, Rosen et al. [22] and Barua et al. [23] also

employed a LDA topic model to summarize the mobile-

related questions and discovered main topics in Stack

Overflow, respectively.

Different from the previous work, we focus on how

API crowd documentation could help developers learn

APIs. Besides the API coverage analysis, we also detec-

t which APIs are popular for developers and examine

how the presentation of API crowd documents could

impact the API learnability.

3 Case Study Setup

In this section, we first construct the dataset of

official API tutorials and API crowd documentation.

Then, we describe the API traceability tool to identify

API elements. Last, we introduce several characteris-

tics to analyze the presentation of these two types of

API documentation.

3.1 Data Collection

We collect relevant data from official API tutori-

als and Stack Overflow for analysis. Specifically, we

6 J. Comput. Sci. & Technol., November 2019, Vol., No.

analyze the API documentation for Java and Android

platforms. We choose Java and Android API docu-

mentation for empirical studies, since the Java APIs

and Android APIs are popular, diverse in nature, and

attract a large scale of users.

We collect the crowd documentation from the S-

tack Exchange Data Dump published in June 2017‡.

This dump includes the publicly available information

of questions and answers, as well as the user informa-

tion. We download the posts.xml file in this dump be-

cause all the needed information of questions and the

corresponding answers are included in this file, such

as the tags of questions, the explanatory description,

and the code snippets. In order to obtain the posts

of Java APIs and Android APIs, we extract the Java-

related questions and Android-related questions which

are tagged with 〈java〉 and 〈android〉, respectively. Fur-

thermore, we exclude the 〈android〉 tag when collecting

Java-related questions. Querying the posts.xml file, we

obtain 919,608 Java-related questions with 1,429,555

answers from January 2012 to June 2017. Simulta-

neously, we obtain 900,789 Android-related questions

with 1,184,903 answers during the same period. Nev-

ertheless, the quality of these questions and answers in

Stack Overflow varies drastically. For example, some

answers do not match the questions and even contain

rude words [24]. Thus, we follow the previous work

[8] to combine the questions with their best answers to

generate a series of question-answer pairs. Only these

question-answer pairs are remained as the candidate

crowd documents. Then, if the candidate crowd docu-

ment contains at least one API element, we treat it as

an API crowd document. In total, we obtain 462,154

Java crowd documents and 393,812 Android documents

from the Stack Overflow.

In addition, we download the Java API tutorial for

Java SE APIs version 7 from the Oracle website§, and

the Android API tutorial for Android API library ver-

sion 7.0 from the Android SDK to construct the official

tutorial dataset. The examples of contents for the Ja-

va tutorial and the Android tutorial are presented in

Fig. 1. We can see that the official API tutorials are

mainly composed of explanatory descriptions and code

snippets, which can provide specific usage scenarios and

examples to explain how to use the APIs. The code-like

term in the explanatory descriptions have higher prob-

abilities related to an API element, such as “runOnU-

iThread()”, “InputStream”, “list”, and “Iterator”. In

total, we collect 1,062 tutorial documents for Java APIs

and 181 tutorial documents for Android APIs for the

consequent analysis.

3.2 API traceability

To perform the analysis of API coverage in official

API tutorials and API crowd documentation, we first

need to link the code-like terms in these two types of

API documentation to specific code elements. For ex-

ample, the java tutorial mentions at the beginning of

the simple generics section: “· · · interface List and It-

erator in package java.util”, as shown in Fig. 1. We

can see that there exist two code-like terms “List” and

“Iterator”, which refer to APIs of “java.util.List” and

“java.util.Iterator”, respectively. Despite that a code-

like term could refer to different hierarchies when ignor-

ing the context of the term, traceability task for APIs

should exactly recover a code-like term to its correct

API element.

We follow the previous work [25] to consider API el-

ements as public/protected API Packages, API Types,

and API Methods. In order to recover traceability links

‡https://archive.org/details/stackexchange.
§https://www.oracle.com/technetwork/java/javase/downloads/

Yixuan Tang et al.: Empirical Comparison of API Documentation 7

between an API element and its learning resources (of-

ficial API tutorials and API crowd documentation), we

employ an API traceability tool called RecoDoc [26].

RecoDoc generates a linked model by a pipeline of fil-

tering heuristics and considers external references, pa-

rameters, and context hierarchies to avoid ambiguities

when recovering traceability links. Thus, RecoDoc can

automatically find code-like terms in explanatory de-

scriptions and code snippets, and then link each code-

like term to a fine-grained API.

The traceability links can support various release

versions and different levels of APIs. In this study, we

select Java Standard Edition (SE) APIs version 7 and

Android API library version 7.0 to perform the trace-

ability links. As for Java APIs, we extract all levels of

APIs from Java SE 7 API Specification, i.e., API Pack-

ages, API Types, and API Methods. In total, we collect

209 API Packages, 3,949 API Types, and 30,497 API

Methods for Java APIs. As for Android APIs, we follow

the approach in the literature [19] to collect Android

API Packages which start with “android” and the cor-

responding sub-types and sub-methods from Android

specification. Therefore, we obtain 170 API Packages,

660 API Types, and 8,974 API Methods for Android

APIs. These selected APIs are used to link the corre-

sponding documents in official API tutorials and API

crowd documentation.

3.3 Characteristics extraction

To examine the difference of API learnability based

on the presentation between official API tutorials and

API crowd documentation, we design and extract 12

characteristics from these two types of API documen-

tation, which can be further divided into three groups,

i.e., the explanatory description group, the code snip-

pet group, and the synthesis group. The explanatory

description group measures the structural characteris-

tics of sentences. The code snippet group tries to de-

tect properties in code. The synthesis group calculates

the intersections between explanatory descriptions and

code snippets.

Before extracting these characteristics, we first need

to split the documentation into two parts, i.e., the ex-

planatory descriptions and the code snippets. In of-

ficial API tutorials, code snippets are embedded in

the HTML tags 〈div class=“codeblock”〉...〈/div〉 or 〈pre

class=“codeblock”〉...〈/pre〉. In API crowd documenta-

tion, code snippets can be extracted from the HTM-

L tags 〈pre〉〈code〉...〈/code〉〈/pre〉. The remaining con-

tents are regarded as explanatory descriptions. Then,

we can extract characteristics from the explanatory de-

scriptions and the code snippets, respectively. Further-

more, we clarify the description and the rationality for

each characteristic in the following parts.

3.3.1 Explanatory description group

We extract six characteristics from the explanato-

ry descriptions of official API tutorials and API crowd

documentation. These characteristics are also used to

analyze the structures of text information in previous

work [27, 28]. We detail these characteristics as follows:

Number of sentences. This characteristic calculates

the number of sentences of the explanatory description-

s. Sentences are usually used to provide description

knowledge related to an API, such as the usage scenar-

ios or the considerations on how to use the API. We

employ an open tool named LingPipe¶ to identify each

sentence in the API documentation. However, there are

a large number of tables in official API tutorials, which

can seriously decrease the effectiveness of the LingPipe.

For example, there are more than four hundred tables

in the Java tutorial. Thus, we extract the contents from

¶http://alias-i.com/lingpipe

8 J. Comput. Sci. & Technol., November 2019, Vol., No.

these tables and treat each line of the table as a sen-

tence. Simultaneously, we still leverage the LingPipe

tool to detect sentence boundaries if there are symbols

of sentences in tables. In such a way, the explanatory

descriptions can be divided into a series of sentences.

Length. This characteristic measures the length of

the explanatory descriptions. The length of API doc-

umentation has distinct effects on API learning. For

example, developers prefer longer explanatory descrip-

tions because it is easy to locate the API information

on a long page [10]. We leverage the natural language

processing steps to get words from the explanatory de-

scriptions, such as tokenization, stemming, and stop

word removal [7]. Then, we accumulate the number of

words for each explanatory description.

Entropy. This characteristic measures the average

information in the explanatory descriptions, which is

widely used in the information theory [29]. If the en-

tropy of a document is lower, developers would not get

abundant API information, which may have a negative

effect on learning APIs. The entropy of the explanatory

descriptions can be calculated as follow:

Ent(D) = −
N−1∑
i=0

P (Xi)log2P (Xi) (1)

where D represents a document, and Xi stands for a

unique word in D. P (Xi) is the probability of the dis-

tinct word based on the normalized frequency of this

word. N indicates the number of distinct words.

Readability. This characteristic estimates the un-

derstandability of the explanatory descriptions, which

are widely used to analyze the writing style of docu-

ments [28]. In this study, we use the Automated Read-

ability Index (ARI) [30] to analyze to what extent of

the difficulty for a reader to understand the documents.

The value of the readability is calculated as follow:

ARI(D) = 4.71×(
Nchar

Nword
)+0.5×(

Nword

Nsen
)−21.43 (2)

where D stands for a document, Nchar is the number of

characters, Nword is the number of words, and Nsen is

the number of sentences.

Number of hyperlinks. This characteristic calcu-

lates the number of hyperlinks in the explanatory de-

scriptions. Hyperlinks could help readers extend their

knowledge and understand APIs. In official API tu-

torials, we observe that there are many navigational

hyperlinks within a document. These hyperlinks are

usually used to guide readers to find the information

they are interested in, rather than augmenting the de-

scription of API usage scenarios. Thus, we exclude

these navigational hyperlinks by matching the corre-

sponding HTML tags and calculate the number of re-

maining hyperlinks for each document in official API

tutorials. In API crowd documentation, we include all

the hyperlinks since these hyperlinks can help explain

an API and increase the possibility of addressing the

API-related questions.

Number of code-like terms. This characteristic

counts the number of code-like terms in the explana-

tory descriptions. A code-like term is a series of char-

acters that are associated with a specific API element.

These code-like terms are usually used to interpret the

detailed usability of an API. We extract code-like terms

by matching the HTML tags 〈code〉...〈/code〉. Addition-

ally, due to the informal nature of Stack Overflow, we

also use regular expressions to identify code-like terms,

including the functions with parentheses and camel cas-

es. In such a way, we can thoroughly identify code-like

terms in official API tutorials and API crowd documen-

tation.

Yixuan Tang et al.: Empirical Comparison of API Documentation 9

3.3.2 Code snippet group

We extract five characteristics from code snippets

of official API tutorials and API crowd documentation.

These characteristics are also partially derived and in-

spired by previous work [19, 31]. We detail these char-

acteristics as follows:

Number of code snippets. This characteristic de-

tects the number of code snippets for API documen-

tation. Code snippets are essential elements of API

learning, which can help developers understand the pur-

poses of APIs, API usage protocols, and API usage

contexts [32, 33]. We accumulate the number of code

snippets by matching HTML tags.

Lines of annotations. This characteristic measures

the lines of annotations in code snippets. Annotations

are usually used to describe the parameters of functions

and interpret the function of the code. They can help

readers quickly understand the code snippets [34]. We

treat each line in the code snippet as a sentence, and i-

dentify each annotation by checking whether a sentence

starts with the annotation symbols “/*”, “*”, or “*/”

, or contains the symbol “//” without a semicolon be-

hind.

Lines of statements. This characteristic measures

the size of code snippets, which usually refers to non-

commentary lines in code. Longer code snippets tend

to provide more interactions among APIs and be more

complete for a specific programming task. In order to

calculate lines of statements, we first perform the pro-

cess of annotation identification to filter out annota-

tions in each code snippet, because these annotations

cannot be treated as statements. Then, we follow the

study by Jiang et al. [12] to split the code snippets into

statements. We split the code snippet at the places of

semicolons into several code segments and split the code

segments into separate statements at the place of the

parentheses. Only the statements without pure whites-

pace and comments are included in the calculation of

lines of statements for code snippets.

Lines of “new” statements. This characteristic cal-

culates the number of instantiated objects in code s-

nippets, which is usually used to interpret the usage of

the constructed function. The more the number of lines

of “new” statements is, the more numbers of classes or

instances that the code snippet tends to introduce. We

accumulate the value of this characteristic if a “new”

statement appears in a code snippet.

Cyclomatic complexity. This characteristic mea-

sures the furcated syntax structures and conditional

loops in code snippets. The higher the value of cyclo-

matic complexity, the more difficult it is to understand

the code. We follow the method in the literature [35]

to calculate the cyclomatic complexity of code snippet-

s based on the control flow graph, which is shown as

follow:

C(D) =

∑n
i Ei −Ni + Pi

n
(3)

where D stands for a document and n represents the

number of code snippets. Ni is the number of nodes,

Ei is the number of edges, and Pi is the number of

connected components in the graph.

3.3.3 Synthesis group

Intersection. This characteristic calculates the num-

ber of APIs which appear in both explanatory descrip-

tions and code snippets. The intersections between ex-

planatory descriptions and code snippets could impact

the understanding of an API [10]. Since code-like terms

in explanatory descriptions are linked to specific API

elements during the API traceability process, we can

determine whether an API appears in both explanato-

ry descriptions and code snippets.

10 J. Comput. Sci. & Technol., November 2019, Vol., No.

4 Case Study Results

In this section, we answer three research questions

proposed in this paper. Section 4.1 analyzes the cov-

erage proportions of APIs in official API tutorials and

API crowd documentation (RQ1). Section 4.2 discusses

the consistency of the concerns for frequently used APIs

(RQ2). Section 4.3 shows the differences and the degree

of the differences for the presentation between official

API tutorials and API crowd documentation (RQ3).

4.1 RQ1. What is the coverage of APIs in of-

ficial API tutorials and API crowd docu-

mentation?

Motivation. Official API tutorials and API crowd

documentation can help developers finding answers for

API-related questions [36]. When one API is covered

by either official API tutorials or API crowd documen-

tation, developers can refer to the API documentation

to learn how to use the API. Once not, developers may

spend much time on API documentation but find noth-

ing. To examine whether we can rely on API docu-

mentation to learn APIs and which APIs are covered

by official API tutorials and API crowd documentation,

we set up this question.

Approach. We recover the traceability links of

API elements in two learning resources and calculate

the coverage proportions of different levels of APIs to

determine the API coverage in these two types of API

documentation.

First, we leverage the API traceability tool RecDoc

to link code-like terms to specific API elements. Specif-

ically, we recover the traceability links to Java SE APIs

version 7 and Android API library version 7.0 on dif-

ferent levels, i.e. API Packages, API Types, and API

Methods. Since the frequencies of APIs are analyzed

in our study, we only identify whether an API appears

in the document rather than whether the document is

related to an API. Besides, if a fine-grained level of API

is found, we also accumulate the coarse-grained APIs it

belongs to. For example, if an API Method “toArray()”

is discovered in learning resources, we accumulate the

frequencies not only of this API Method, but also of

the corresponding API Type ‘java.util.ArrayList” and

the API Package “java.util”.

Second, we label an API as “included” if the fre-

quency of this API is non-zero. Otherwise, the API is

labeled as “excluded”, which represents that we cannot

find the information for that API. That is to say, this

API is excluded in either official API tutorials or API

crowd documentation. Then, the coverage of different

levels of APIs can be defined as the proportion of APIs

that are labeled as “included” compared with the size

of different levels of APIs. Thus, we can calculate and

compare the coverage proportions of different levels of

APIs in official API tutorials and API crowd documen-

tation.

Table 1. Coverage of Different Levels of Java APIs in Official

API Tutorials and API Crowd Documentation

API Levels # All # APIs in Official # APIs in Crowd

APIs Tutorials (%) Documents (%)

API Packages 209 113 (54.07%) 192 (91.87%)

API Types 3,949 1,261 (31.93%) 2,410 (61.03%)

API Methods 30,497 3,789 (12.42%) 8,266 (27.10%)

Table 2. Coverage of Different Levels of Android APIs in

Official API Tutorials and API Crowd Documentation

API Levels # All # APIs in Official # APIs in Crowd

APIs Tutorials (%) Documents (%)

API Packages 170 68 (40.00%) 163 (95.88%)

API Types 3,456 660 (19.10%) 2,629 (76.07%)

API Methods 29,017 927 (3.19%) 8,974 (30.92%)

Results. Table 1 and Table 2 show the API cov-

erage proportions of Java APIs and Android APIs at

different levels in official API tutorials and API crowd

documentation, respectively. We can observe that the

API coverage proportions in the API crowd documen-

tation is much higher than that in the official API tu-

Yixuan Tang et al.: Empirical Comparison of API Documentation 11

Table 3. Proportions of APIs covered by either Official API Tutorials or API Crowd Documentation

Language API Levels # APIs in both Two # APIs only in API # APIs only in Official # APIs in None

API Documentation(%) Crowd Documentation(%) API Tutorials(%) (%)

API Packages 112 (53.59%) 80 (38.28%) 1 (0.48%) 16 (7.65%)

Java API Types 1,114 (28.21%) 1,296 (32.82%) 147 (3.72%) 1,392 (35.25%)

API Methods 2,582 (8.47%) 5,684 (18.64%) 1,207 (3.96%) 21,024 (68.93%)

API Packages 68 (40.00%) 95 (55.88%) 0 (0.00%) 7 (4.12%)

Android API Types 642 (18.58%) 1,987 (57.49%) 18 (0.52%) 809 (23.41%)

API Methods 797 (2.75%) 8,177 (28.18%) 130 (0.45%) 19,913 (68.62%)

torials. For example, the coverage proportion of Java

API Types is 61.03% in the Java API crowd documen-

tation, which is nearly twice as large as that in the Java

official tutorial. Similarly, in the Android API crowd

documentation, the coverage proportion of API Types

reaches to 76.07%, while the proportion is only 19.10%

in the Android official tutorial. The reason could be

that developers can find more intricacies of APIs when

calling the APIs in practice and know which APIs have

crashed, rather than API designers. Therefore, devel-

opers may post more real API usage examples than API

designers.

As for different levels of APIs, we can observe that

the coarser the level of APIs, the higher the API cover-

age. For example, the coverage of Java API Packages is

54.07% in the Java official tutorial, whereas the cover-

age of Java API Methods is only 12.42%. However, de-

velopers prefer API documentation that does not focus

on the complete information of API Methods, because i-

nappropriate method-level documentation can decrease

developer productivity to some extent [10].

Table 3 shows the detailed API coverage propor-

tions in either official API tutorials or API crowd doc-

umentation. We can see that the proportion of APIs

which are covered by both official API tutorials and

API crowd documentation decreases as the level of APIs

is refined. However, the proportion of APIs that are

not covered by any of the API documentation increas-

es, especially for the Android APIs. We can also find

that the proportions of APIs that are covered by only

API crowd documentation are much higher than APIs

that are covered by only official API tutorials. For ex-

ample, the proportion of API Packages that are cov-

ered by only Java API crowd documentation is 38.28%,

while the coverage proportion is 0.48% for the Java offi-

cial API tutorial. Notably, only one Java API Package

“javax.sound.midi.spi” is appeared in the Java tutorial

but not discussed in the Java API crowd documenta-

tion in our dataset. Besides, no Android API Packages

that are covered by only official API tutorials.

Summary. Developers can refer to API crowd doc-

umentation to learn how to use APIs due to the high

API coverage. Since most APIs that are covered by

official API tutorials are also covered by API crowd

documentation, API crowd documentation has turned

into a worthy extension to help developers learn APIs.

4.2 RQ2. Are the concerns for APIs consis-
tent in official API tutorials and API crowd
documentation?

Motivation. Official API tutorials are usually or-

ganized by a series of programming topics [7]. When an

API is critical in most programming tasks or the usage

scenarios of the API need more explanations, API de-

signers would introduce the API in detail. In most cas-

es, the frequency of this API would be higher than other

APIs in official API tutorials. However, APIs discussed

in API crowd documentation are the real concerns for

developers on accomplishing development tasks [16]. If

12 J. Comput. Sci. & Technol., November 2019, Vol., No.

 !!"#"$%&'()&*+*,-"$%

 !"!#$%&'()

 !"!$*!()

 !"!$+,'*

 !"!$!&,

 !"!$%-*

 !"!$'.

 !"!#$%.+(/$%!01*2/

 !"!#$%.+(/$0'/'

 !"!$,2#,

 !"!$('.$3'*2

 !"!#$%&'()$,2#,

 !"!$(2,

 !"!#$(!0'()

 !"!$!&,$2"2(,

 !"!#$%-*$4.&%2,

'()&#-,./&/,#+012*$*",2

 !"!$*!()

 !"!$+,'*

 !"!$'.

 !"!$!&,

 !"!#$%&'()

 !"!$%-*

 !"!$(2,

 !"!#$%&'()$,2#,

 !"!$+,'*$5.(5+442(,

 !"!$,2#,

 !"!#$%&'()$,2#,$6,0*

 !"!#$(!0'()

 !"!$*!()$423*25,

 !"!$+,'*$42)2#

 !"!#$#0*$%.!1

 (a)

 !!"#"$%&'()&*+*,-"$%

 !"#$%"

 !"#$%"&'$!()!(

 !"#$%"& **

 !"#$%"&+%),

 !"#$%"&,%"-)(

 !"#$%"&*#$+%")#

 !"#$%"&$.

 !"#$%"&/ #", #)

 !"#$%"&!)(

 !"#$%"&0)"%

 !"#$%"&123)($$(/

 !"#$%"&!4'

 !"#$%"&-# */%'.

 !"#$%"&.3**$#(&+5

 !"#$%"&*#)4)#)!')

'()&#-,./&/,#+012*$*",2

 !"#$%"&,%"-)(

 !"#$%"

 !"#$%"&'$!()!(

 !"#$%"& **

 !"#$%"&+%),

 !"#$%"&$.

 !"#$%"&-# */%'.

 !"#$%"&.3**$#(&+6&,%"-)(

 !"#$%"&" (1 .)

 !"#$%"&!)(

 !"#$%"&.3**$#(&+5& **

 !"#$%"&0)"%

 !"#$%"&" (1 .)&.72%()

 !"#$%"&,)18%(

 !"#$%"&.3**$#(&+5&+%),

!"#$%&# '()*(+,
(b)

Fig.2. Top 15 API Packages in official API tutorials and API crowd documentation. (a) Java API Packages that are frequently used
by API designers vs. developers. (b) Android API Packages that are frequently used by API designers vs. developers.

 !!"#"$%&'()&*+*,-"$%

 !"!#$!%&#'()*%&

 !"!#$!%&#'+,(-.

 !"!#$!%&#/0 -1(

 !"!#2(*$#3*,(

 !"!#$!%$!,,

 !"!#!5(#3*,(

 !"!#2(*$#46$$-1(*6%

 !"!#$!%%(-&-)

 !"!#2(*$#361!$-

 !"!#*6#8*$-

 !"!#,9$#:-,2$('-(

 !"!#%*6#;*$-#<!(=

 !"!>#,5*%&#?46.@6%-%(

 !"!>#%!.*%.%(->(

 !"!>#,5*%&#?<!%-$

'()&#-,./&/,#+012*$*",2

 !"!#$!%&#'()*%&

 !"!#$!%&#A66$-!%

 !"!#$!%&#/0 -1(

 !"!#2(*$#'1!%%-)

 !"!#$!%&#B620$-

 !"!#*6#8*$-

 !"!#$!%$%&

 !"!#$!%&#<!1C!&-

 !"!#2(*$#D))!+3*,(

 !"!>#,5*%&#?8)!.-

 !"!#*6#A2;;-)-E:-!E-)

 !"!#$!%&#A+(-

 !"!#$!%%(-&-)

 !"!>#,5*%&#?<!%-$

 !"!#!5(#3*,(

!"#$ %&'& (a)

!"#$%&# '()*

 !!"#"$%&'()&*+*,-"$%

 !"#$%"&'$!()!(&*!()!(

 !"#$%"& ++&,'(%-%(.

 !"#$%"&-%)/&0%)/

 !"#$%"&'$!()!(&1$!()2(

 !"#$%"&!)(&3#%

 !"#$%"& ++&4)#-%')

 !"#$%"&+#$-%")#&1$!('(51$!(# '(

 !"#$%"&+#$-%")#&1$!('(5

 !"#$%"&$5&67!"8)

 !"#$%"&+#$-%")#&1 8)!" #1$!(# '(

 !"#$%"&'$!()!(&1$!()!(9#$-%")#

 !"#$%"&: #"/ #)&4)!5$#

 !"#$%"&+#);)#)!')&9#);)#)!')

 !"#$%"& ++&<# =>)!(

 !"#$%"&/)?@%(&A)?0%)/

'()&#-,./&/,#+012*$*",2

 !"#$%"&B&5(#%!=

 !"#$%"&'$!()!(&*!()!(

 !"#$%"&-%)/&0%)/

 !"#$%"&/%"=)(&C)2(0%)/

 !"#$%"& ++&,'(%-%(.

 !"#$%"&/%"=)(&67(($!

 !"#$%"&/%"=)(&D%5(0%)/

 !"#$%"&'$!()!(&1$!()2(

 !"#$%"&/%"=)(&*> =)0%)/

 !"#$%"&$5&67!"8)

 !"#$%"&/%"=)(&E"%(C)2(

 !"#$%"&=# +:%'5&6%(> +

 !"#$%"&-%)/&D .$7(*!;8 ()#

 !"#$%"&" (? 5)&17#5$#

 !"#$%"&!)(&3#%

 (b)

Fig.3. Top 15 API Types in official API tutorials and API crowd documentation. (a) Java API Types that are frequently used by API
designers vs. developers. (b) Android API Types that are frequently used by API designers vs. developers.

the concerns of an API show discrepancies between of-

ficial API tutorials and API crowd documentation, de-

velopers may not deeply understand how to use the API

though only one API documentation, which may seri-

ously decrease the API learning efficiency. To examine

what APIs are critical to developers and what APIs are

frequently discussed by API designers, we set up this

question.

Approach. We select the top 15 frequently used

APIs and the top 10 APIs in large sizes to examine

whether there is a mismatch on the concerns for APIs

between API designers and developers. Then, we em-

ploy the Spearman’s rank correlation [37] to evaluate

the extent of the mismatch.

First, we rank the frequencies of APIs that appeared

in official API tutorials and API crowd documentation,

Yixuan Tang et al.: Empirical Comparison of API Documentation 13

Table 4. Ranking Proportion for API Packages

Language API Official API API crowd Absolute difference

Packages tutorials (%) documentation (%) (%)

java org.omg.CORBA 65.38% 12.30% 53.08%

javax.swing 0.96% 4.28% 3.32%

java.awt 3.86% 9.09% 5.23%

javax.swing.text 10.58% 25.67% 15.09%

java.lang 1.92% 0.53% 1.39%

java.util 2.88% 1.07% 1.81%

java.security 19.23% 41.18% 21.95%

java.io 5.77% 1.60% 4.17%

javax.print.attribute.standard 100.00% 39.57% 60.43%

javax.management 35.58% 42.25% 6.67%

android android.provider 9.68% 15.95% 6.27%

android.widget 8.06% 0.61% 7.45%

android.media 16.13% 7.36% 8.77%

android.view 6.45% 3.07% 3.38%

android.support.v17.leanback.widget NAa 23.93% -

android.app 4.84% 2.45% 2.39%

android.icu.text 91.94% 14.11% 77.83%

android.graphics 20.97% 4.29% 16.68%

android.os 11.29% 3.68% 7.61%

android.support.v7.widget NAa 4.91% -

Note: NAa represents no information for the APIs.

and select the top 15 APIs by descending order to check

the consistency of APIs. Second, we calculate the rank-

ing proportion for each API. Notably, APIs are ranked

in the same order if they have the same frequencies.

As for the APIs that are not used in either official API

tutorials or API crowd documentation, we do not cal-

culate the ranking proportions of them. Third, we cal-

culate the absolute difference of ranking proportions for

the API. For example, if the ranking proportion of an

API “org.omg.CORBA” is 65.38% in the Java tutorial

and is 16.04% in the Java crowd documentation, then

the absolute difference of ranking proportions of this

API is 49.34% (|65.38%− 16.04%|). In such a way, we

can analyze whether there is a mismatch on the con-

cerns for a specific API. Finally, we calculate the S-

pearman’s rank correlation to show the extent of the

mismatch.

Results. The APIs that are frequently used by

API designers and developers are shown in Fig. 2 and

Fig. 3. We only list the top 15 API Packages and

API Types due to space restrictions. We believe that

these top APIs can provide evidence for the mismatch

on the API concern for API designers and developers.

In Fig. 2(a), APIs in the left column are ranked decreas-

ingly based on the frequencies in official API tutorials,

while APIs in the right column are ranked decreasingly

based on the frequencies in API crowd documentation.

Lines across columns connect the same APIs that are

frequently used by both API designers and developers.

We can observe that only 67% Java API Packages and

60% Android API Packages in the top 15 perform rela-

tively consistent between official API tutorials and API

crowd documentation in Fig. 2. As for those mismatch

APIs, the most notable ones are “javax.sound.midi”,

“javax.sql.rowset”, and “android.nfc”, which are fre-

quently appeared in official API tutorials but rarely

appeared in API crowd documentation. However,

APIs “javax.swing.text.html”, “javax.xml.soap”, “an-

14 J. Comput. Sci. & Technol., November 2019, Vol., No.

Table 5. Ranking Proportion for APIs Types

Language API Official API API crowd Absolute difference

Packages tutorials (%) documentation (%) (%)

java java.awt.Component 0.25% 2.16% 1.91%

java.sql.ResultSet 1.08% 1.36% 0.28%

java.sql.DatabaseMetaData 46.76% 21.78% 24.98%

javax.swing.JTable 3.14% 2.54% 0.60%

javax.swing.JComponent 1.27% 6.11% 4.84%

javax.swing.plaf.synth.SynthPainter 56.18% NAa -

javax.swing.JTree 11.18% 13.55% 2.37%

javax.sql.rowset.BaseRowSet 76.08% NAa -

javax.swing.plaf.basic.BasicTreeUI NAa 66.98% -

javax.sql.RowSet 2.35% 45.91% 43.56%

android android.view.View 0.57% 0.13% 0.44%

android.widget.TextView 8.52% 0.17% 8.35%

android.app.Activity 0.38% 0.21% 0.17%

android.opengl.GLES20 100% 38.61% 61.39%

android.opengl.GLES30 100% 55.63% 44.37%

android.app.admin.DevicePolicyManager 11.55% 16.86% 5.31%

android.support.v7.widget. NAa 15.61% -

RecyclerView.LayoutManager

android.view.ViewGroup 5.68% 1.79% 3.89%

android.content.Intent 0.19% 0.08% 0.11%

android.opengl.GLES10 83.71% 84.22% 0.51%

Note: NAa represents no information for the APIs.

droid.database”, and “android.support.v7.widget” are

frequently used by developers rather than API design-

ers. In Fig. 3, we can observe that only 40% Java API

Types and 40% Android API Types in the top 15 show

relatively consistent for developers and API designers.

We present the ranking proportions for 10 API

Packages and 10 API Types in Table 4 and Table 5, re-

spectively. These APIs are ranked in descending order

according to their sizes. Since the ranking proportions

are calculated based on the ranked frequencies of APIs,

the smaller ranking proportions indicate that these

APIs are more frequently used by API designers or de-

velopers. Also, the “NA” represents no information re-

lated to an API in our dataset. Thus, we cannot calcu-

late the absolute difference for that API between official

API tutorials and API crowd documentation. If the ab-

solute difference exceeds 50%, we think there is a signifi-

cant difference on the usage of that API between official

API tutorials and API crowd documentation. We show

them in the bold fonts in Table 4 and Table 5. From

the tables, we can observe that most APIs have small

ranking proportions in both official API tutorials and

API crowd documentation, whereas several APIs show

huge absolute differences between API designers and

developers, such as “javax.print.attribute.standard”,

“android.icu.text”, “android.support.v7.widget”, and

“android.opengl.GLES20”. We find that these

APIs are rarely explained or used by API design-

ers but frequently discussed by developers. In

contrast, several APIs which are frequently used

by API designers are rarely used by developer-

s, such as “javax.swing.plaf.synth.SynthPainter” and

“javax.sql.rowset.BaseRowSet”. Although we only list

10 API Packages and 10 API Types, we can still observe

the mismatch on the concern for the APIs between API

designers and developers.

Yixuan Tang et al.: Empirical Comparison of API Documentation 15

Besides, the Spearman correlations of API Packages

between official API tutorials and API crowd documen-

tation are 0.631 and 0.663, which indicates a strong

correlation between the coarse-grained APIs. However,

it is far from being ideal for Java API Types and An-

droid API Types since the Spearman correlations are

0.425 and 0.109, respectively. In the Method level, the

Spearman correlations are 0.016 and 0.070, which show

a huge mismatch. The observation indicates that the

APIs provided in official API tutorials might not focus

on the APIs that developers need. Therefore, devel-

opers may not deeply understand the usages of APIs

when merely relying on official API tutorials for learn-

ing APIs, which may also decrease the API learnability.

Summary. APIs frequently used by API design-

ers and developers are relatively inconsistent. API de-

signers and developers show different concerns for most

APIs, especially for the fine-grained APIs. Hence, it

would hinder developers from learning APIs merely

though one type of API documentation if there is not

desirable API information as developers’ need.

4.3 RQ3. Are there any differences of the p-
resentation between official API tutorials
and API crowd documentation? And to
what extent of the differences?

Motivation. Official API tutorials are usually cre-

ated by API designers which are organized by a series

of programming topics, whereas API crowd documen-

tation is derived by crowd contributions through social

media [7, 8]. Different providers and design goals may

make the presentations of these two types of API docu-

mentation behave differently. Recently, a combination

of surveys and in-person interviews shows that the p-

resentation of API documentation may indeed impact

the API learnability for developers [10], such as the

number of code snippets, the length, and the number of

hyperlinks. For example, hyperlinks can benefit experi-

enced developers, because they would augment the API

information to help developers understand better [10].

In addition, longer pages can help developers locate the

useful API information better than a large number of

shorter related pages [10]. Simultaneously, code snip-

pets can provide abundant usage information for APIs,

which can facilitate developer productivity [38]. Thus,

developers can quickly use these APIs to accomplish

development tasks. To investigate whether there are

significant differences on the API learnability between

official API tutorials and API crowd documentation,

we set up this question.

Approach. We conduct a survey to better under-

stand what characteristics the developers prefer in API

documentation. Then we analyze the differences and

to what extent of the differences of these characteristics

by the Wilcoxon rank-sum test [39] and the Spearman’s

rank correlation.

First, in order to understand what can help develop-

ers learn APIs in API documentation, we design both

close-ended and open-ended survey questions. Based

on the guidelines in the literature [40], we limit answer

types to numeric and long free-form text. In particular,

we first inquire about the programming experiences of

developers, and then design five close-ended questions

and one open-ended question in Fig. 4. These ques-

tions gather answers for characteristics of the presenta-

tion that we defined in Section 3.3. For the close-ended

questions, we provide several options (i.e., more and

fewer), plus an additional option (i.e., I prefer not to

answer). The additional option is provided in survey re-

spondents that have no idea on the question. Following

the study by Zou et al. [41], we send survey invitations

to both industrial professionals and OSS active devel-

opers to get enough respondents. On the one hand,

we contact industrial professionals working in different

companies, including Microsoft, Huawei, Alibaba, and

16 J. Comput. Sci. & Technol., November 2019, Vol., No.

A survey on the presentation of the API documentation

Q1. How many years have you been programming?

 Answer to Q1: ________________________

Q2*. How many textual details do you prefer in API documentation to explain APIs?

A. Fewer B. Moderate C. More

Q3*. How many hyperlinks do you prefer in API documentation?

A. Fewer B. Moderate C. More

Q4*. How many code snippets and how long of them do you prefer in API documentation?

A. I prefer longer code and more code snippets.

B. I prefer longer code but fewer code snippets.

C. I prefer shorter code but more code snippets.

D. I prefer shorter code and fewer code snippets.

E. Sorry, I prefer not to answer.

Q5*. How many annotations do you prefer in code snippets?

A. Fewer B. Moderate C. More

Q6*. How important of the correlation do you think between textual details and code snippets is?

A. Very unimportant B. Unimportant C. Neutral D. Important E. Very Important

Q7. According to your experience, what other characteristics do you prefer in API documentation

to help understand an API?

Answer to Q7: ________________________

 *: exclusive choice

Fig.4. The questionnaire presented to developers.

 ! "

! "

$! "

% ! "

& ! "

' ! "

(! "

) ! "

* ! "

+ ! "

, - . , - . , - . / 0 , - . , - . / 0

1$ 1% 1& 1' 1(

Fig.5. Answers for the questionnaire.

Baidu. They are invited to participate in our survey

and help us distribute the survey to their colleagues if

possible. On the other hand, we intensively mine 2,000

developers who have submitted commits to the popular

Java and Android projects with more than 100 stars on

GitHub and send survey invitations to these develop-

ers by email. After collecting all the survey responses,

we calculate the proportions of options for each ques-

tion and analyze whether different selected options are

influenced by the experience of developers.

Second, we observe the distributions of 12 charac-

teristics which are defined in Section 3.3. The boxplot

graphics are employed to present the maximum val-

ue, the median value, and the minimum value for each

characteristic. Furthermore, we conduct the two-sided

Wilcoxon rank-sum test to determine whether it is sig-

nificantly different for each pair of characteristics. The

two-sided Wilcoxon rank-sum test outputs a p-value as

the evaluation metric. A p-value below 0.05 indicates

statistical significance. Otherwise, we reject the null

hypothesis (i.e., the pair of characteristics are from the

same distributions) and accept the alternative hypoth-

esis (i.e., the pair of characteristics do not conform to

the same distributions). We select the Wilcoxon rank-

Yixuan Tang et al.: Empirical Comparison of API Documentation 17

sum test since it does not have any assumption on the

distribution of the datasets. In addition, we also calcu-

late the rank-biserial correlation to measure the effect

size of the Wilcoxon rank-sum test.

Finally, we analyze the correlations of these charac-

teristics within groups and across groups by the Spear-

man’s rank correlation. If the two characteristics have a

higher value of correlations, they would present positive

correlations and follow a similar trend on the distribu-

tions. We choose Spearman’s rank correlation since it

does not have any assumption on the distributions of

the datasets.

Results. In total, we receive 119 responses. The

results are summarized in Fig. 5. The left boxplot rep-

resents the experience of respondents and the right bar

graphic presents the results to other questions. The

horizontal axis shows different options of the question

regarding the characteristics of the presentation, and

the vertical axis shows the proportions of different op-

tions received from developers.

The experiences of our respondents vary from 1.5

years to 40 years, with average experience of 6.5 years.

Similar to the previous study by David et al. [42], we

consider the developers with three levels, including low

experience (ExpLow), medium experience (ExpMed),

and high experience (ExpHigh). We define the devel-

opers with ExpLow as 25% with the least experience in

years (≤ 3.5 years in this survey), the developers with

ExpHigh as 25% with the most experience in years (≥

8.0 years in this survey), and the remaining developers

with ExpMed that have 3.5 to 8 years of experience.

From Fig. 5, we can observe that almost 50% de-

velopers pick “More” options in Q2, Q3, and Q5, while

only about 20% developers rate “Fewer” options. In or-

der to gain a better insight into whether one level of de-

velopers tend to select “Fewer” or “More” option than

other levels of developers, following the literature [41],

we conduct Fisher’s exact test [43] with Bonferroni

correction [44] on these questions from different levels

of developers. For the null hypothesis, we assume that

different levels of developers tend to select distinct op-

tions. After three pairwise comparisons (ExpHigh vs.

ExpMed, ExpHigh vs. ExpLow, and ExpMed vs. Ex-

pLow), we find that the p-values are among 0.302 to 1.0

for these questions, indicating that there is not a sig-

nificant difference (p-value > 0.05) on the selection of

opposite options for different levels of developers. Be-

sides, we can observe that more than 60% developers

prefer longer documents in Fig. 5. Nearly 50% devel-

opers think more hyperlinks and more annotations in

code snippets could help understand APIs.

For Q4, more than 80% developers prefer shorter

code but more code snippets in the API documentation,

especially the developers with ExpMed, which exceed

a half of the number. In addition, the proportions of

the “important” option and the “very important” op-

tion for Q6 are 43.70% and 29.41%, respectively. This

means that more than 70% developers think the in-

tersection between explanatory descriptions and code

snippets is important for learning APIs.

We receive 59 developer comments for the open-

ended questions in the survey responses. Most com-

ments stress the importance of in-depth descriptions,

short code snippets, and clear usage caveats. Sever-

al developers point out other suggestions on improving

API learnability:

Details on how APIs work. “Simplicity, detail

and explanations on what the API returns, and what

type of information is returned including the format

should be included.”. Another one: “Test APIs and de-

tailed overview of parameters and returned values can

help more.”

Possible errors and usage caveat information.

“It should show the possible flaws, like how it processes

18 J. Comput. Sci. & Technol., November 2019, Vol., No.

0.68

0.86 0.67
0.81

0.62

0.53

0.86

0.36 0.23

0.65

0.97
0.51

0.20
0.38 0.06 0.15

0.08
0.03

0.04
0.11

0.05 0.01 0.57 0.70

official API tutorial

API crowd documentation

significant difference (p-value < 0.05)

0.68 rank-biserial correlation

Fig.6. Distribution of different characteristics for presentation in official API tutorials and API crowd documentation.

errors, etc.” And “the documentation should allow to

copy/paste code that people can try themselves, caveats

should be listed.”

Code design decisions. “Something I like to see

(and what I try to do as well), is that the developer ex-

plains why he/she made certain code design decisions

(i.e. what a complex function does backend). Some-

times an API is used by inexperienced developers. Ex-

plaining why certain decisions have been made while de-

signing the API can help developers gain more experi-

ence.”

Hyperlinks to API’s source code or project

Yixuan Tang et al.: Empirical Comparison of API Documentation 19

using it. “Sometimes a link to the API’s source code

if possible.” And “I expect additional information like

‘since’, hyperlink to sources, etc.”

We present the distribution for each characteristic

as well as the result of Wilcoxon rank-sum tests in Fig.

6. From Fig. 6(A) to Fig. 6(F), we can observe that

more than 75% official API tutorials have more sen-

tences, longer documents, and higher entropy values

than 75% API crowd documents. With low p-values

and high effect sizes, we can find that there are signifi-

cant differences on the distributions of these character-

istics. Since our survey shows that more than 60% de-

velopers prefer longer documents with textual details to

learn APIs, we can conclude that a long official tutorial

page would be more convenient for developers to learn

APIs than a dozen short API crowd documents. For the

readability, we can find that most values concentrate on

the lower side of the boxplot graph for both two types of

API documentation. This means that it is not difficult

for developers to understand the explanatory descrip-

tions. As for the number of hyperlinks, 75% API crowd

documents do not contain hyperlinks, whereas 75% An-

droid official tutorials have more than 10 hyperlinks in

Fig. 6(E). In addition, 50% official API tutorials have

more numbers of code-like terms than 75% API crowd

documents.

In the code snippet group (Fig. 6(G) - Fig. 6(K)),

although the number of code snippets and lines of s-

tatements show a slight difference in these two types

of API documentation due to the low p-values, we can

also observe that more than 50% official API tutorial-

s have more number of code snippets than 75% API

crowd documents. That is to say, official API tutorials

have shorter code but more code snippets, whereas most

API crowd documents have longer code but fewer code

snippets. In addition, the lines of “new” statements

and the lines of annotations also have low p-values with

low effect sizes. The values of cyclomatic complexity are

below 10 for more than 75% code snippets, which indi-

cates that it is not difficult for developers to understand

the code snippets in both official API tutorials and API

crowd documentation.

In the synthesis group (Fig. 6(L)), we can see that

50% official API tutorials have more intersections than

75% API crowd documents. Simultaneously, the p-

values below 0.05 with the effect sizes of 0.57 and 0.70

also present a significant difference. This means that

official API tutorials with more intersections between

explanatory descriptions and code snippets would be

more friendly for developers to learn APIs.

We present the Spearman’s rank correlation of these

characteristics within groups and across groups in Ta-

ble 6, 7, and 8. The values more than 0.500 indicate

moderate correlations or higher between a pair of char-

acteristics. From Table 6, we can find that the number

of sentencs, the length, and the entropy have extremely

strong positive correlations due to the high value from

0.669 to 0.983 for both Java and Android API doc-

umentation. In the code snippet group, the lines of

statements present strong correlations with other char-

acteristics as shown in Table 7. The reason may be

that longer code snippets tend to contain more instan-

tiate object codes, annotation codes, and furcated syn-

tax structures than shorter code snippets. In Table 8,

we can see that the number of code-like terms and the

number of code snippets have strong positive correla-

tions with the intersection. Since the intersection is

one of the most important characteristics in the API

documentation, we can appropriately increase several

code snippets for API elements and interpret the us-

ages of these API elements in explanatory descriptions

to improve API learnability.

Summary. Official API tutorials have longer doc-

uments and more intersections, which are friendly for

20 J. Comput. Sci. & Technol., November 2019, Vol., No.

Table 6. Spearman’s Rank Correlation Within Explanatory Description Group

Spearman’s rank number of length entropy readability number of number of

correlation sentences hyperlinks code-like terms

number of sentences - 0.900/0.746 0.669/0.695 -0.515/-0.327 0.826/0.212 0.457/0.195

length 0.941/0.781 - 0.807/0.903 -0.262/0.071 0.863/0.285 0.610/0.225

entropy 0.848/0.723 0.906/0.901 - -0.106/0.060 0.648/0.290 0.560/0.202

readability -0.174/-0.208 -0.02/0.159 0.000/0.144 - -0.214/0.067 -0.010/0.156

number of hyperlinks 0.476/0.213 0.474/0.275 0.471/0.284 0.004/0.114 - 0.404/0.035

number of code-like terms 0.592/0.244 0.604/0.273 0.568/0.226 0.076/0.111 0.361/0.08 -

Note: Left values of “/” represent the correlations of a pair of characteristics in official API tutorials and the right are correlations
for API crowd documentation. “-” means no correlations between two characteristics. The values above “-” are measured based on
Android API documentation and the below are for Java API documentation.

Table 7. Spearman’s Rank Correlation Within Code Snippet Group

Spearman’s rank number of lines of code lines of “new” lines of cyclomatic

correlation code snippets (LOC) statement annotation complexity

number of code snippets - 0.897/0.747 0.650/0.502 0.693/0.540 0.637/0.439

lines of statements 0.884/0.635 - 0.771/0.652 0.793/0.733 0.720/0.638

lines of “new” statements 0.575/0.386 0.664/0.636 - 0.790/0.534 0.768/0.574

lines of annotations 0.530/0.386 0.624/0.609 0.454/0.430 - 0.749/0.517

cyclomatic complexity 0.529/0.315 0.664/0.589 0.443/0.469 0.442/0.381 -

Note: Left values of “/” represent the correlations of a pair of characteristics in official API tutorials and the right
are correlations for API crowd documentation. “-” means no correlations between two characteristics. The values
above “-” are measured based on Android API documentation and the below are for Java API documentation.

Table 8. Spearman’s Rank Correlation Across Groups

Synthesis group

Groups Characteristics Java Android

number of sentences 0.513/0.158 0.318/0.102

Explanatory length 0.529/0.170 0.481/0.122

description entropy 0.473/0.147 0.455/0.123

group readability 0.048/0.079 0.153/0.142

number of hyperlinks 0.239/0.005 0.316/-0.034

number of code-like terms 0.821/0.800 0.854/0.753

number of code snippets 0.754/0.346 0.663/0.361

Code lines of statements 0.772/0.263 0.590/0.316

snippet lines of “new” statements 0.541/0.189 0.279/0.204

group lines of annotations 0.377/0.163 0.322/0.220

cyclomatic complexity 0.516/0.156 0.300/0.187

Note: Left values of “/” represents the correlations of a pair of characteristics in official
API tutorials and the right are correlation values for API crowd documentation.

developers to seek and learn APIs on a page. API crowd

documentation provides longer code snippets for a par-

ticular programming task. These benefits can help de-

velopers quickly learn APIs and can also be merged into

newly API documentation to improve the API learn-

ability to some extent.

5 Lessons learned

Developers might not be able to find suffi-

cient information about uncovered APIs in API

documentation. Previous studies have pointed out

that insufficient learning resources have been consid-

ered as one of the most severe API learning obsta-

cles [4, 10, 11]. Although the official API tutorials and

Yixuan Tang et al.: Empirical Comparison of API Documentation 21

API crowd documentation achieve the high coverage of

APIs as shown in RQ1, there still exist several uncov-

ered APIs without sufficient information, especially for

the fine-grained APIs. For example, when a develop-

er wants to seek information about how to use a Java

API Type “java.sql.SQLInput”, there is no related in-

formation about this API in official API tutorials and

no best answers to the questions related to this API in

API crowd documentation. Unfortunately, if the devel-

oper resorts to other types of API documentation but

finds nothing, this will seriously delay the development

efficiency. Thus, our results are a warning or an incen-

tive to API designers: sufficient API learning resources

should be prepared for developers learning APIs.

The mismatch between API documentation

would increase the browsing time for finding

useful API information. As results shown in RQ2,

the frequently used APIs between official API tutori-

als and API crowd documentation show significant d-

ifferences. Developers might not get the desirable API

information when merely referring to one type of API

documentation. For example, when a developer faces

an Applet problem, such as “my applet does not dis-

play”, there is little information guiding how to solve

this problem in official API tutorials. However, there

are nearly one hundred relevant API crowd documents

in our dataset and the number of the crowd documents

would increase if we do not limit the searching on S-

tack Overflow. As a result, developers may not under-

stand how to use the related APIs from official API

tutorials but have to go through multiple pages before

finding useful API information on Stack Overflow. This

phenomenon seriously delays the schedule of developers

and decreases the efficiency of API learnability. Thus,

our analysis is an incentive to API researchers: prac-

tical API information mining tools should be prepared

for developers to quickly learn how to use an API or

solve the API-related questions. For example, previous

work has created a question answering bot for API doc-

umentation. It can provide suggestions for developers

based on questions that are asked before [36]. There-

fore, developers could save much time on browsing API

crowd documentation and improve the development ef-

ficiency.

The benefits of presentations in distinct API

documentation could be merged into newly API

documentation to improve the efficiency of API

learnability for developers. There are significan-

t differences for most characteristics of the presenta-

tion between official API tutorials and API crowd doc-

umentation as shown in RQ3. Although the different

presentation is due to the distinct design goals of offi-

cial API tutorials and API crowd documentation, the

characteristics of these two types of API documentation

that have positive effects on the API learnability also

could be integrated into newly created API documen-

tation. For example, API tutorials can be automatical-

ly generated from API crowd documentation accord-

ing to the different complexity of understanding, which

can be adaptable to different levels of developer expe-

rience [45]. As for the previous API documentation,

some tasks aim to optimize the different characteris-

tics of the API documentation. For examples, tedious

API documents can be split into relevant tutorial frag-

ments for APIs to accelerate the learning of unfamiliar

APIs [7, 12]; code snippets and explanatory description-

s can be extracted from API crowd documentation to

enhance the official API documentation [46, 47]. Such

work can also improve the quality of the API documen-

tation and optimize the developers’ experiences when

browsing the API documentation.

22 J. Comput. Sci. & Technol., November 2019, Vol., No.

6 Threats to validity

6.1 External validity

Threats to external validity are the API bias and

dataset limitation.

API bias. We choose two types of APIs, namely

the Java SE APIs version 7 and the Android API library

version 7.0, to perform our analysis. Other APIs in d-

ifferent programming languages are not analyzed due

to space restrictions. However, we believe that other

API documentation also exists similar issues for learn-

ing APIs. For example, a Python developer sends a

mail to us and explains the difficulties when reading

MotionBuilder’s Python documents: “Basically, it tells

me nothing. It’s really difficult to find out how to ac-

cess the data I want through a python script. Here’s

almost no textual explanation. The name of variables

is the only information I can get. Guessing and test-

ing cost me lots of time.” Thus, the analyses of API

documentation can significantly guide developers with

better API learning experience.

Dataset limitation. The API crowd documenta-

tion is derived from the online data dump published on

Stack Exchange. Despite that the data dump in our

study is collected from January 2012 to June 2017, we

also achieve high API coverage in the results of RQ1.

Thus, we believe that the analyses between the API

crowd documentation and official API tutorials can al-

so get a convincing comparison.

6.2 Internal validity

Threats to internal validity are the quality of API

crowd documentation and the analysis bias.

Quality of API crowd documentation. Our

empirical study is based on the analysis between official

API tutorials and API crowd documentation. The qual-

ity of the API crowd documentation may be a threat.

In particular, if the API crowd documentation is com-

posed of all the questions and the answers in our data

dump, the APIs in lower quality of questions or answer-

s will be calculated, which may confuse our analysis.

Therefore, only the questions and the corresponding

best answers are included in our study.

Analysis bias. When an API is simple enough,

there need not abundant interpretations to introduce

how to use the API. However, if the API is practical in

most programming tasks, the frequency of the API in

the official API tutorials would not as high as that in

API crowd documentation, such as “java.lang.Double”,

“java.lang.Long”, and “java.lang.Byte”. This phe-

nomenon may influence the analysis of the mismatch

on the frequently used APIs between official API tu-

torials and API crowd documentation. However, the

mismatch is universal in the comparison for most APIs,

especially for the fine-grained APIs.

7 Conclusion

To the best of our knowledge, this paper is the first

time to analyze the differences on the API learnability

between official API tutorials and API crowd documen-

tation. We conduct an empirical study based on three

major aspects: (1) the coverage of APIs, (2) the con-

cerns for APIs, and (3) the presentations. The study

is performed on the Java API documentation and the

Android API documentation.

Overall, we find that the coverage of APIs in API

crowd documentation is higher than that in official API

tutorials. Most APIs covered by official API tutorials

are also covered by API crowd documentation. Thus,

for most APIs, developers can refer to API crowd docu-

mentation to learn how to use them. APIs provided in

official API tutorials might not focus on the APIs that

developers need, which may decrease the API learnabil-

ity for developers to some extent. Besides, official API

Yixuan Tang et al.: Empirical Comparison of API Documentation 23

tutorials are helpful for developers to locate the API

information due to the longer page. API crowd doc-

umentation can provide more quantitative and longer

code snippets to help developers accomplish develop-

ment tasks. These findings can help developers un-

derstand what API information is available in different

API documents and find the useful information they

need.

References

[1] Subramanian S, Inozemtseva L, Holmes R. Live API docu-

mentation. In Proc. of the 36th Int. Conf. on Softw. Eng.,

May 2014, pp.643-652.

[2] Petrosyan G, Robillard M P, De Mori R. Discovering in-

formation explaining API types using text classification. In

Proc. of the 37th Int. Conf. on Softw. Eng., May 2015,

pp.869-879.

[3] Maalej W, Robillard M P. Patterns of knowledge in API ref-

erence documentation. IEEE Trans. on Softw. Eng., 2013,

39(9): 1264-1282.

[4] Robillard M P. What makes apis hard to learn? Answers

from developers. IEEE Softw., 2009, 26(6): 27-34.

[5] Thayer K. Using Program Analysis to Improve API Learn-

ability. In Proc. of the 2018 ACM Conf. on Int. Computing

Education Research, Aug. 2018, pp.292-293.

[6] Jiang J, Koskinen J, Ruokonen A, Systa T. Constructing

usage scenarios for API redocumentation. In Proc. of the

15th IEEE International Conference on Program Compre-

hension, Jun. 2007, pp.259-264.

[7] Jiang H, Zhang J, Li X, Ren Z, Lo D. A more accurate mod-

el for finding tutorial segments explaining APIs. In Proc. of

the 2016 IEEE 23rd Int. Conf. on Softw. Analysis, Evolu-

tion, and Reengineering, Mar. 2016, pp. 157-167.

[8] Zhang J, Jiang H, Ren Z, Chen X. Recommending APIs for

API related questions in stack overflow. IEEE Access, 2018,

6: 6205-6219.

[9] Treude C, Storey M A. Effective communication of soft-

ware development knowledge through community portals.

In Proc. of the 19th ACM SIGSOFT symposium and the

13th European Conf. on Foundations of Softw. Eng., Sep.

2011, pp.91-101.

[10] Robillard M P, Deline R. A field study of api learning ob-

stacles. Empir. Softw. Eng., 2011, 16(6): 703-732.

[11] Scaffidi C. Why are apis difficult to learn and use. ACM

Crossroads Student Magazine, 2006, 12(4): 4-10.

[12] Jiang H, Zhang J, Ren Z, Zhang T. An unsupervised ap-

proach for discovering relevant tutorial fragments for APIs.

In Proc. of the 39th Int. Conf. on Softw. Eng., May 2017,

pp.38-48.

[13] Ye X, Shen H, Ma X, Bunescu R, Liu C. From word em-

beddings to document similarities for improved information

retrieval in software engineering. In Proc. of the 38th Int.

Conf. on Softw. Eng., May 2016, pp.404-415.

[14] Uddin G, Robillard M P. How API documentation fails,

IEEE Softw., 2015, 32(4): 68-75.

[15] Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall H.

Analyzing APIs documentation and code to detect direc-

tive defects. In Proc. of the 39th Int. Conf. on Softw. Eng.,

May 2017, pp.7-37.

[16] Parnin C, Treude C, Grammel L, Storey M A. Crowd

documentation: Exploring the coverage and the dy-

namics of API discussions on Stack Overflow. Tech-

nical Report, Georgia Institute of Technology, 2012.

http://chrisparnin.me/pdf/crowddoc.pdf

[17] Wang X, Huang C, Yao L, Benatallah B, Dong M. A survey

on expert recommendation in community question answer-

ing. Journal of Computer Science and Technology, 2018,

33(4): 625-653.

[18] Mamykina L, Manoim B, Mittal M, Hripcsak G, Hartman-

n B. Design lessons from the fastest q&a site in the west.

In Proc. of the 2011 Annual Conf. on Human Factors in

Computing Systems, Apr. 2011, pp.2857-2866.

[19] Beyer S, Macho C, Pinzger M. On android API

classes and their references on stack overflow. Tech-

nical Report, University of Klagenfurt, 2016. http-

s://serg.aau.at/pub/StefanieBeyer/Publications/ techre-

port AAU-SERG-2016-001.pdf

[20] Zhang Y, Lo D, Xia X, Sun J L. Multi-factor duplicate

question detection in stack overflow. Journal of Computer

Science and Tech., 2015, 30(5): 981-997.

[21] Yang X L, Lo D, Xia X, Wan Z Y, Sun J L. What se-

curity questions do developers ask? A large-scale study

of stack overflow posts. Journal of Computer Science and

Tech., 2016, 31(5): 910-924.

[22] Rosen C, Shihab E. What are mobile developers asking

about? A large scale study using stack overflow. Empir-

ical Softw. Eng., 2016, 21(3): 1192-1223.

[23] Barua A, Thomas S W, Hassan A E. What are developers

talking about? An analysis of topics and trends in Stack

Overflow. Empirical Softw. Eng., 2014, 19(3): 619-654.

24 J. Comput. Sci. & Technol., November 2019, Vol., No.

[24] Chen C, Wu K, Srinivasan V, Bharadwaj R K. The best an-

swers? Think twice: identifying commercial campagins in

the CQA forums. Journal of Computer Science and Tech.,

2015, 30(4): 810-828.

[25] Brito G, Hora A C, Valente M T, Romain R. On the use

of replacement messages in API depreca-tion: An empirical

study. Journal Syst. Softw., 2018, 137: 306-321.

[26] Dagenais B, Robillard M P. Recovering traceability links

between an API and its learning resources. In Proc. of the

34th Int. Conf. on Softw. Eng., June 2012, pp.47-57.

[27] Rastkar S, Murphy G C, Murray G. Summarizing software

artifacts: a case study of bug reports. In Proc. of the 32nd

Int. Conf. on Softw. Eng., May 2010, pp.505-514.

[28] Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Z-

immermann T. What makes a good bug report? In Proc. of

the 16th ACM SIGSOFT Int. Symposium on Foundations

of Softw. Eng., Mar. 2008, pp. 308-318.

[29] Schneider T D. Information theory primer with an appendix

on logarithms. National Cancer Institute, 2007.

[30] Smith E A, Senter R J. Automated readability index.

Aerospace Medical Research Laboratories, 1967, pp.1-14.

[31] Jay G T, Hale J E, Smith R K, Hale D P, Kraft N A, Ward

C. Cyclomatic Complexity and Lines of Code: Empirical

Evidence of a Stable Linear Relationship. Journal of Softw.

Eng. and Applications, 2009, 02(03): 137-143.

[32] Nykaza J, Messinger R, Boehme F, Norman CL, Mace M,

Gordon M. What programmers really want: results of a

needs assessment for SDK documentation, In Proc. of the

20th annual ACM SIGDOC int conf. on computer docu-

mentation, Oct. 2002, pp.133-141

[33] Mclellan S G, Roesler A W, Tempest J T, Spinuzzi C I.

Building more usable APIs. IEEE Softw., 1998, 15(3): 78-

86.

[34] Santos A L, Myers B A. Design annotations to improve API

discoverability. Journal of Systems and Softw., 2017: 17-33.

[35] McCabe T J. A complexity measure. IEEE Trans. on Soft-

w. Eng., 1976, 4: 308-320.

[36] Yuan T, Thung F, Sharma A, Lo D. APIBot: question an-

swering bot for api documentation. In Proc. of the 32nd

IEEE/ACM Int. Conf. on Automated Software Engineer-

ing, Oct. 2017, pp.153-158.

[37] Zar J H. Spearman rank correlation. Encyclopedia of bio-

statistics, 1998, 5:4191-6.

[38] Mandelin D, Xu L, Bodik R, Kimelman D. Jungloid mining:

helping to navigate the API jungle. In Proc. of the ACM

SIGPLAN Conference on Programming Language Design

and Implementation, 2005, 40(6): 48-61.

[39] Mann H B, Whitney D R. On a test of whether one of t-

wo random variables is stochastically larger than the other.

The annals of mathematical statistics, 1947, 18(1): 50-60.

[40] Kitchenham B A, Pfleeger S L. Personal opinion surveys.

In Guide to Advanced Empir. Softw. Eng., 2008, pp.63-92.

[41] Zou W, Lo D, Chen Z, Xia X, Feng Y, Xu B. How practition-

ers perceive automated bug report management techniques.

IEEE Trans. on Softw. Eng., 2018.

[42] David L O, Nagappan N, Zimmermann T. How practition-

ers perceive the relevance of software engineering research.

In Proc. of the 10th Joint Meeting on Foundations of Soft.

Eng., 2015, pp.415-425.

[43] Fisher R A. On the interpretation of x2 from contingen-

cy tables, and the calculation of p. Journal of the Royal

Statistical Society, 1922, 85(1):87-94.

[44] McDonald J H. Handbook of biological statistics. Sparky

House, 2009.

[45] Rocha A M, Maia M A. Automated API documentation

with tutorials generated from stack overflow. In Proc. of

the 30th Brazilian Symposium on Softw. Eng., Sep. 2016,

pp.33-42.

[46] Kim J, Lee S, Hwang S, Kim S. Enriching Documents with

Examples: A Corpus Mining Approach. ACM Transactions

on Information Systems, 2013, 31(1): 1-27.

[47] Treude C, Robillard M P. Augmenting API documentation

with insights from stack overflow[C]. In Proc. of the 38th

Int. Conf. on Softw. Eng., May 2016, pp.392-403.

Yi-Xuan Tang received the

B.S. degree in computer science

and technology from Liaoning

University, Shenyang, in 2015. She

is currently a Ph.D. candidate in

Dalian University of Technology,

Dalian. Her current research

interests include software data

analytics and compiler testing.

Yixuan Tang et al.: Empirical Comparison of API Documentation 25

Zhi-Lei Ren received the B.S.

degree in software engineering and

the Ph.D. degree in computational

mathematics from Dalian Uni-

versity of Technology, Dalian, in

2007 and 2013, respectively. He

is currently a professor at Dalian

University of Technology, Daian.

He is a member of the China

Computer Federation (CCF) and the Association for

Computing Machinery (ACM), respectively. His current

research interests include evolutionary computation,

automatic algorithm configuration, and mining software

repositories.

He Jiang is currently a pro-

fessor with Dalian University

of Technology and an adjunct

professor with Beijing Institute

of Technology. He is a member

of the China Computer Federa-

tion (CCF), the Association for

Computing Machinery (ACM),

and the Institute of Electrical and

Electronics Engineers (IEEE), respectively. His current re-

search interests include search-based software engineering

and mining software repositories. He has published over 60

referred papers on journals and international conferences,

including IEEE Trans. Software Engineering, IEEE Trans.

Knowledge and Data Engineering, ICSE, SANER, etc.,

supported by the Program for New Century Excellent

Talents in University and the National Science Fund for

Excellent Young Scholars. In addition, he serves as the

guest editors of some journals and magazines, including

IEEE Computational Intelligence, Journal of Computer

Science and Technology, Frontiers of Computer Science,

etc.

Xiao-Chen Li is currently a

research associate at University of

Luxembourg. He received the Ph.D.

degree in software engineering from

Dalian University of Technology,

Dalian, China, in 2019. He is a

member of the China Computer

Federation (CCF). His current re-

search interests are mining software

repositories (MSR) and software semantic analysis. He

has published referred papers on premier journals and

international conferences, including TSE, TRE, ICSE and

ICPC. More information about him is available online at

https://xiaochen-li.github.io.

Wei-Qiang Kong received

the Ph.D. degree in information

science from Japan Advanced

Institute of Science and Technol-

ogy, in 2006. He is a member of

the China Computer Federation

(CCF). He is currently a professor

at Dalian University of Technol-

ogy, Dalian. His current research

interests include software engineering and formal methods

(formal verification).

